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APPROXIMATION OF FIXED POINTS FOR A
CONTINUOUS REPRESENTATION OF
NONEXPANSIVE MAPPINGS IN HILBERT SPACES

EBRAHIM SOORI

ABSTRACT. This paper introduces an implicit scheme for a contin-
uous representation of nonexpansive mappings on a closed convex
subset of a Hilbert space with respect to a sequence of invariant
means defined on an appropriate space of bounded, continuous real
valued functions of the semigroup. The main result is to prove the
strong convergence of the proposed implicit scheme to the unique
solution of the variational inequality on the solution of systems of
equilibrium problems and the common fixed points of a sequence of
nonexpansive mappings and a continuous representation of nonex-
pansive mappings.

1. INTRODUCTION

Let H be a Hilbert space and let G : H x H — R be an equilibrium
function, that is G(u,u) = 0 for every v € H. The Equilibrium Problem
is defined as follows:

(1.1) Find ze€ H suchthat G(Z,y) >0 forall ye H.

A solution of (D) is said to be an equilibrium point and the set of the
equilibrium points is denoted by SEP(G).

Let C be a closed convex subset of H. A mapping T of C into itself
is called nonexpansive if ||Tx — Ty|| < ||z — y||, for all z,y € C.

Let f be an a-contraction on H (i.e. |[[f(z) — f(y)l] < afz — ¥,
xz,y € H with 0 < a < 1), and A be a bounded linear operator on H.
The following variational inequality problem with viscosity is of great

2010 Mathematics Subject Classification. 47TH10.
Key words and phrases. Continuous representation, Fixed point, Equilibrium
problem, Nonexpansive mapping, Variational inequality.
Received: 14 June 2016, Accepted: 15 October 2016.
49


http://scma.maragheh.ac.ir

50 E. SOORI

interest [R].
Find z* in C such that
(1.2) (A=~f)* -2 >0 (z€C),

which is the optimality condition for the minimization problem
1
in | =(A h
win (40,2 +10))

where ~ satisfies ||[I — A|| <1 — ay and h is a potential function for ~f
(that is h'(z) = vf(z)).

Let C be a closed convex subset of a Hilbert space H. A mapping
T : C — C is called Lipschitzian, if there exists a nonnegative number
k such that ||Tz — Ty|| < k||z — y|| for all z,y € C.

Let B : C — H be a nonlinear map. Let Po be the projection of H

onto the convex subset C. The classical variational inequality problem,
denoted by VI(C, B) is to find u € C such that

(Bu,v —u) >0,
for all v € C. For a given z € H, u € C satisfies the inequality
(u—z,v—u)>0, (vel),

if and only if u = Pgz. It is known that the projection operator P¢ is
nonexpansive. It is also known that Po satisfies

(x —y, Pox — Pey) > ||Pox — Poyl|,

for x,y € H.
Recall that the following definitions:

(1) B is called v-strongly monotone, if
(Bx — By, z—y) >vllz —y|* forall z,yeC,
for a constant v > 0. This implies that
|Bx — By|| > vl —yl|,

that is, B is v-expansive and when v = 1, it is expansive.
(2) B is said to be v-cocoercive, if there exists a constant v > 0
such that

(Bx — By,x —y) >v||Bx — By|*> forall z,y¢€C,

clearly, every wv-cocoercive map B is 1/v-Lipschitz continuous

(=] ).
(3) B is called relaxed u-cocoercive, if there exists a constant u > 0
such that

(Bx — By,x —y) > (—u)||Bx — By||> forall z,yeC.
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(4) B is said to be relaxed (u,v)-cocoercive, if there exist two con-
stants u, v > 0 such that

(Bx — By,x —y) > (—u)||Bx — By||> + v|z —y||* forall =z,yeC.

For u = 0, B is v-strongly monotone. This class of maps is
more general than the class of strongly monotone maps. Clearly,
every v-strongly monotone map is a relaxed (u,v)-cocoercive
map.

(5) A semitopological semigroup is a semigroup S with a Hausdorff
topology such that for each a € S, the mappings s — a.s and
s — s.a from S to S are continuous.

Plubtieng and Punpaeng in [I0] proved a strong convergence theorem
for an implicit sequence {x,,} obtained from the viscosity approximation
method for finding a common element in SEP(G)NFix(T) which satisfies
the variational inequality () (see also [16]):

Theorem 1.1. Let C be a nonempty closed convex subset of a Hilbert
space H. Let G be a bifunction from H x H into R satisfying
(A1) G(z,xz) =0 for all x € C,
(A2) G is monotone, i.e. G(z,y)+ G(y,x) <0 for all z,y € C;
(As) For all x,y,z € C,

limsup G(tz + (1 — t)z,y) < G(z,y);
t—0

(Ag) Forallx € C, y— G(x,y) is convex and lower semicontinuous.

