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Contra β∗-continuous and almost contra β∗-continuous

functions

Appachi Vadivel1∗, Radhakrishnan Ramesh2, and Duraisamy Sivakumar3

Abstract. The notion of contra continuous functions was intro-
duced and investigated by Dontchev. In this paper, we apply the
notion of β∗-closed sets in topological space to present and study
a new class of functions called contra β∗-continuous and almost
contra β∗-continuous functions as a new generalization of contra
continuity.

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topol-
ogy and they are now the research topics of many topologist worldwide.
Indeed a significant theme in General Topology and Real Analysis con-
cerns the variously modified forms of continuity, separation axioms etc,
by utilizing generalized closed sets. Recently, as generalization of closed
sets, the notion of β∗-closed sets were introduced and studied by [15].

Dontchev [4] introduced the notions of contra continuity and strong
S-closedness in topological spaces. He defined a function f : X → Y is
contra continuous if the preimage of every open set of Y is closed inX. A
new weaker form of this class of functions called contra semicontinuous
function is introduced and investigated by Dontchev and Noiri [5]. Cal-
das and Jafari [2] have introduced and studied contra β-continuous func-
tion. Jafari and Noiri [8, 9] introduced and investigated the notions of
contra super continuous, contra precontinuous and contra α-continuous
functions. Almost contra precontinuous functions were introduced by
[6] and recently have been investigated further by Noiri and Popa [14].
Nasef [13] has introduced and studied contra γ-continuous function. In
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this direction, we will introduce the concept of contra β∗-continuous
and almost contra β∗-continuous functions via the notion of β∗-open set
and study some properties of contra β∗-continuous and almost contra
β∗-continuous functions.

All through this paper, (X, τ) and (Y, σ) stand for topological space
with no separation axioms assumed, unless otherwise stated. Let A ⊆ X,
the closure of A and the interior of A will be denoted by Cl(A) and
Int(B), respectively.

Let A be a subset of a space (X, T ). The set ∩{U : U ∈ T and
A ⊂ U} is called kernal of A and is denoted by ker(A) [12].

Lemma 1.1 ([8]). The following properties hold for subsets A, B of a
space X:

(1) x ∈ ker(A) if and only if A ∩ F ̸= ϕ for any F ∈ C(X,x),
(2) A ⊆ ker(A) and A = ker(A) if A is open in X,
(3) if A ⊆ B, then ker(A) ⊆ ker(B).

2. Contra β∗-continuous functions

Definition 2.1. A subset A of a topological space (X, τ) is called a

(i) generalized closed (briefly g-closed) [11] if Cl(A) ⊆ U whenever
A ⊆ U and U is open in (X, τ).

(ii) β∗-closed [15] if Cl(Int(A)) ⊆ U whenever A ⊆ U and U is
g-open in (X, τ).

Example 2.2. If we give R the topology having as basis all the intervals
[a, b), then with this topology R is β∗-closed (resp., g-closed) because
the intervals [a, b) are closed (resp., g-closed) as well as open, since their
complements (−∞, a)∪ [b,∞) are open (resp., g-open), being the union
of the basis intervals [a− n, a) and [b, b+ n) for n = 1, 2, . . . .

Definition 2.3. A function f : X → Y is called β∗-continuous [7] if
for each x ∈ X and each open set V of Y containing f(x), there exists
U ∈ β∗O(X,x) such that f(U) ⊆ V .

Definition 2.4. A bijection f : (X, τ) → (Y, σ) is called β∗-homeomorph
ism [18] if f and f−1 are both β∗-continuous and β∗-closed.

Example 2.5. Let (−1, 1) has the standard topology, and define a func-
tion f : R → (−1, 1) by f(x) = x

1+|x| . It is apparent from the graph that

f is bijection between R and (−1, 1). It is also apparent that preimages
of open intervals are open intervals for both f and f−1. Therfore, f and
f−1 are both β∗-continuous, and it follows that f is a homeomorphism
between R and (−1, 1).



CONTRA β∗-CONTINUOUS AND ALMOST CONTRA β∗-CONTINUOUS ... 57

Definition 2.6. A function f : X → Y is called contra-β∗-continuous
(resp., contra-continuous [4]) if f−1(V ) is β∗-closed (resp., closed) in X
for each open set V of Y .

Example 2.7. LetX = R with the usual topology τ and Y = {a, b, c, d}
with the topology σ = {ϕ, Y, {a}, {b}, {a, b}, {a, b, c}}. Then the func-
tion f : (X, τ) → (Y, σ) defined by

f(x) =

{
c, if x = Q,

a, if x ̸= Q,

is contra β∗-continuous.

Definition 2.8. A function f : X → Y is said to be almost-β∗-continuous
(resp., almost continuous [14]) if f−1(V ) is β∗-open (resp., open) in X
for each regular open set V of Y .

Remark 2.9. Every contra continuous function is contra β∗-continuous
but the converse is not true, as shown in the following example.

Example 2.10. Let X = Y = {a, b} with τ = σ = {X,ϕ, {a}}. Let
f : (X, τ) → (Y, σ) be the identity map. Then f is contra β∗-continuous
but not contra continuous, where {a} is open in Y but it is not closed
in X.

