Sahand Communications in Mathematical Analysis (SCMA) Vol. 5 No. 1 (2017), 41-47 http://scma.maragheh.ac.ir

LATIN-MAJORIZATION AND ITS LINEAR PRESERVERS

MOHAMMAD ALI HADIAN NADOSHAN 1* AND HAMID REZA AFSHIN 2

ABSTRACT. In this paper we study the concept of Latin-majorization. Geometrically this concept is different from other kinds of majorization in some aspects. Since the set of all xs Latin-majorized by a fixed y is not convex, but, consists of union of finitely many convex sets. Next, we hint to linear preservers of Latin-majorization on \mathbb{R}^n and $M_{n,m}$.

1. INTRODUCTION

Let $x = (x_1, \ldots, x_n)^t$ and $y = (y_1, \ldots, y_n)^t$ be two column vectors in \mathbb{R}^n and $x^{\downarrow} = (x_1^{\downarrow}, \ldots, x_n^{\downarrow})$ be rearrangement of coordinates of x in nonincreasing order. Then x is said to be majorized by y (written $x \prec y$) if for all $k \ (k = 1, 2, \ldots, n)$ we have

$$\sum_{i=1}^k x_i^{\downarrow} \le \sum_{i=1}^k y_i^{\downarrow},$$

and

$$\sum_{i=1}^{n} x_i^{\downarrow} = \sum_{i=1}^{n} y_i^{\downarrow}$$

see [8].

A doubly stochastic matrix is a real square matrix with nonnegative elements all of whose row sums and column sums equal to 1. One of the most important properties of doubly stochastic matrices is as follows.

²⁰¹⁰ Mathematics Subject Classification. 15A04, 15A21.

Key words and phrases. Doubly stochastic matrix, Latin-majorization, Latin square, Linear preserver.

Received: 20 April 2016, Accepted: 11 August 2016.

^{*} Corresponding author.

Theorem 1.1 (Birkhoff's theorem). The set of $n \times n$ doubly stochastic matrices is a convex set whose extreme points are the $n \times n$ permutation matrices.

Denote the set of all $n \times n$ permutation matrices by S_n , and an $n \times n$ matrix all of whose entries equal to 1 by J_n . Hardy, Littlewood, and Polya proved that for all $x, y \in \mathbb{R}^n$, $x \prec y$ if and only if x = Dy for some doubly stochastic matrix $D \in M_n$, see [3].

2. LATIN-MAJORIZATION

By using different types of doubly stochastic matrices, differnt types of majorizations have been introduced and investigated. In the following we investigate Latin-majorization.

Definition 2.1. A Latin square of order n is an $n \times n$ matrix, each row and each column of which is a permutation of the set of letters $I_n = \{1, 2, ..., n\}.$

Each Latin square is equivalent to n-tuple (P_1, P_2, \ldots, P_n) , where $P_1, P_2, \ldots, P_n \in S_n$ and $P_1 + P_2 + \cdots + P_n = J_n$.

Actually one can consider the set of n different elements instead of $I_n = \{1, 2, ..., n\}$. Here we omit the condition that the elements must be different, so we have the followings.

Let

$$\Omega_n = \{\{P_1, P_2, \dots, P_n\} | P_1, P_2, \dots, P_n \in S_n \text{ and } P_1 + P_2 + \dots + P_n = J_n\}.$$

Definition 2.2. An $n \times n$ matrix A is called Latin doubly stochastic matrix if there exists $\{P_1, P_2, \ldots, P_n\} \in \Omega_n$ such that

$$A \in conv \{P_1, P_2, \ldots, P_n\}.$$

Definition 2.3. Let x, y be two column vectors in \mathbb{R}^n . Then x is said to Latin-majorized by y if there exists a Latin doubly stochastic matrix D such that x = Dy (denoted by $x \prec_L y$).

Note that with our definitions a Latin doubly stochastic matrix is not necessarily a Latin square matrix.

The number of $n \times n$ Latin square matrices (denoted by L_n) has been found in [10].

Theorem 2.4 ([10]). Let B_n be the set of $n \times n$ (0,1) matrices, $\sigma_0(A)$ be the number of zero elements of the matrix A, per A be the permanent of A, then we have

$$L_n = n! \sum_{A \in B_n} (-1)^{\sigma_0(A)} \binom{\operatorname{per} A}{n}.$$

42

Since the number of Ω_n is $L_n/n!$, the set $\{x|x \prec_L y\}$ for fixed y (with distinct coordinates) consists of union of

$$\sum_{A \in B_n} (-1)^{\sigma_0(A)} \binom{\operatorname{per} A}{n},$$

convex sets. For example Figure 1 shows the set $\{x | x \prec_L y\}$ in \mathbb{R}^3 .