Forx € H andr > 0, set S, : H — C to be the resolvent of G i.e. Sy(x)
is the unique z € C' for which

1
Gloy)+ - (y =22 —2) 20, (y€C).

Let T be a nonexpansive mapping on H such that SEP(G)NFix(T) # 0.
Let f be a contraction of H into itself with a € (0,1), and let A be a
strongly positive bounded linear operator on H with coefficient 7 > 0,
and 0 < vy < g Let {x,} be the sequence generated by

zn = any f(zn) + (I — anA)Tuy, (n €N),
Gun,y) + =y =ty — ) >0 (y € H),
where uy, = Sy, Tn, {rn} C (0,00) and o, C [0,1] satisfying le a, =0,
and lin_l)inf rn > 0. Then, {zn} and {u,} converge strongly to a point z

in Fix(T) N SEP(G), which solves the variational inequality
(A=~f)z,z—x) <0, ze€Fix(T)NSEP(G).
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The difference of this work with other works is that, we use of a
semitopological semigroup S, C'(S) instead of B(S) and a sequence of
invariant means on an amenable subspace of C'(S) and a continuous rep-
resentation of nonexpansive mappings and when S equipped by discrete
topology we conclude the results for B(S).

In the other words, in this paper, motivated by N. Hussain, M. L.
Bami and E. Soori [§], and E. Soori [I4], we introduce the following
general implicit algorithm for finding a common element of the set
of solutions of a system of equilibrium problems SEP(G) for a family
G ={Gk;k =1,2,..., K} of bifunctions and of the set of fixed points
of a family {7;};cn of nonexpansive mappings from C' into itself and a
continuous representation S = {7} : ¢t € S} of a semitopological semi-
group S as nonexpansive mappings from C' into itself, with respect to
W-mappings and a sequence {u,} of invariant means defined on an ap-
propriate subspace of bounded, continuous real-valued functions of the
semigroup:

Zn = €n7f<WnZn) + (I - enA)(I - rnB>TuanS7{;n S S} Zn

T2,n""Tln

(n € N).

Our goal is to prove a result of strong convergence for an implicit
scheme to approach an element u* € [,y Fix(Tyn) N SEP(G) which is
the unique solution of the variational inequalities VI((, ey Fix(Tn) N
SEP(G),B), equivalently P, o Fix(T4)NSEP(G) (I — AB)u* = u* for each
A > 0, and we also have P, e Fix(Ta)NSEP(G) (I —(A—~f))u* =u*.

2. PRELIMINARIES

Throughout this paper H denotes a Hilbert space. Moreover, we as-
sume that A is a bounded strongly positive operator on H with constant
7; that is, there exists 7 > 0 such that

(Az,z) > 7|z|* (z € H).

For amap T': H — H, we denote by Fix(T) := {x € H: x = Tx} the
fixed point set of T'. Note that if T" is a nonexpansive mapping, Fix(T)
is closed and convex (see [B]).

Let S be a semitopological semigroup. We denote by B(S) the Ba-
nach space of all bounded real-valued functions defined on S with supre-
mum norm and let C'(S) be the subspace of B(S) which consists of all
bounded, continuous real-valued functions on S. For each s € S and
f € B(S), we define [5 and rs in B(S) by

(sf)@) = f(st),  (rsf)(E) = f(ts), (L €S).
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Let X be a subspace of C'(S) containing 1 and let X™* be its topological
dual space. An element p of X* is said to be a mean on X if ||u| =
u(l) = 1. We often write u.(f(t)) instead of p(f) for p € X* and
f € X. Let X be left invariant (resp. right invariant), i.e. [5(X) C X
(resp. rs(X) C X) for each s € S. A mean p on X is said to be left
invariant (resp. right invariant), if u(lsf) = p(f) (resp. u(rsf) = u(f))
for each s € S and f € X.

Let f be a function on a semigroup S into a reflexive Banach space
E such that the weak closure of {f(¢) : ¢ € S} is weakly compact and
let X be a subspace of C'(S) containing all the functions ¢t — (f(¢),z*)
with z* € E*. We know from [d] that for any pu € X*, there exists a
unique element f, in £ such that (f,,z*) = p; (f(t),2*) for all 2* € E*.
We denote such f, by [f(t)dp(t). Moreover, if 41 is a mean on X then
from [B], [f(t)du(t) € co{f(¢) : t € S}.