Theorem 2.11. The following are equivalent for a function f : X → Y :

(1) f is contra-β∗-continuous,
(2) for every closed subset F of Y , f−1(F ) ∈ β∗O(X),
(3) for each x ∈ X and F ∈ C(Y, f(x)), there exists U ∈ β∗O(X,x)

such that f(U) ⊆ F ,
(4) f(β∗Cl(A)) ⊆ ker(f(A)) for every subset A of X,
(5) β∗Cl(f−1(B)) ⊆ f−1(ker(B)) for every subset B of Y .

Proof. The implications (1)⇔(2) and (2)⇒(3) are obvious.

(3)⇒(2) Let F be any closed subset of Y and x ∈ f−1(F ). Then
f(x) ∈ F and there exists Ux ∈ β∗O(X,x) such that f(Ux) ⊆ F .
Therefore, we obtain f−1(F ) =

∪
{Ux|x ∈ f−1(F )} and f−1(F )

is β∗-open, since τβ∗ is a topological space.
(2)⇒(4) Let A be a subset of X. Suppose that y /∈ ker(f(A)). Then by

Lemma 1.1, there exists F ∈ C(Y, f(x)) such that f(A)∩F = ϕ.
Thus, we have A∩f−1(F ) = ϕ and since f−1(F ) is β∗-open then
we have β∗Cl(A) ∩ f−1(F ) = ϕ. Therefore, we have obtain
f(β∗Cl(A) ∩ F ) = ϕ and y /∈ f(β∗Cl(A)). This implies that

f(β∗Cl(A) ⊆ ker(f(A)).
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(4)⇒(5) Let B be any subset of Y . By (4) and Lemma 1.1, we have

f(β∗Cl(f−1(B))) ⊆ ker(f(f−1(B))) ⊆ ker(B)

thus β∗Cl(f−1(B)) ⊆ f−1(ker(B)).
(5)⇒(1) Let V be any open set of Y . Then by Lemma 1.1, we have

β∗Cl(f−1(V )) ⊆ f−1(ker(V )) = f−1(V ) and β∗Cl(f−1(V )) =
f−1(V ). This show that f−1(V ) is β∗-closed in X.

□
Theorem 2.12. If a function f : X → Y is contra-β∗-continuous and
Y is regular, then f is β∗-continuous.

Proof. Let x be an arbitrary point of X and let V be an open set of
Y containing f(x), since Y is regular, there exists an open set W in Y
containing f(x) such that Cl(W ) ⊆ V . Since f is contra β∗-continuous,
so by Theorem 2.11(3) there exists U ∈ β∗O(X,x) such that f(U) ⊆
Cl(W ). Then f(U) ⊆ Cl(W ) ⊆ V . Hence f is β∗-continuous. □
Definition 2.13. A space (X, τ) is said to be β∗-space (resp., locally
β∗-indiscrete) if every β∗-open set is open (resp., closed) in X.

For any space (X, τ), we have τ ⊆ τβ∗ . So the following results follows
immediatly.

Theorem 2.14. A function f : (X, τ) → (Y, σ) is contra-β∗-continuous
if and only if f : (X, τβ∗) → (Y, σ) is contra-continuous.

Theorem 2.15. If a function f : X → Y is contra-β∗-continuous and
X is β∗-space, then f is contra-continuous.

Theorem 2.16. Let X be locally β∗-indiscrete. If a function f : X → Y
is contra β∗-continuous, then f is continuous.

Definition 2.17. A function f : X → Y is called almost-β∗-continuous
if for each x ∈ X and each open set V of Y containing f(x), there exists
U ∈ β∗O(X,x) such that f(U) ⊆ β∗Int(Cl(V )).

Definition 2.18. A function f : X → Y is said to be pre-β∗-open if the
image of each β∗-open set is β∗-open.

Theorem 2.19. If a function f : X → Y is pre-β∗-open and contra-β∗-
continuous function, then f is almost-β∗-continuous.

Proof. Let x be any arbitrary point ofX and V be an open set containing
f(x). Since f is contra-β∗-continuous, then by Theorem 2.11 (3) there
exists U ∈ β∗O(X,x) such that f(U) ⊆ Cl(V ). Since f is pre-β∗-open,
f(U) is β∗-open in Y . Therefore,

f(U) = β∗Intf(U) ⊆ β∗Int(Cl(f(U))) ⊆ β∗Int(Cl(V )).

This shows that f is almost-β∗-continuous. □
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Definition 2.20. A function f : X → Y is said to be almost weakly
β∗-continuous if for each x ∈ X and each open neighborhood V of f(x)
there exists U ∈ β∗O(X,x) such that f(U) ⊆ Cl(V ).

Theorem 2.21. If a function f : X → Y is contra-β∗-continuous, then
f is almost weakly β∗-continuous.

Proof. Let V be any open set of Y . Since Cl(V ) is closed in Y , by
Theorem 2.11 (3), f−1(Cl(V )) is β∗-open in X and set U = f−1(Cl(V )),
then we have f(U) ⊆ Cl(V ). This shows that f is almost weakly β∗-
continuous. □

Since the family of all β∗-open subsets of a space (X, τ), denoted by
τβ∗ , forms a topology on X finer than τ , then the β∗-frontier of A, where
A ⊆ X, is defined by β∗Fr(A) = β∗Cl(A) ∩ β∗Cl(X −A).

Theorem 2.22. The set of all points x of X for which f : X → Y is
not contra-β∗-continuous is identical with the union of the β∗-frontier
of the inverse images of closed sets of Y containing f(x).