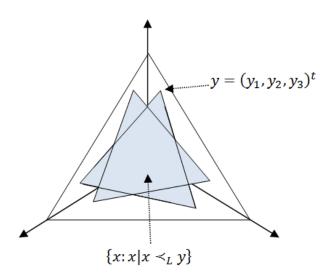


FIGURE 1. $\{x | x \prec_{\mathrm{L}} y\} \in \mathbb{R}^3$.

If $x \prec y$ and $y \prec x$ we write $x \sim y$. Similarly, if $x \prec_L y$ and $y \prec_L x$ we write $x \sim_L y$.

Theorem 2.5. Let $x, y \in \mathbb{R}^n$. Then $x \sim_L y$ if and only if there exists $P \in S_n$ such that x = Py.

Proof. Let $x \sim_L y$ then $x \prec_L y$ and $y \prec_L x$. Hence $x \prec y$ and $y \prec x$. This implies that $x \sim y$ and x = Py for some $P \in S_n$. The converse is trivial.

3. Linear preservers of Latin-majorization on \mathbb{R}^n

Suppose that R is a relation on \mathbb{R}^n and $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator. Then T is a linear preserver of R if for all $x, y \in \mathbb{R}^n$, xRy implies TxRTy. Similarly T is said to be a strong linear preserver of R if for all $x, y \in \mathbb{R}^n$,

$$xRy \Leftrightarrow TxRTy.$$

The linear preservers on $M_{m,n}$ can be defined similarly.

Let $A \in M_{m,n}$ and $x \in \mathbb{R}^n$. We can represent Ax in the form

$$Ax = \left(\left\langle x, a_{(1)} \right\rangle, \dots, \left\langle x, a_{(m)} \right\rangle \right)^t,$$

where $a_{(i)}^t$ is the ith row of A and <,> is the standard inner product on \mathbb{R}^n . Similar to [1] we have this lemma.

Lemma 3.1. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator such that $Ax \sim_L Ay$ whenever $x \sim_L y$. Suppose that $||a_{(j)}|| \ge ||a_{(i)}||$ for every i $(1 \le i \le n)$, where ||.|| is the Euclidean norm and $a_{(i)}^t$ is the ith row of A. Then for any permutation Π , there exists k such that $\Pi a_{(i)} = a_{(k)}$.

The following theorem characterizes linear preservers of Latin-majorization on \mathbb{R}^n .

Theorem 3.2. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. The following conditions are equivalent:

- (i) A is a linear preserver of \prec_L .
- (ii) $Ax \sim_L Ay$ whenever $x \sim_L y$.
- (iii) A has one of the following forms:
 - (a) Ax = tr(x)a for some a ∈ ℝⁿ.
 (b) Ax = αΠx + βtr(x)e for some α, β ∈ ℝ and permutation Π.

Proof. It is trivial that 1 implies 2. If A has form (a) and x = Dy for some Latin doubly stochastic matrix D, then, Ax = Ay and hence, $Ax \prec_L Ay$. If A has form (b) then,

$$Ax = \alpha \Pi x + \beta tr(x)e$$

= $\alpha \Pi Dy + \beta J_n Dy$
= $\alpha \Pi Dy + \beta J_n y$
= $\alpha \Pi D\Pi^{-1}\Pi y + \beta J_n y$
= $\alpha D'\Pi y + \beta D' J_n y$
= $D' (\alpha \Pi y + \beta J_n y)$
= $D' Ay.$

Hence,

 $Ax \prec_L Ay.$

So, 3 implies 1. Now, we prove that 2 implies 3. Take j such that

$$||a_{(j)}|| = \max\{||a_{(i)}||; 1 \le i \le n\}.$$

By Lemma 3.1, two cases can occure:

Case 1. All coordinates of $a_{(j)}$ are the same. Since $x \sim_L y$, there exists Π such that $x = \Pi y$. So, $\langle x, a_{(j)} \rangle = \langle y, a_{(j)} \rangle$ and $A_1 x = Q A_1 y$ for some permutation Q, where A_1 is obtaind from A by omitting *j*th row

of A. Therefore $A_1x \sim_L A_1y$ whenever $x \sim_L y$. Suppose the norm of $a_{(k)}$ is greater than or equal to the norm of other rows of A_1 . By Lemma 3.1 all coordinates of $a_{(k)}$ are the same. Continuing this method we conclude that A has form (a).