Let C' be a nonempty closed and convex subset of H. Then, a family
S = {Ts : s € S} of mappings from C into itself is said to be a continu-
ous representation of S as nonexpansive mappings on C' into itself if S
satisfies the following :

(1) Tgx = TsTix for all s,t € S and z € C;
(2) for every x € C, the mapping s — Tz from S into C is contin-
uous;
(3) for every s € S, the mapping T : C — C' is nonexpansive.
We denote by Fix(S) the set of common fixed points of S, that is
Fix(S)={z € C: Tsz ==z, (s € 9)}.

For an equilibrium function G : H x H — R, SEP(G) := {x € H :
G(x,y) > 0,(y € H)} is the set of solutions of the related equilibrium
problem.

Let C be a closed convex subset of a Hilbert space H. Let Pc be
the projection of H onto C'. Then the projection operator P¢ assigns to
each x € H, the unique point Pox € C' satisfying the property

x — Pox|| = min ||z — y||.
| cxl| = min |z -y
The following Lemma characterizes the projection Pg:

Lemma 2.1 ([T4]). Let C be a closed convex subset of a real Hilbert
space H, x € H and y € C. Then Pox =y if and only if it satisfies the
nequality

(x —y,y—2)>0, (z€0).

Lemma 2.2 ([]). Let A be a strongly positive linear bounded operator
on a Hilbert space H with coefficient ¥ and 0 < p < |A[|=Y Then ||I —
pAll <1 —p7.

The following result generalizes Theorem 3.3.3 of [IH].
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Theorem 2.3. Let S be a semitopological semigroup such that C(S)
has an invariant mean p and let C be a closed convexr subset of a Hilbert
space H. Let S = {Ts : s € S} be a continuous representation of S as
nonexpansive mappings on C into itself and suppose Fix(S) # (). If we
write T,z instead of [Tyx du(t), then the followings hold:

(i) T,Ts =TT, =T, for all s € S;

(ii) T}, is a nonexpansive retraction of C' onto Fix(S), i.e.,

|Tux — Tyl < |z =yl forall z,ye€C and Ti =T,

(ili) Tyx € co{Tsx : s € S} for each x € C;
(iv) Tyx =« for each z € Fix(S).

Proof. For proving (i)-(iii), see the proof of Theorem 3.3.3 of [I4].
(iv) is clear, since for every x € Fix(S), Tsx = z for all s € S. Thus
co{Tsx : s € S} = {z}. Hence by (iii), T« = x for each x € Fix(S). O
Theorem 2.4 ([2]). Let C' be a nonempty closed convex subset of a
Hilbert space H and G : C x C — R satisfy,
(A1) G(x,z) =0 for all x € C,
(A2) G is monotone, i.e. G(x,y)+ G(y,z) <0 for all x,y € C;
(A3) for all z,y,z € C,

liminf G(tz + (1 — t)z,y) < G(x,y);
t—0

(Aq) forallz € C, y— G(x,y) is convex and lower semicontinuous.
Forxe H andr >0, set S, : H— C to be

Sp(x) = {zEC:G(z,y)—}—?ln(y—z,z—@ ZO,(yEC)},

then S, is well defined and the followings are valid:
(i) Sy is single-valued;
(i) S, is firmly nonexzpansive, i.e. || Srx—Syy||? < (Spx — Sy, x — ),
for all x,y € H;
(iii) Fix S, =SEP(G);
(iv) SEP(G); is closed and convex.

Theorem 2.5 ([0l]). Let {r,} C (0,00) be a sequence converging to
r > 0. For a bifunction G : H x H — R, satisfying conditions (A1)-
(A4), define Sy and Sy, for n € N as in Theorem P4, then for every
x € H, we have

lim || S, — Sr|| = 0.