Proof. Suppose f is not contra-β∗-continuous at x ∈ X. There exists
F ∈ C(Y, f(x)) such that f(U) ∩ (Y − F ) ̸= ϕ for every U ∈ β∗O(X,x)
by Theorem 2.11 This implies that U ∩ f−1(Y − F ) ̸= ϕ. Therefore, we
have

x ∈ f−1(F ) ⊆ β∗Cl(f−1(Y − F ))

= β∗Cl(X − f−1(F )).

However, since x ∈ f−1(F ) ⊆ β∗Cl(f−1(F )), thus

x ∈ β∗Cl(f−1(F )) ∩ β∗Cl(f−1(Y − F )).

Therefore, we obtain x ∈ β∗Fr(f−1(F )). Suppose that

x ∈ β−1Frf(f−1(F )),

for some F ∈ C(Y, f(x)), and f is contra-β∗-continuous at x, then there
exists U ∈ β∗O(X,x) such that f(U) ⊆ F . Therefore, we have x ∈ U ⊆
f−1(F ) and hence

x ∈ Int(f−1(F )) ⊆ X − β∗Fr(f−1(F )).

This is a contradiction. This mean that f is not contra-β∗-continuous.
□

Theorem 2.23. Let f : X → Y be a function and let g : X → X × Y
be the graph function of f defined by g(x) = (x, f(x)) for every x ∈ X.
If g is contra-β∗-continuous, then f is contra-β∗-continuous.
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Proof. Let U be an open set in Y , then X ×U is an open set in X × Y .
Since g is contra-β∗-continuous. It follows that f−1(U) = g−1(X × U)
is an β∗-closed in X. Thus, f is contra-β∗-continuous. □

Theorem 2.24. If f : X → Y and g : X → Y are contra-β∗-continuous,
and Y is Urysohn, then E = {x ∈ X : f(x) = g(x)} is β∗-closed in X.

Proof. Let x ∈ X − E. Then f(x) ̸= g(x). Since Y is Urysohn, there
exist open sets V and W such that f(x) ∈ V, g(x) ∈ W , and Cl(V ) ∩
Cl(W ) ̸= ϕ. Since f and g are contra-β∗-continuous, then f−1(Cl(V ))
and g−1(Cl(W )) are β∗open sets in X. Let U = f−1(Cl(V )) and G =
g−1(Cl(W )). Then U and V are β∗-open sets containing x. Set A =
U ∩G, thus A is β∗-open in X. Hence,

f(A) ∩ g(A) = f(U ∩G) ∩ g(U ∩G)

⊆ f(U) ∩ g(G)

= Cl(V ) ∩ Cl(W )

= ϕ.

Therefore, A∩E = ϕ and x /∈ β∗Cl(E). Hence, E is β∗-closed in X. □

A subset A of a topological space X is said to be β∗-dense in X if
β∗Cl(A) = X.

Theorem 2.25. Let f : X → Y and g : X → Y be functions. If Y is
Urysohn, f and g are contra-β∗-continuous and f = g on β∗-dense set
A ⊆ X, then f = g on X.

Proof. Since f and g are contra-β∗-continuous and Y is Urysohn, by the
previous Theorem 2.24, E = {x ∈ X : f(x) = g(x)} is β∗-closed in X.
By assumption, we have f = g on β∗-dense set A ⊆ X. Since A ⊆ E
and A is β∗-dense set in X, then X = β∗Cl(A) ⊆ β∗Cl(E) = E. Hence,
f = g on X. □

Definition 2.26. A space X is called β∗-connected [16] provided that
X is not the union of two disjoint nonempty β∗-open sets.

Example 2.27. The real lineR with the usual topology is a β∗-connected
space since R and ϕ are the only subsets of R which are both β∗-open
and β∗-closed.

Example 2.28. If we give R the topology having as basis all the inter-
vals [a, b), then with this topology R is not β∗-connected, because the
intervals [a, b) are closed (resp., g-closed) as well as open (resp., g-open)
since this complements (−∞, a] ∪ [b,∞) are open (resp., g-open), being
the union of the basis intervals [a− n, a) and [b, b+ n) for n = 1, 2, . . . .



CONTRA β∗-CONTINUOUS AND ALMOST CONTRA β∗-CONTINUOUS ... 61

Theorem 2.29. If f : X → Y is a contra-β∗-continuous function from
an β∗-connected space X onto any space Y , then Y is not a discrete
space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty open and
closed subset of Y . Then f−1(A) is a proper nonempty β∗-clopen subset
of X, which is a contradiction to the fact that X is β∗-connected. □
Theorem 2.30. If X → Y is contra-β∗-continuous surjection and X is
β∗-connected, then Y is connected.

Proof. Suppose that Y is not connected space. Then there exists two
nonempty disjoint open sets V1 and V2 such that Y = V1∪V2. Therefore,
V1 and V2 are clopen in Y . Since f is contra-β∗-continuous, f−1(V1)
and f−1(V2) are β∗-open in X. Moreover, f−1(V1) and f−1(V2) are
nonempty disjoint and X = f−1(V1) ∪ f−1(V2). This shows that X
is not β∗-connected. This is a contradiction. This means that Y is
connected. □
Theorem 2.31. A space X is β∗-connected, if every contra-β∗-continuous
function from a space X in to any T0-space Y is constant.