Case 2. Only one coordinate of $a_{(j)}$ is different from others. Then A has form (b).

4. (Strong) Linear preservers of Latin-Majorization on $M_{n,m}$

We begin with definition of Latin-majorization on $M_{n,m}$.

Definition 4.1. Let $A, B \in M_{n,m}$, we say that A is Latin-majorized by B, if there exists a Latin doubly stochastic matrix D such that A = DB (denoted by $A \prec_L B$).

In the sequel we find the structure of (strong) linear preservers of this majorization.

In proof of [Theorem 2, [7]], the authors deduced from x = Py for some $x, y \in \mathbb{R}^n$ and permutation P that $x \prec y$ but we can deduce from this fact that $x \sim y$ as well. So with minor variation in that proof we have:

Theorem 4.2. Let $T : M_{n,m} \to M_{n,m}$ be a linear operator. Then the following are equivalent:

- (i) T is a linear preserver of majorization.
- (ii) $Tx \sim Ty$ whenever $x \sim y$.
- (iii) T has one of the following forms:

(a) There exist $A_1, \ldots, A_m \in M_{n,m}$ such that

$$TX = \sum_{j=1}^{m} \left(trx_j \right) A_j.$$

(b) There exist $R, S \in M_m$ and $P \in S_n$ such that

$$TX = PXR + JXS.$$

Since $x \sim y$ if and only if x = Py for some permutation P if and only if $x \sim_L y$ we have

Theorem 4.3. Let $T: M_{n,m} \to M_{n,m}$ be a linear operator. Then the following are equivalent:

- (i) T is a linear preserver of Latin majorization.
- (ii) $Tx \sim_L Ty$ whenever $x \sim_L y$.
- (iii) $Tx \sim Ty$ whenever $x \sim y$.
- (iv) T has one of the following forms:
 - (a) There exist $A_1, \ldots, A_m \in M_{n,m}$ such that

$$TX = \sum_{j=1}^{m} \left(trx_j \right) A_j.$$

(b) There exist $R, S \in M_m$ and $P \in S_n$ such that

$$TX = PXR + JXS.$$

Let $X, Y \in M_{n,m}$. It is said that X is multivariate majorized by Y (written $X \prec_m Y$) if X = DY for some doubly stochastic matrix D. The strong linear preservers of \prec_m on $M_{n,m}$ has been characterized in [5]. We state it here. The definitions and theorems hold for Latin-majorization instead of multivariate majorization.

Theorem 4.4 ([5]). Let $T : M_{nm} \to M_{nm}$ be a linear operator. The following assertions are equivalent:

- (a) T is invertible and preserves multivariate majorization \prec_m .
- (b) T has the form

$$X \mapsto PXR + JXS \qquad X \in M_{nm},$$

where $P \in \rho(n)$ and $R, S \in M_m$ are such that R(R + nS) is invertible.

(c) T strongly preserves multivariate majorization \prec_m .

(With our notations M_{nm} is $M_{n,m}$ and $\rho(n)$ is S_n .)

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118 (1989) 163-248.
- A. Armandnejad and A. Salemi, The structure of linear preservers of gsmajorization, Bull. Iranian Math. Soc., 32 (2) (2006) 31-42.
- 3. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- G.H. Hardy, J.E. Littlewood, and G. Polya, *Inequalities*, Cambridge University Press, 1988.
- 5. A.M. Hasani and M. Radjabalipour, *The structure of linear operators strongly preserving majorizations of matrices*, Electronic Journal of Linear Algebra, 15 (2006) 260-268.
- F. Khalooei and A. Salemi, The Structure of linear preservers of left matrix majorization on R^p, Electronic Journal of Linear Algebra, 18 (2009) 88-97.
- C.K. Li and E. Poon, *Linear operators preserving directional majorization*, Linear Algebra Appl., 325 (2001) 141-146.
- A.W. Marshall, I. Olkin, and B.C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, Second Edition, Springer, New York, 2011.
- M. Niezgoda, Schur Ostrowski type theorems revisited, J. Math. Anal. Appl., 381 (2) (2011) 935-946.
- J. Shao and W. Wei, A formula for the number of Latin squares, Discrete Mathematics, 110 (1992) 293-296.

46

E-mail address: ma.hadiann@stu.vru.ac.ir, ma.hadiann@gmail.com

 2 Department of Mathematics, Vali-e-Asr University of Rafsanjan, Zip Code: 7718897111, Rafsanjan, Iran.

E-mail address: afshin@vru.ac.ir

 $^{^1}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, Zip Code: 7718897111, Rafsanjan, Iran.