THE FEKETE-SZEGÖ PROBLEM FOR A GENERAL CLASS OF BI-UNIVALENT FUNCTIONS SATISFYING SUBORDINATE CONDITIONS

ŞAHSENE ALTINKAYA ${ }^{1 *}$ AND SIBEL YALÇIN ${ }^{2}$

Abstract

In this work, we obtain the Fekete-Szegö inequalities for the class $P_{\Sigma}(\lambda, \phi)$ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [II].

1. Introduction and Definitions

Let A denotes the class of analytic functions in the unit disk

$$
U=\{z \in \mathbb{C}:|z|<1\},
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

and let S be the class of all functions from A which are univalent in U.
The Koebe one-quarter theorem [5] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z, \quad(z \in U),
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f), \quad r_{0}(f) \geq \frac{1}{4}\right),
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

Key words and phrases. Bi-univalent functions, Convex functions with respect to symmetric points, Subordination, Fekete-Szegö inequality.

Received: 27 February 2016, Accepted: 30 June 2016.

* Corresponding author.

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denotes the class of bi-univalent functions defined in the unit disk U.

If the functions f and g are analytic in U, then f is said to be subordinate to g, written as

$$
f(z) \prec g(z), \quad(z \in U),
$$

if there exists a Schwarz function $w(z)$, analytic in U, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1, \quad(z \in U),
$$

such that

$$
f(z)=g(w(z)), \quad(z \in U)
$$

Brannan and Taha [2] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^{\star}(\alpha)$ and $K(\alpha)$ of starlike and convex function of order $\alpha(0<\alpha \leq 1)$, respectively. The classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and biconvex functions of order α, corresponding to the function classes $S^{\star}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$, they found non-sharp estimates on the initial coefficients. Bounds for the initial coefficients of several classes of functions were also investigated in [$[4,4,6,4,[\pi],[3,[4]$].

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, there are only a few works determining the general coefficient bounds on $\left|a_{n}\right|$ for the analytic bi-univalent functions $\left[3,[\mathbf{Z}, \mathbf{8}]\right.$. The coefficient estimate problem for each of $\left|a_{n}\right|, n \in \mathbb{N} \backslash\{1,2\}$; $\mathbb{N}=\{1,2, \ldots\}$ is still an open problem.

In this paper, motivated by the earlier work of Zaprawa [15], we obtain the Fekete-Szegö inequalities for the class $P_{\Sigma}(\lambda, \phi)$. These inequalities will result in bounds of the third coefficient which are, in some cases, better than these obtained in [IT].

In order to derive our main results, we require the following lemma.
Lemma 1.1. [[І2] If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ is an analytic function in U with positive real part, then

$$
\left|p_{n}\right| \leq 2, \quad(n \in \mathbb{N}=\{1,2, \ldots\}),
$$

and

$$
\begin{equation*}
\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{1}\right|^{2}}{2} \tag{1.2}
\end{equation*}
$$

2. Coefficient Estimates

In the following, let ϕ be an analytic function with positive real part in U, with $\phi(0)=1$ and $\phi^{\prime}(0)>0$. Also, let $\phi(U)$ be starlike with respect to 1 and symmetric with respect to the real axis. Thus, ϕ has the Taylor series expansion

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) . \tag{2.1}
\end{equation*}
$$

Definition 2.1. [IT] A function $f(z)$ given by ([IT) is said to be in the class $P_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma, \quad\left|\arg \left(\frac{z^{1-\lambda} f^{\prime}(z)}{f(z)^{1-\lambda}}\right)\right|<\frac{\alpha \pi}{2}, \quad(0<\alpha \leq 1, \lambda \geq 0, z \in U),
$$

and

$$
\left|\arg \left(\frac{w^{1-\lambda} g^{\prime}(w)}{g(w)^{1-\lambda}}\right)\right|<\frac{\alpha \pi}{2}, \quad(0<\alpha \leq 1, \lambda \geq 0, w \in U),
$$

where the function g is given by

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

We note that for $\lambda=0$, the class $P_{\Sigma}(\alpha, \lambda)$ reduces to the class $S_{\Sigma}^{\star}(\alpha)$ which was given by Brannan and Taha [$\Sigma \mathrm{Z}]$.