Proof. Suppose thatX is not β∗-connected and every contra-β∗-continuous
function from X in to Y is constant. Since X is not β∗-connected, there
exists a proper nonempty β∗-clopen such that A of X. Let Y = {a, b},
and τ = {Y, ϕ, {a}, {b}} be a topology for Y . Let f : X → Y be a func-
tion subset f(A) = {a} and f(X−A) = {b}. Then f is nonconstant and
contra-β∗-continuous such that Y is T0 which is a contradiction. Hence,
X must be β∗-connected. □
Definition 2.32. A space X is said to be β∗-T1 if each pair of distinct
points x and y of X, there exists β∗-open sets U and V containing x
and y respectively, such that y /∈ U and x /∈ V .

Theorem 2.33. A topological space X is a β∗-T1-space iff every single-
ton subsets {p} of X are β∗-closed.

Since finite unions of β∗-closed sets are β∗-closed, the above Theorem
implies:

Corollary 2.34. (X,T ) is a β∗-T1-space if and only if T contains the
cofinite topology on X.

Example 2.35. The cofinite topology on X is the coarsest toplogy on
X for which (X,T ) is a β∗-T1-space by corollary 2.34. Hence the cofinite
topology is also called the β∗-T1-topology.

Definition 2.36. A spaceX is said to be β∗-T2 if for each pair of distinct
points x and y in X, there exist U ∈ β∗O(X,x) and V ∈ β∗O(X, y) such
that U ∩ V = ϕ.
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Example 2.37. Let Z be the topology on the real line R generated by
the open-closed intervals (a, b]. Then (R,Z) is β∗-T2-space.

Example 2.38. Let

Y = [−2, 0] ∪
{

1

n+ 1
|n = 1, 2, . . .

}
∪ [1, 2],

write the topology induced from

X = (−∞, 0] ∪
{

1

n+ 1
|n = 1, 2, . . .

}
∪ [1,∞).

Take the topology on X defined by neighborhood system:

(1) neighborhoods of any x ∈ (−∞, 0) ∪ (1,∞) are the sets (x −
ϵ, x+ ϵ), where ϵ > 0,

(2) The neighborhoods of 0 are the sets (−ϵ, 0]∪
{

1
n+1 |n ∈ N − F

}
,

where ϵ > 0 and F is finite.

(3) The neighborhoods of 1 are the sets [1, ϵ)∪
{

1
n+1 |n ∈ N − F

}
,

where ϵ > 0 and F is finite.

The neighborhood of 1
n+1 , where n ∈ N , is the set

{
1

n+1

}
. Then 0

and 1 have no disjoint neighborhoods. Therefore X is not β∗-T2. Then
Y is a β∗ compact closed subspace of X which is not β∗-T2.

Definition 2.39 ([17]). A topological space (X, τ) is said to be β∗-
regular if for every β∗-closed set F and a point x /∈ F , there exist
disjoint open sets U and V such that F ⊆ U and x ∈ V .

Definition 2.40. A topological space (X, τ) is said to be β∗-T3 if it is
β∗-regular with β∗-T1.

Definition 2.41 ([17]). A topological space (X, τ) is said to be β∗-
normal if for each pair of disjoint β∗-closed sets A and B, there exist a
pair of disjoint open sets U and V in X such that A ⊆ U and B ⊆ V .

Definition 2.42. A topological space (X, τ) is said to be β∗-T4 if it is
β∗-normal with β∗-T1.

Example 2.43. Every indiscrete space is trivially a β∗-regular space
and every discrete space is β∗-regular.

Example 2.44. A β∗-space need not be β∗-regular and hence it is not
β∗-regular. Consider the set of all real numbers. Let Bx = {x} ∪ Ix,
where Ix contains only the rationals in an open intervals around x. Then
B = {Bx : x ∈ R} is a base for a topology τ . Thus (R, τ) is a topological
space which is β∗-T2 also. But it is not a β∗-regular space, since the
irrationals in R form a β∗-closed set and cannot be sequenced from a
rational number by β∗-open sets.
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Example 2.45. Any indiscrete space X is vacuously β∗-normal, if it is
not a β∗-T4-space unless X is a singleton set.

Example 2.46. Every discrete space is a β∗-T4-space.

Theorem 2.47. Let X and Y be topological spaces. If

(1) for each pair of distinct points x and y in X there exists a
function f of X into Y such that f(x) ̸= f(y),

(2) Y is an Urysohn space,
(3) f is contra-β∗-continuous at x and y, then X is β∗-T2.

Proof. Let x and y be any distinct points in X. Then, there exists an
Urysohn space Y and a function f : X → Y such that f(x) ̸= f(y) and
f is contra-β∗-continuous at x and y. Let a = f(x) and b = f(y). Then
a ̸= b. Since Y is an Urysohn space, there exist open sets V and W
containing a and b, respectively, such that Cl(V ) ∩ Cl(W ) = ϕ. Since
f is contra-β∗-continuous at x and y, then there exist β∗-open sets A
and B containing a and b, respectively, such that f(A) ⊆ Cl(V ) and
f(B) ⊆ Cl(W ). Then f(A) ∩ f(B) = ϕ, so A ∩ B = ϕ. Hence, X is
β∗-T2. □
Corollary 2.48. Let f : X → Y be contra-β∗-continuous injection. If
Y is an Urysohn space, then X is β∗-T2.