Definition 2.6. A vector space X is said to satisfy Opial’s condition,
if for each sequence {x,} in X which converges weakly to point z € X,

liminf ||z, — x| < liminf ||z, —y|| (v € X,y # z).
n—oo n—oo
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Note that every Hilbert space satisfies the Opial’s condition (see [9] and
1))

Let C' be a nonempty convex subset of a Banach space. Let {T;}ien
be a sequence of nonexpansive mappings of C' into itself and let {\;} be
a real sequence such that 0 < \; <1 for every ¢ € N. Following [I3], for
any n > 1, we define a mapping W,, of C' into itself as follows,

(2.1) Unnt1 =1,
Un,n = )\nTnUn,n—i—l + (1 - )\n)Ia

Unk = MThUp g1 + (1 — M),

Ungo = XToUy 3 + (1 — Xo)I,

Wy i=Up1 = MT1Up2+ (1 — )1
The following result holds for the mappings W,,.
Theorem 2.7 ([13]). Let C' be a nonempty closed convex subset of a
Hilbert space H. Let {T;};en be a sequence of nonexpansive mappings of

C into itself such that ;2 Fix(Ti) # 0 and let {\;i} be a real sequence
such that 0 < \; < b < 1 for every i € N. Then

(1) W, is nonexpansive and Fix(W,) = (L, Fix(T;) for each n >
L,

(2) for eachx € C and for each positive integer j, the limit nlgglo Uz
ex1sts.

(3) The mapping W : C' — C' defined by
Wz := lim W,z = li_}m Up1 (x€0Q),

n—oo
is a nonexpansive mapping satisfying Fix(W) = (N2, Fix(T;),
and it is called the W -mapping generated by {T; }ien, and {\; }ien.
(4) If D is any bounded subset of C, then
lim sup |[Wz — Wyz| = 0.

n—oo zeD

3. MAIN RESULTS

In this section, we deal with the strong convergence approximation
scheme for finding a common element of the set of solutions of a system of
an equilibrium problem and the set of common fixed points of a sequence
of nonexpansive mappings and a continuous representation.
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Theorem 3.1. Let S be a semitopological semigroup and let C be a
nonempty closed convex subset of a Hilbert space H. Suppose that S =
{Ts : s € S} be a continuous representation of S as nonexpansive
mappings of C into itself. Let X be an amenable subspace of C(S)
such that 1 € X, and the function t — (Tyx,y) is an element of X
for each x € C and y € H. Let {u,} be a sequence of invariant
means on X. Let {T;}ien be a sequence of nonexpansive mappings
from C into itself such that T;(Fix(S)) C Fix(S) for every i € N, and
G ={Gr: k=1,2,... K} be a finite family of bifunctions from C x C
into R, such that SEP(G) C Fix(S). Suppose that A is a strongly posi-
tive bounded linear operator with coefficient 5 such that | Al < 1 and let
B be an n-Lipschitzian, relaxed (u,v)-cocoercive mapping from C' into
H, and f is an a-contraction on H. Moreover, let {r 1 |, {rn}, {€n}
and {\,} be real sequences such that v, > 0, r, > 0, 0 < €, < 1
and 0 < A, < ¢ < 1 for some ¢, and v is a real number such that
0 <3y <7. For every n € N, let W,, be the mapping generated by {T;}
and {\n} as in (E), for every k € {1,2,..., K} andn € N. Let Sf
be the resolvent generated by Gy, and ry, as in Theorem 2. Assume
that,

(i) for every k € {1,2,..., K}, the function Gy, satisfies (A1) —(A4)

of Theorem 24,

(i) lime, =0,

(iii) for every k € {1,2,..., K}, liminfry, exists and is a positive
n

real number,

(iv) {rn} C [0,b] for some b with 0 < b < 2(”;;”72), v > un?,
limr, = 0,lim 'n _ 0,
n n €p

(v) §:= ﬂnGN Fix(T,) N SEP(G) # 0,

(vi) Fix(P3(I — AB)) N Fix(P5(I — (A — ~f))) # 0, for each A > 0.
Let {z,} be the sequence generated by
Zn = enVf(Whzn) + (I — €, A) (I — rnB)TuanSf;m A

T2,n"Tln
(3.1) (n e N),
then {z,} strongly converges to u* € § which is:

(i) the unique solution of the variational inequalities VI(F, B),
equivalently Pz(I — AB)u* = u* for each A > 0,
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(ii) the unique solution of the variational inequality:
(A=yflu’,z —u) 20 (z€3),
or equivalently,
ut = Ps(I = (A—~f))u’,

(iii) the unique solution of the minimization problem

1

where h is a potential function for ~f.

Proof. Since €, — 0, we may assume that ¢, < min{||A| -1 %} We

show that ((I —e,A)z , ) > 0, for all x € H. We may assume that
|z|| = 1, so we have

(I —e,A)z, ) =1—€,(Ax, ) > 1—¢€,]|A|| > 0.
By Lemma P72, we have
I —enAll <1—€p7.