Definition 2.2. A function $f \in \Sigma$ is said to be in the class $P_{\Sigma}(\lambda, \phi), 0<$ $\phi \leq 1$ and $\lambda \geq 0$, if the following subordination holds

$$
\left[\frac{z^{1-\lambda} f^{\prime}(z)}{f(z)^{1-\lambda}}\right] \prec \phi(z),
$$

and

$$
\left[\frac{w^{1-\lambda} g^{\prime}(w)}{g(w)^{1-\lambda}}\right] \prec \phi(w),
$$

where $g(w)=f^{-1}(w)$.
Theorem 2.3. Let f given by (IT.]) be in the class $\mathrm{P}_{\Sigma}(\lambda, \phi)$ and $\mu \in \mathbb{R}$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{B_{1}}{2+\lambda}, \\
\text { for }|\mu-1| \leq \frac{1}{2+\lambda}\left|1+\frac{3 \lambda}{2}+\frac{\lambda^{2}}{2}+(1+\lambda)^{2} \frac{\left(B_{1}-B_{2}\right)}{B_{1}^{2}}\right| \\
\frac{|1-\mu| B_{1}^{3}}{\left|\left(1+\frac{3 \lambda}{2}+\frac{\lambda^{2}}{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right|}, \\
\text { for }|\mu-1| \geq \frac{1}{2+\lambda}\left|1+\frac{3 \lambda}{2}+\frac{\lambda^{2}}{2}+(1+\lambda)^{2} \frac{\left(B_{1}-B_{2}\right)}{B_{1}^{2}}\right| .
\end{array}\right.
$$

Proof. Let $f \in P_{\Sigma}(\lambda, \phi)$ and g be the analytic extension of f^{-1} to U. Then there exist two functions u and v, analytic in U with $u(0)=$ $v(0)=0,|u(z)|<1,|v(w)|<1$ and $z, w \in U$ such that

$$
\begin{equation*}
\left[\frac{z^{1-\lambda} f^{\prime}(z)}{f(z)^{1-\lambda}}\right]=\phi(u(z)) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{w^{1-\lambda} g^{\prime}(w)}{g(w)^{1-\lambda}}\right]=\phi(v(w)), \tag{2.3}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
Next, define the functions p and q by

$$
\begin{equation*}
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=\frac{1+v(w)}{1-v(w)}=1+q_{1} w+q_{2} w^{2}+\cdots \tag{2.5}
\end{equation*}
$$

Clearly, $\Re(p(z))>0$ and $\Re(q(w))>0$. From (2.4) and (2.5) one can derive

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2} p_{1} z+\frac{1}{2}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) z^{2}+\cdots, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\frac{q(w)-1}{q(w)+1}=\frac{1}{2} q_{1} w+\frac{1}{2}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right) w^{2}+\cdots . \tag{2.7}
\end{equation*}
$$

Combining (2.1) , (2.2) , (2.3), (2.61) and (2.7),

$$
\begin{equation*}
\frac{z^{1-\lambda} f^{\prime}(z)}{f(z)^{1-\lambda}}=1+\frac{1}{2} B_{1} p_{1} z+\left(\frac{1}{4} B_{2} p_{1}^{2}+\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w^{1-\lambda} g^{\prime}(w)}{g(w)^{1-\lambda}}=1+\frac{1}{2} B_{1} q_{1} w+\left(\frac{1}{4} B_{2} q_{1}^{2}+\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)\right) w^{2}+\cdots \tag{2.9}
\end{equation*}
$$

From (L.Z) and (L.प) , we deduce

$$
\begin{gather*}
(1+\lambda) a_{2}=\frac{1}{2} B_{1} p_{1}, \tag{2.10}\\
(2+\lambda) a_{3}+\left(\frac{\lambda^{2}}{2}+\frac{\lambda}{2}-1\right) a_{2}^{2}=\frac{1}{4} B_{2} p_{1}^{2}+\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right), \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
-(1+\lambda) a_{2}=\frac{1}{2} B_{1} q_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\lambda^{2}}{2}+\frac{5 \lambda}{2}+3\right) a_{2}^{2}-(2+\lambda) a_{3}=\frac{1}{4} B_{2} q_{1}^{2}+\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right) \tag{2.13}
\end{equation*}
$$

From (2.TII) and ($2 . \perp 2$), we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{1}{4(2+\lambda)} B_{1}\left(p_{2}-q_{2}\right) \tag{2.15}
\end{equation*}
$$

By adding (2.1]) to (2.13), we get

$$
\left(\lambda^{2}+3 \lambda+2\right) a_{2}^{2}=\frac{1}{2} B_{1}\left(p_{2}+q_{2}\right)-\frac{1}{4}\left(B_{1}-B_{2}\right)\left(p_{1}^{2}+q_{1}^{2}\right)
$$

Combining this with (2.10) and (2.I2) leads to

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(p_{2}+q_{2}\right)}{2\left[\left(\lambda^{2}+3 \lambda+2\right) B_{1}^{2}+2(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right]} \tag{2.16}
\end{equation*}
$$