3. Almost contra-β∗-continuous functions

In this section, we introduce a new type of continuity called almost
contra-β∗-continuous which is weaker than contra-β∗-continuous.

Definition 3.1. A function f : X → Y is said to be almost contra-β∗-
continuous (resp., almost contra-precontinuous [6]) if f−1(V ) ∈ β∗C(X)
(resp., f−1(V ) ∈ PC(X)) for every V ∈ RO(X).

Theorem 3.2. The following statements are equivalents for a function
f : X → Y :

(1) f is almost contra-β∗-continuous,
(2) f−1(F ) ∈ β∗O(X,x) for every F ∈ RC(Y ),
(3) for each x ∈ X and each regular closed set F in Y containing

f(x), there exists a β∗-open set U in X containing x such that
f(U) ⊆ F ,

(4) for each x ∈ X and each regular open set V in Y noncontaining
f(x), there exists a β∗-closed set K in X noncontaining x such
that f−1(V ) ⊆ K.

Proof. (1)⇔(2) Let F be any regular closed set of Y . Then Y − F is
regular open. By (1), f−1(Y − F ) = X − f−1(F ) ∈ β∗C(X).
We have f−1(F ) ∈ β∗O(X). The converse is obvious.
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(2)⇒(3) Let F be any regular closed set in Y containing f(x). Then by
(2), f−1(F ) ∈ β∗O(X) and x ∈ f−1(F ). Take U = f−1(F ).
Then f(U) ∈ F .

(3)⇒(2) Let F be any regular closed set in Y and x ∈ f−1(F ). From (3),
there exists a β∗-open Ux ∈ X containing x such that f(Ux) ⊆
F , thus Ux ⊆ f−1(F ). We have f−1(F ) ⊆ Ux∈f−1(F )Ux. This

implies that f−1(F ) is β∗-open.
(3)⇔(4) Let V be any regular open set in Y noncontaining f(x). Then

Y −V is a regular closed set containing f(x). By (3), there exists
a β∗-open set U in X containing x such that f(U) ⊆ Y − V .
Hence, U ⊆ f−1(Y − V ) ⊆ X − f−1(V ) and then f−1(V ) ⊆
X − U . Take H = X − U . We obtain that H is an β∗-closed
set in X noncontaining x. The converse is obvious.

□
A space (X, τ) is anti-locally countable [1] if all non-empty open sub-

sets are uncountable. Note that R with usual topology is anti-locally
countable space.

Lemma 3.3 ([1]). If (X, τ) is an anti-locally countable space, then
β∗Cl(A) = Cl(A) for every β∗-open subset of X and Int(A) = β∗Int(A)
for every β∗-closed subset of X.

Definition 3.4 ([1]). A space (X, τ) is called locally countable, if each
point x ∈ X has a countable open neighborhood.

Lemma 3.5 ([1]). If (X, τ) is a locally countable space, then τβ∗ is the
discrete topology on X.

Definition 3.6. A function f : X → Y is said to be regular set-
connected if f−1(V ) is clopen in X for each regular open set V of Y .

Theorem 3.7. Let (X, τ) be an anti-locally countable space, if a func-
tion f : X → Y is almost contra-β∗-continuous and almost continuous,
then f is regular set-connected.

Proof. Let V be any regular open set in Y . Since f is almost contra-
β∗-continuous and contra continuous, f−1(V ) is β∗-closed and open.
Thus β∗Cl(f−1(V )) = f−1(V ), since (X, τ) is an anti-locally countable
space, then by Lemma 3.3, we have β∗Cl(f−1(V )) = Cl(f−1(V )). Hence
f−1(V ) is clopen. We obtain that f is regular set-connected. □
Definition 3.8 ( [20]). A space X is said to be weakly Hausdorff if each
element of X is an intersection of regular closed sets.

Theorem 3.9. If f : X → Y is an almost contra-β∗-continuous injec-
tion and Y is weakly Hausdorff, then X is β∗-T1.
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Proof. Suppose that Y is weakly Hausdorff. For any distinct points x
and y in X, there exist V , W which are regular closed in Y such that
f(x) ∈ V, f(y) /∈ V, f(x) /∈ W , and f(y) ∈ W . Since f is almost
contra-β∗-continuous, then f−1(V ) and f−1(W ) are β∗-open subsets of
X such that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ).
This shows that X is β∗-T1. □

Corollary 3.10. If f : X → Y is a contra-β∗-continuous injection and
Y is weakly Hausdorff, then X is β∗-T1.

Theorem 3.11. If f : X → Y is almost contra-β∗-continuous surjection
and X is β∗-connected, then Y is connected.

Proof. Suppose that Y is not connected space. There exist nonempty
disjoint open sets V1 and V2 such that Y = V1 ∪ V2. Therefore, V1 and
V2 are clopen sets. Thus they are regular open in Y . Since f is almost
contra-β∗-continuous, f−1(V1) and f−1(V2) are β

∗-open inX. Moreover,
f−1(V1) and f−1(V2) are nonempty disjoint and X = f−1(V1)∪f−1(V2).
This shows that X is not β∗-connected. This is a contradiction. This
means that Y is connected. □

Definition 3.12. A space X is said to be

(1) β∗-compact if every β∗-open cover of X has a finite subcover,
(2) countably β∗-compact if every countable cover of X by β∗-open

sets has a finite subcover,
(3) β∗-Lindelöf if every β∗-open cover of X has a countable sub-

cover,
(4) S-Lindelöf [6] if every cover of X by regular closed sets has a

countable subcover,
(5) countably S-closed [3] if countable cover of X by regular closed

sets has a finite subcover,
(6) S-closed [10] if regular closed cover of X has a finite subcover.