By proposition 2 in [IZ], there exists a unique element u* € § such
that VI(§, B) = {u"}, equivalently Pz(I — AB)u* = u* for each A > 0,
hence, by condition (vi),

Py(I = (A—=~f))u” =u’.

We show that I — r, B is nonexpansive. Indeed, from the relaxed
(u, v)-cocoercive and n-Lipschitzian definition on B and condition (iv),
we have

I = raB)z = (I = raB)yl* = | (& = y) = ra( Bz — By)||
= |l = y||* = 2ru(z — y, Bz — By)
+ 72| Bz — By
< Jlz = y|* = 2ry | - ul| Bz — Byl

+vllz = yl?| + 2| Bz - Byl?
< llz =yl + 2ranPullz -y

= 2rpvl|z = y|* + oyl — yl?
= (14 2rn*u — 2rpv + 022 ||z — y|?
< llz = yll%,

which implies that the mapping I — r, B is nonexpansive.
We put SF .= SF ...S2 S! forevery k€ {1,2,...,K}, S) =1
and B, = (I —r,B).
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Putting pq = p, since S is a semitopological semigroup, by Lemma 3.4.3
in [T5], we have T}, = T}, for all n € N. Therefore we have

Zn = enYf(Whzn) + (I — enA)BnTMWnSffzn, (n € N).

We divide the proof into seven steps. Stepl. The existence of z, which
satisfies (B).

Proof. This follows immediately from the fact that for every n € N, the
mapping N,, given by

Now i= enyf (W) + (I — e, A)B, T, W, SEz  (z € H),

is a contraction. To see this, put 5, = 1 + €, ya — €,7, then
0 < B, < 1(n € N). Using Lemma 22, we have

[Nnz — Npyl| < eny|| f(Woz) — fF(Way)||
+ (1 — e9) | BuT, Wi SE 2 — B, T, W, SEy|
< evallz —yll+ (1 — e[z — yl
= (1 + ey — Qﬁ)”l‘ - y”
= Ballz =yl

Therefore, by Banach Contraction Principle [[I[5],p.4], there exist a unique
point z, such that N,z, = z,. O

Step2. {z,} is bounded.

Proof. Let p € §. Since SKp = T,,p = Wypp = p, we have

enVf(Wnzn) — enyf (Wap) + €n7.f (Wap)
+ (I - 6nA)(BnTMWnS§zn —p)— enApH

< lenvf Wazn) = eav fF(Wap)|| + (T = € A)(BR T, Wa Sy 20 — p)|
+ lleny f(p) — enApl|

< @1z = pll + (1= &) [ BaTuWaSE 20 = Bupll + | Bup = pl]

+ enl[vf(p) — Apl||
< envallzn —pll + (1 — )20 — pll + ro(1 — €.7) || Bp||
+ enllvf(p) — Ap||.

Hzn - p” =

Thus,

”Z pH < ”( f”))
n

1
| Bp|| + Ivf(p) — Ap||.
7 — oy
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By (iv),

lim Tn(i_ eni) _

n—oo €n(y — )
therefore {%}HGN is a bounded sequence of positive real numbers,
hence, the sequence {z,} is bounded. O

Step 3. For every fixed k € {1,2,..., K}, we have
lim ||S¥ 2, — Sk+12, || = 0.
n

Proof. Let p e Fand k € {1,2,..., K —1}. Put p, = THWHS’TIZ{Z,@. Since
by (ii) of Theorem 24, S¥*1 is firmly nonexpansive, we conclude that

Tk+1,n
k k k k
lp = Syt znll® = 1S5, p— SEEL  Shan?

< <Sk+1 Sszn - D, Sszn - p>

Tk4+1,n

1
= (IS8 S — ol + 18520 — o

Tk+1,n T

— ISkzn — SEFL Shz?).

Tk+1,m
Therefore,
(3.2) 155 20 = Dl < llz0 = pII* = 1Skz0 — SKH 20l
Then by using (822) and the inequality
(3.3) lz +yl* < ll2l* + 2y, 2 +y),
we obtain