From (2.15) and (2.16) it follows that

$$
a_{3}-\mu a_{2}^{2}=B_{1}\left[\left(h(\mu)+\frac{1}{4(2+\lambda)}\right) p_{2}+\left(h(\mu)-\frac{1}{4(2+\lambda)}\right) q_{2}\right]
$$

where

$$
h(\mu)=\frac{B_{1}^{2}(1-\mu)}{2\left[\left(\lambda^{2}+3 \lambda+2\right) B_{1}^{2}+2(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right]}
$$

Then, in view of ([L.2) and (2.$]$), we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{2+\lambda}, & 0 \leq|h(\mu)| \leq \frac{1}{4(2+\lambda)} \\ 4 B_{1}|h(\mu)|, & |h(\mu)| \geq \frac{1}{4(2+\lambda)}\end{cases}
$$

Taking $\mu=1$ or $\mu=0$, we get
Corollary 2.4. If $f \in \mathrm{P}_{\Sigma}(\lambda, \phi)$ then

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{B_{1}}{2+\lambda} \tag{2.17}
\end{equation*}
$$

Corollary 2.5. If $f \in \mathrm{P}_{\Sigma}(\lambda, \phi)$ then

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{B_{1}}{2+\lambda}, \quad \text { for } \frac{B_{1}-B_{2}}{B_{1}^{2}} \in\left(-\infty,-\frac{6+5 \lambda+\lambda^{2}}{2(1+\lambda)^{2}}\right] \cup\left[\frac{2-\lambda-\lambda^{2}}{2(1+\lambda)^{2}}, \infty\right) \tag{2.18}\\
\frac{B_{1}^{3}}{\left|\left(1+\frac{3 \lambda}{2}+\frac{\lambda^{2}}{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right|}, \\
\quad \text { for } \frac{B_{1}-B_{2}}{B_{1}^{2}} \in\left[-\frac{6+5 \lambda+\lambda^{2}}{2(1+\lambda)^{2}},-\frac{2+3 \lambda+\lambda^{2}}{2(1+\lambda)^{2}}\right) \cup\left(-\frac{2+3 \lambda+\lambda^{2}}{2(1+\lambda)^{2}}, \frac{2-\lambda-\lambda^{2}}{2(1+\lambda)^{2}}\right] .
\end{array}\right.
$$

Corollary 2.6. Let

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\beta}=1+2 \beta z+2 \beta^{2} z^{2}+\cdots, \quad(0<\beta \leq 1)
$$

then inequalities (2.17) and (2.18) become

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 \beta}{2+\lambda}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{2 \beta}{2+\lambda}, & \beta \leq \frac{(1+\lambda)^{2}}{3+\lambda} \\ \frac{4 \beta^{2}}{(1+\lambda) \beta+(1+\lambda)^{2}}, & \beta \geq \frac{(1+\lambda)^{2}}{3+\lambda}\end{cases}
$$

Corollary 2.7. Let
$\phi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots, \quad(0 \leq \beta<1)$,
then inequalities (2.17) and (2.18) become

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2(1-\beta)}{2+\lambda}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{1+\frac{3 \lambda}{2}+\frac{\lambda^{2}}{2}} .
$$

Remark 2.8. Corollary 2.6 and Corollary $\mathbb{Z . 7}$ provide an improvement of the estimate $\left|a_{3}\right|$ obtained by Prema and Keerthi [II].

Acknowledgment. The authors thank the referee for his valuable suggestions which led to improvement of this study.

References

1. Ş. Altınkaya and S. Yalçın, Initial coefficient bounds for a general class of biunivalent functions, Inter. J. Anal., Article ID 867871, 20144 pp.
2. D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babe-Bolyai Math., 31 (2) (1986) 70-77.
3. S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014) 479-484.
4. O. Crişan, Coefficient estimates certain subclasses of bi-univalent functions, Gen. Math. Notes, 16 (2013) 93-1002.
5. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 259, 1983.
6. B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011) 1569-1573.
7. S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser.I, 352 (2014) 17-20.
8. J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., ArticleID 190560, (2013) 4 pp.
9. B.S. Keerthi and B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Theoretical Mathematics and Applications, 3 (2013) 1-10.
10. N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, Int. Math. Forum, 8 (2013) 1337-1344.
11. S. Prema and B.S. Keerthi, Coefficient bounds for a certain subclass of analytic functions, J. Math. Anal., 4 (2013) 22-27.
12. C. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
13. H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010) 1188-1192.
14. Q.H. Xu, Y.C. Gui, and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012) 990-994.
15. P. Zaprawa, On Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014) 169-178.
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, University of Uludag, 16059, Bursa, Turkey.

E-mail address: sahsene@uludag.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, University of Uludag, 16059, Bursa, Turkey.

E-mail address: syalcin@uludag.edu.tr