Example 3.13. In Example 2.38, The subspace

Z = {0, 1} ∪
{

1

n+ 1
|n = 1, 2, . . .

}
of X is β∗-closed and β∗-compact.

Theorem 3.14. Let f : X → Y be an almost contra-β∗-continuous
surjection. The following statements hold:

(1) if X is β∗-compact, then Y is S-closed,
(2) if X is β∗-Lindelöf, then Y is S-Lindelöf,
(3) if X is countably β∗-compact, then Y is countably S-closed.
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Proof. We prove only (1), let {Vα : α ∈ I} be any regular closed cover
of Y . Since f is almost contra-β∗-continuous, then {f−1(Vα) : α ∈ I} is
an β∗-open cover of X and hence there exists a finite subset I0 of I such
that X = ∪{f−1(Vα) : α ∈ I0} therefore we have Y = ∪{Vα : α ∈ I0}
and Y is S-closed. □
Definition 3.15. A space X is said to be

(1) β∗-closed compact if every β∗-closed cover of X has a finite
subcover,

(2) countably β∗-closed compact if every countable cover of X by
β∗-closed sets has a finite subcover,

(3) β∗-closed-Lindelöf if every cover of X by β∗-closed sets has a
countable subcover,

(4) nearly compact [19] if every regular open cover of X has a finite
subcover,

(5) nearly countably compact [19] if every countably cover of X by
regular open sets has a finite subcover,

(6) nearly Lindelöf [19] if every cover of X by regular open sets has
a countably subcover.

Theorem 3.16. Let f : X → Y be an almost contra-β∗-continuous
surjection. The following statements hold:

(1) if X is β∗-closed compact, then Y is nearly compact,
(2) if X is β∗-closed-Lindelöf, then Y is nearly-Lindelöf,
(3) if X is countably β∗-closed compact, then Y is nearly countably

compact.

Proof. We prove only (1), let {Vα : α ∈ I} be any regular open cover of
Y . Since f is almost contra-β∗-continuous, then {f−1(Vα) : α ∈ I} is
an β∗-closed cover of X. Since X is β∗-closed compact, there exists a
finite subset I0 of I such that X =

∪
{f−1(Vα) : α ∈ I0}. Thus, we have

Y =
∪
{Vα : α ∈ I0} and Y is nearly compact. □

Definition 3.17 ([20]). A space X is said to be mildly compact (resp.,
mildly countably compact, mildly Lindelöf) if every clopen cover (resp.,
clopen countably cover, clopen cover) of X has a finite (resp., a finite, a
countable) subcover.

Theorem 3.18. Let (X, τ) be an anti-locally countable space, if f : X →
Y be an almost contra-β∗-continuous and almost continuous surjection
and X is mildly compact (resp., mildly countably compact, mildly Lin-
delöf), then Y is nearly compact (resp., nearly countably compact, nearly
Lindelöf) and S-closed (resp., countably S-closed, S-Lindelöf).

Proof. Let V be any regular closed set on Y . Then since f is almost
contra-β∗-continuous and almost continuous, then f−1(V ) is β∗-open
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and closed in X. By Lemma 3.3, we have Int(f−1(V )) = β∗Int(f−1(V ))
= f−1(V ). Hence, f−1(V ) is clopen. Let {Vα : α ∈ I} be any regular
closed (resp., regular open) cover of Y . Then {f−1(Vα) : α ∈ I} is a
clopen cover of X and since X is mildly compact, there exists a finite
subset I0 of I such that X = ∪{f−1(Vα) : α ∈ I0}. Since f is surjection,
we obtain Y = ∪{Vα : α ∈ I0}. This shows that Y is S-closed (resp.,
nearly compact). The other proofs are similar. □
Theorem 3.19. If f : X → Y is contra-β∗-continuous and A is β∗-
compact relative to X, then f(A) is strongly S-closed in Y .

Proof. Let {Vi : i ∈ I} be any cover of f(A), by closed sets of the
subspace f(A). For i ∈ I, there exists a closed set Ai of Y such that
Vi = Ai ∩ f(A). For each x ∈ A, there exists i(x) ∈ I such that
f(x) ∈ Ai(x) and by Theorem 2.11, there exists Ux ∈ β∗O(X,x) such
that f(Ux) ⊆ Ai(x). Since the family {Ux : x ∈ A} is a cover of A
by β∗-open sets of X, there exists a finite subset A0 of A such that
A ⊆

∪
{Ux : x ∈ A0}. Therefore, we obtain f(A) ⊆

∪
{f(Ux) : x ∈ A0}.

Which is a subset of
∪
{Ai(x) : x ∈ A0}. Thus f(A) =

∪
{Vi(x) : x ∈ A0}

and hence f(A) is strongly S-closed. □
Corollary 3.20. If f : X → Y is contra-β∗-continuous surjection and
X is β∗-compact, then Y is strongly S-closed.

4. Contra-closed graphs

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈
X} ⊆ X × Y is called the graph of f and is denoted by G(f).