l|2n — p”2 = |len(vf(Wn2y) — Ap) + (I — €0 A)(Bnpn — p)”2
< (eallif(Waz) = Ap|l + (1 = )| Bupu — p)’
< enllvf(Whzn) — Ap”2 + | Bupn — p”2
+ 2en[|7.f (Wnzn) — Ap||[| Brpn — pl|
< enllvf (Wazn) — Apl® + 1S5 20 — plI* + 2r4(~Bp, Brpn — p)
+ 2€p||7f (Wrzn) — Apl||| Bupn — pl|
< enllvf(Whzn) — ApH2 + HsﬁJrlZn _pH2
+ 25| | Bpl|| Bnpn — pll + 2€n1v.f (Wizn) — Ap||| Brpn — pll
< enllvf(Whzn) — APH2 + (lzn — pH2 - HS'ﬁzn - S'ﬁﬂanz)
+ 2rp || B[ Brpn — pll + 2€n]l7.f (Wnzn) — Apl||| Brpn — pl|-
That is,
||S,l§zn - Sﬁ+lzn||2 < enllvf(Whzn) — Ap||2
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+ 27, || Bpl||| Bnpn — Dl
+ 26, ||V f (Whzn) — Ap|||| Brpn — pl|-

Therefore, from (ii), (iv) and that {f(W,z,)} and {B,p,} are bounded
sequences, we conclude

lim || S%z, — S¥* 1z, || = 0.
n—o0

Step 4. lim ||z, — B, T, W, SE2,|| = 0.
n—o0

Proof. Since {vf(Wpzy) — ABnTuWnSffzn} is a bounded sequence, we
have

lim ||z, — BnTMWnSrIL(ZnH = nlggo | €nyf(Whzn)

n—c0
+ (I — €, A)B, T, W, SK 2, — B, T, W,SE 2, |
= nh_)rrgo enl|Vf(Whzpn) — ABnTuWnSffzn I
=0.
O

Step 5. The weak limit set of {z,} which is denoted by w,{z,} is a
subset of §.

Proof. Let z* € wy{zn}, and let {2,,} be a subsequence of {z,} such
that Zn; = x*. We need to show that z* € §.

From Step 3, we obtain also that Sﬁjznj —g* forall k € {1,...,K}.
Note that by (A2) and given y € C and k € {0,1,..., K — 1}, we have
1

Tk+1n

<y - S7’§+1zn7 Slg+1zn - S’nczn> > Gk+1 (ya Sﬁ+1zn) .

Thus,

Sktl, Gk o
(3.4) (y — Sﬁjlznj , — 7”1:+1 BTN > G (y, Sﬁjlznj) .
g

By condition (A4), Gi(y,.) for every i, is lower semicontinuous and con-
vex, and thus weakly semicontinuous. Step 3 and condition
lim inf ry , > 0 imply that

n

k+1, _ ok
S zn; — Sy, Zn;

Tk+1,nj

-0

in norm. Therefore, letting j — oo in B3 yields

G/H-l(y?x*) < hJHl Gk+l (yv Sl’rfj—lznj) <0,
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for all y € C and k € {0,1,..., K — 1}. Replacing y with
y =ty + (1 — t)a* with ¢ € (0,1), and using (A1) and (A4), we obtain

0= Grr1(ye, y) < tGr1 (e, y) + (1 = 1)Grpr(ye, @) < tGrpa(ye, y)-
Hence Giyq (ty + (1 —t)z*,y) > 0 for all ¢ € (0,1) and y € C, and

k € {0,1,...,K — 1}. Letting ¢ — 07 and using (As), we conclude
Gry1(x*,y) > 0. Therefore,

K
(3.5) z* € (| SEP(Gy) = SEP(G).
k=1
Hence, by our assumption, z* € Fix(S).
By Theorem 274, we have, for every z € C,
(3.6) W,z — Wz

Assume that z* ¢ Fix(W), then Waz* # z*. Since z* € Fix(S), by our
assumption, we have T;z* € Fix(S) for all ¢ € N, and then Wyz* €
Fix(S). Therefore, Since S is a semitopological semigroup, by (iv) of
Theorem B3, T, Wy, z* = Wy,x*. Then, from Opial’s property of Hilbert
spaces, (B3), (BH), and Step 4 we have

liminf ||z, — || < liminf [|z,; — Wa"||
Jj—00 j—00
.. K
< hjn_lﬂlgf |2n; — Bn; TuWa, Sy 2|l
+ Wminf || By, Ty Wa, Sy 2, — By TuWa, Sy 2’|
j—o0
+ 11Jn_1>£f | B, Ty W, o™ — T, Wy, 7|
+ lim inf || T), W, 2™ — Wx™||
j—00
< liminf ||z, — By, T, Wi, SE 2, || + liminf ||z, — 2|
=300 J J J J 00 j
+liminf || By, Wy, 2™ — W, 2%
j—00
+ liminf [|W;, 2™ — Wa™|
j—o0
= liminf ||z, — By, T Wi, S 2. || + liminf ||z, — z*||
j—)OO J J J J ]—)OO J
+ liminf 7, | BW,,.2*|| + liminf [|W,, 2" — Wa*||
j—00 J J—00 J

il
)