Definition 4.1. The graph G(f) of a function f : X → Y is said
to be contra-β∗-closed if for each (x, y) ∈ (X,Y ) − G(f), there exist
U ∈ β∗O(X,x) and V ∈ C(Y, y) such that (U × V ) ∩G(f) = ϕ.

The following results can be easily verified.

Lemma 4.2 ([6]). Let G(f) be the graph of f , for any subset A ⊆ X
and B ⊆ Y , we have f(A) ∩B = ϕ if and only if (A×B) ∩G(f) = ϕ.

Lemma 4.3. The graph G(f) of f : X → Y is contra-β∗-closed in X×Y
if and only if for each (x, y) ∈ (X×Y )−G(f), there exist U ∈ β∗O(X,x)
and V ∈ C(Y, y) such that f(U) ∩ V = ϕ.

Theorem 4.4. If f : X → Y is contra-β∗-continuous and Y is Urysohn,
then G(f) is contra-β∗-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y ̸= f(x) and there exist
open sets V, W such that f(x) ∈ V , y ∈ W , and Cl(V ) ∩ Cl(W ) = ϕ.
Since f is contra-β∗-continuous, there exists U ∈ β∗O(X,x) such that
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f(U) ⊆ Cl(V ). Therefore, we obtain f(U) ∩ Cl(W ) = ϕ. This shows
that G(f) is contra-β∗-closed. □
Theorem 4.5. If f : X → Y is β∗-continuous and Y is T1, then G(f)
is contra-β∗-closed in X × Y .

Proof. Let (x, y) ∈ (X×Y )−G(f). Then y ̸= f(x) and there exists open
set V of Y , such that f(x) ∈ V , y /∈ V . Since f is β∗-continuous, there
exists U ∈ β∗O(X,x) such that f(U) ⊆ V . Therefore, f(U)∩ (Y −V ) =
ϕ and Y − V ∈ C(Y, y). This shows that G(f) is contra-β∗-closed in
X × Y . □
Definition 4.6. The graph G(f) of a function f : X → Y is said to be
strongly contra-β∗-closed if for each (x, y) ∈ (X,Y )−G(f), there exist
U ∈ β∗O(X,x) and V ∈ RC(Y, y) such that (U × V ) ∩G(f) = ϕ.

Lemma 4.7. The graph G(f) of f : X → Y is strongly contra-β∗-closed
graph in X × Y if and only if for each (x, y) ∈ (X × Y ) − G(f), there
exist U ∈ β∗O(X,x) and V ∈ RC(Y, y) such that f(U) ∩ V = ϕ.

Theorem 4.8. If f : X → Y is almost weakly-β∗-continuous and Y is
Urysohn, then G(f) is strongly contra-β∗-closed in X × Y .

Proof. Suppose that (x, y) ∈ (X × Y )−G(f). Then y ̸= f(x). Since Y
is Urysohn, there exist open sets V and W in Y containing y and f(x),
respectively, such that Cl(V ) ∩ Cl(W ) = ϕ. Since f is almost weakly-
β∗-continuous, by Definition 2.20 there exists U ∈ β∗(X,x) such that
f(U) ⊆ Cl(W ). This shows that f(U)∩Cl(V ) = f(U)∩Cl(Int(V )) = ϕ,
where Cl(Int(V )) ∈ RC(Y ) and hence by Lemma 4.7 we have G(f) is
strongly contra-β∗-closed. □
Theorem 4.9. If f : X → Y is almost contra-β∗-continuous, then f is
almost weakly-β∗-continuous.

Proof. Let x ∈ X and V be any open set of Y containing f(x). Then
Cl(V ) is a regular closed set of Y containing f(x). Since f is al-
most contra-β∗-continuous, by Theorem 3.2, there exists U ∈ β∗O(X,x)
such that f(U) ⊆ Cl(V ). By Definition 2.20 f is almost weakly-β∗-
continuous. □
Corollary 4.10. If f : X → Y is almost contra-β∗-continuous and Y
is Urysohn, then G(f) is strongly contra-β∗-closed.

The following results can be easily verified.

Lemma 4.11. A function f : X → Y is almost β∗-continuous, if and
only if for each x ∈ X and each regular open set V of Y containing f(x),
there exists U ∈ β∗O(X,x) such that f(U) ⊆ V .
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Theorem 4.12. If f : X → Y is almost β∗-continuous and Y is Haus-
dorff, then G(f) is strongly contra-β∗-closed.

Proof. Suppose that (x, y) ∈ (X × Y )−G(f). Then y ̸= f(x). Since Y
is Hausdorff, there exist open sets V and W in Y containing y and f(x),
respectively, such that V ∩ W = ϕ, hence Cl(V ) ∩ Int(Cl(W )) = ϕ.
Since f is almost β∗-continuous, and W is regular open by Lemma 4.11,
there exists U ∈ β∗O(X,x) such that f(U) = W ⊆ Int(Cl(W )). This
shows that f(U) ∩ Cl(V ) = ϕ and hence by Lemma 4.7, we have G(f)
is strongly contra-β∗-closed. □

We recall that a topological space (X, τ) is said to be extremely dis-
connected (E.D) if the closure of every open set of X is open in X.

Theorem 4.13. Let Y be E.D. Then a function f : X → Y is almost
contra-β∗-continuous if and only if it is almost β∗-continuous.