= liminf [|z,; — =

Jj—o0
Which is a contradiction. Therefore, z* must belong to Fix(W). Hence,
z* € Fix(W) NSEP(G). By Theorem P74, we have z* € ((;2, Fix(T;)) N
SEP(G). Therefore, z* € §. O
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Step 6. Let u* be the unique solution of the variational inequality
VI(§E, B). Then

(3.7) Iy :=limsup(—Bu*, z, —u*) <0,
and
(3.8) [y :=limsup((yf — A)u*, z, —u*) <O0.

Proof. Note that, from the definition of I'1, and the fact that {z,} is a
bounded sequence, we can select a subsequence {z,;} of {2,} with the
following properties:

(i) Bm(—Bu", z,, —u*) = I'y;
J
(ii) 2, converge weakly to a point z1.
By Step 5, we have z; € § and then
Iy = lim(—Bu*, z,; —u*) = (~Bu*, 21 —u*) <0.

J
Since Py(I — (A—~f))u* = v*, by Lemma 21, ((vf—A)u*, z—u*) <0,
for each z € §. Similarly, we can select a subsequence {zy, } of {z,} with
the following properties:

() lim{(1f — A)u" 2, —u’) =T
(ii) zp, converge weakly to a point zs.

By Step 5, we have z9 € § and then
J

Step 7. {z,} converges strongly to u*.
Proof. Put u,, = B,/ T, W, SK z,. By using the inequality (833), we have
20 = u*|1* = [leny (f (Wazn) — f(Wou)) + (I = €n.A) (un — Bau®)
— e Au™ + ey f(Wyu™) + (I — €, A)(Bpu™ — u*)H2
< leny(f (Wazn) = F(Wou®)) + (I — €a.A) (up — Bpu®)
+ en(’yf(u*) — Au*) H2 +2((I — €, A)(Bpu™ —u*), zp, — u*)
< (enVIlf (Waza) = (W) [P + (1 = en¥)lun — Bpu®||?
+2enY(1 = en¥)[un — Buu™[[[Lf (Waza) — f(Wyu')[))
+ 2, (vf(u*) — Au™, 2, — u")
+2((I — e A)(Bpu* —u*), z, — u™)
< enllzn — u|P + (1= en)llzn — w[* + 2607 (1 — €07) | 20 — u*|?
+ 26, (vf(u*) — Au* |z, — u*) 4 2r, (—Bu™, z, — u™)
+ 26nrn[|ABu||[ 20 — u*|],
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therefore,
a7 — 37 + 26791z — 017 < 2en(yf (") — Au*, 2 — )
+ 2rp(—=Bu*, z, —u")
+ 26l ABU 120 — u,

from Step 2, there exists a positive number My such that ||z, —u*|| < My
for each n € N, hence, from (B7), (B38), (ii) and (iv), we conclude

2
limsup ||z, — w*||* <limsu u*) — Au*, z, —u*
nﬁoop [[2n |7 < n~>oop ~ 37y + 2en77 {(vf(u) n )
2r,
+ limsu — —(—Bu*, z, — u*
n—>oop 6n(7 - 37 + 26”7’7) < " >
2ry,
4 lim sup — —||ABu*|| My < 0.
nﬁmpv-—37+2@ﬂw” 1o
That is z, — z*. O

4. EXAMPLES AND APPLICATIONS

Theorem 4.1. Let S be a semitopological semigroup, and let C be a
nonempty closed convex subset of a Hilbert space H, and u be an ar-
bitrary point in H. Suppose that S = {Ts : s € S} be a continuous
representation of S as monexpansive mappings of C into itself. Let X
be an amenable subspace of C(S) such that 1 € X, and the function
t — (Tyx,y) is an element of X for each x € C andy € H. Let {uy} be
a sequence of invariant means on X. Let {T;};en be a sequence of non-
expansive mappings from C into itself such that T;(Fix(S)) C Fix(S)
for every i € N, and G = {Gy : k = 1,2,... K} be a finite family
of bifunctions from C x C into R, such that SEP(G) C Fix(S). Sup-
pose that A is a strongly positive bounded linear operator with coefficient
7 such that ||A|| < 1, and let B be an n-Lipschitzian, relazed (u,v)-
cocoercive mapping from C into H. Moreover, let {rg,}5 |, {rn}, {en},
and {\,} be real sequences such that ri, >0, 1, >0, 0 < e, <1, and
0 < Ay <c <1 for somec, and 7y is a real number such that 0 < 3y < 7.
For every n € N, let W;, be the mapping generated by {T;}, and {\,}
as in (2), for every k € {1,2,...,K} and n € N. Let Sffkn be the
resolvent generated by Gy, and ry, , as in Theorem P24, Assume that,
(i) for every k € {1,2,..., K}, the function Gy, satisfies (A1) —(A4)
of Theorem 22,