Proof. Let x ∈ X and V be any regular open set of Y containing f(x).
Since Y is E.D then V is clopen and hence V is regular closed. By
Theorem 3.2, there exists U ∈ β∗O(X,x) such that f(U) ⊆ V . Then
Lemma 4.11 implies that f is almost β∗-continuous. Conversely, let F
be any regular closed set of Y . Since Y is E.D, F is also regular open
and f−1(F ) is β∗-open in X. This shows that f is almost contra-β∗-
continuous. □
Theorem 4.14. If f : X → Y is an injective almost contra-β∗-continuous
function with the strongly contra-β∗-closed graph, then (X, τ) is β∗-T2.

Proof. Let x and y be distinct points of X. Then, since f is injective, we
have f(x) ̸= f(y). Then we have (x, f(y)) ∈ (X×Y )−G(f). Since G(f)
is strongly contra-β∗-closed, by Lemma 4.7 there exist U ∈ β∗O(X,x)
and a regular closed set V containing f(y) such that f(U) ∩ V = ϕ.
Since f is almost contra-β∗-continuous, by Theorem 3.2, there exists
G ∈ β∗O(X, y) such that f(G) ⊆ V . Therefore, we have f(U)∩ f(G) =
ϕ; hence, U ∩G = ϕ. This shows that (X, τ) is β∗-T2. □

Acknowledgment. The authors would like to thank the referees for
their valuable comments and suggestions.

References

1. K. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-
Manarah J., 9 (2003), pp. 169-179.

2. M. Caldas and S. Jafari, Some properties of contra-β-continuous
functions, Mem. Fac. Sci. Kochi Univ. Series A. Math., 22 (2001),
pp. 19-28.



70 A. VADIVEL, R. RAMESH, AND D. SIVAKUMAR

3. K. Dlaska, N. Ergun, and M. Ganster, Countably S-closed spaces,
Math. Slovaca, 44 (1994), pp. 337-348.

4. K. Dontchev, Contra-continuous functions and strongly S-closed
spaces, Int. J. Math. Math. Sci., 19 (1996), pp. 303-310.

5. J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math.
Pannon., 10 (1999), pp. 159-168.

6. E. Ekici, Almost contra-precontinuous functions, Bull. Malays.
Math. Sci. Soc. , 27 (2004), pp. 53-65.

7. H.Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat., 16 (1982),
pp. 65-78.

8. S. Jafari and T. Noiri, On contra-precontinuous functions, Bull.
Malays. Math. Sci. Soc. , 25 (2002), pp. 115-128.

9. S. Jafari and T. Noiri, Contra-α-continuous functions between topo-
logical spaces, Iran. Int. J. Sci., 2 (2001), pp. 153-167.

10. J.E. Joseph and M.H. Kwack, On S-closed spaces, Proc. Amer.
Math. Soc. , 80 (1980), pp. 341-348.

11. N. Levine, Generalized closed sets in topology, Rend. Circ. Math.
Palermo, 19 (1920), pp. 89-96.

12. M. Mrsevic, On pairwise R and pairwise R1 bitopological spaces,
Bull Math Soc Sci Math RS Roumanie, 30 (1986), pp. 141-148.

13. A.A. Nasef, Some properties of contra-γ-continuous functions,
Chaos Solitons Fractals, 24 (2005), pp. 471-477.

14. T. Noiri and V. Popa, Some properties of almost contra-
precontinuous functions, Bull. Malays. Math. Sci. Soc., 28 (2005),
pp. 107-116.

15. P.G. Palanimani and R. Parimelazhagan, β∗-closed sets in topolog-
ical spaces, ROSR Journal of Mathematics, 5 (2013), pp. 47-50.

16. R. Ramesh, A. Vadivel, and D. Sivakumar, On β∗-connectedness
and β∗-disconnectedness and thier applications, J. Adv. Res. Sci.
Comput., 7(2015), pp. 10-18.

17. R. Ramesh, A. Vadivel, and D. Sivakumar, β∗-regular and β∗-
normal spaces, Int. J. of Pure and Engg. Mathematics, 2 (2014),
pp. 78-80.

18. R. Ramesh, A. Vadivel, and D. Sivakumar, Properties of β∗-
homeomorphisms in topological spaces, Gen. Math. Notes, 26
(2015), pp. 1-7.

19. M.K. Singal and A. Mathur,On nearly-compact spaces, Boll. Un.
Mat. Ital., 2 (1969), pp. 702-710.

20. T. Soundararajan, Weakly Hausdorff spaces and the cardinality of
topological spaces in General Topology and Its Relations to Modern
Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), Academia,
Prague, 1971, 301-306.



CONTRA β∗-CONTINUOUS AND ALMOST CONTRA β∗-CONTINUOUS ... 71

1 Department of Mathematics, Annamalai University, Annamalai Nagar-
608 002, Tamil Nadu, India.

E-mail address: avmaths@gmail.com

2 Department of Mathematics, Pope John Paul II College of Education,
Reddiar Palayam, Puducherry-605010, India.

E-mail address: rameshroshitha@gmail.com

3 Department of Mathematics (DDE), Annamalai University, Annamalai
Nagar-608 002, Tamil Nadu, India.

E-mail address: sivakumardmaths@yahoo.com


	1. Introduction and Preliminaries
	2. Contra *-continuous functions
	3. Almost contra-*-continuous functions
	4. Contra-closed graphs
	References