(i) lime, =0,
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(iii) for every k € {1,2,..., K}, liminfry , exists, and is a positive
n

real number,

(iv) {rn} C [0,b] for some b with 0 < b < Q(U;§"2), v > un?,
lim 7, = 0, lim -® =0,
n n o€y

(v) § = Nhen Fix(Tn) NSEP(G) # 0,

(vi) Fix(Pz(I—AB))N{x € H: Pz[(I— A)x+u] = x} # 0, for each
A>0.
Let {z,} be the sequence generated by

Zn = enu+ (I — enA)I — 1y B) T, WSS ---S2, S} 2., (n€N),

r2,m " Tln

then {z,} strongly converges to u* € § which is:

(i) the unique solution of the variational inequalities VI(F, B),
equivalently Pz(I — AB)u* = u* for each A > 0,
(ii) the unique solution of the variational inequality:

(Au* —u,z —u*) >0, (z€5g),
or equivalently,
ut = Ps[(I — A)ju” + ],
Proof. It suffices to take f = u and v = 1 in Theorem B 0

Theorem 4.2. Let S be a semitopological semigroup, and H be a Hilbert
space. Suppose that S = {Ts : s € S} be a continuous representation
of S as nonexpansive mappings of H into itself. Let X be an amenable
subspace of C(S) such that 1 € X, and the function t — (Tix,y) is an
element of X for each x,y € H. Let {u,} be a sequence of invariant
means on X. Let G = {Gy : k=1,2,... K} be a finite family of bifunc-
tions from H x H into R, such that SEP(G) C Fix(S). Suppose that
A is a strongly positive bounded linear operator with coefficient 7 such
that ||Al| < 1, and let B be an n-Lipschitzian, relazed (u,v)-cocoercive
mapping from H into H, and [ is an a-contraction on H. Moreover,
let {rin Y\, {rn}, {en}, and {)\,} be real sequences such that i, > 0,
rn>0,0<e¢, <1, and 0 < A, <c <1 for some c, and v is a real
number such that 0 < 3y < 7. For every n € N, let {\,} be as in
(2), for every k € {1,2,...,K}, and n € N. Let Sffk . be the resolvent
generated by G, and ry,, as in Theorem PZ74. Assume that,

(i) for every k € {1,2,..., K}, the function Gy, satisfies (A1) —(A4)

of Theorem 24,
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(ii) lime, = 0 and,
n

(iii) for every k € {1,2,..., K}, liminfry, exists, and is a positive
n

real number,

(iv) {rn} C [0,b] for some b with 0 < b < 2(1};;"72), v > un?,
limr, =0, limr—" =0,
n n o€y

(v) §:=SEP(G) # 0,

(vi) Fix(Pz(I— AB)) NFix(Pz(I— (A —~f))) # 0, for each A > 0.
Let {z,} be the sequence generated by

Zn = enYf(zn) + (I — €, A) (1 — TnB)THnSf;n .82 8 2, (neN),

T2,n " T1ln

then {z,} strongly converges to u* € § which is:

(i) the unique solution of the variational inequalities VI(F, B),
equivalently Pz(I — AB)u* = u* for each A > 0,
(ii) the unique solution of the variational inequality:

(A=yflu’,z —u) 20 (z€3),
or equivalently,

ut = Py(I — (A=),
(iii) the unique solution of the minimization problem

1

where h is a potential function for v f.

Proof. Take T; = I for every ¢ € N, and C' = H in Theorem B. Then,
we have W,, = I for all n € N. So from Theorem B, the sequences {z,}
converges strongly to z* € Fix(S). O

Theorem 4.3. Let S be a semitopological semigroup, and let H be a
Hilbert space. Let X be an amenable subspace of C'(S) such that 1 € X,
and the function t — (Tix,y) is an element of X for each z,y € H.
Let {un} be a sequence of invariant means on X. Let {T;};en be a
sequence of nonerpansive mappings from H into itself. Suppose that
A is a strongly positive bounded linear operator with coefficient 5 such
that ||Al| < 1, and let B be an n-Lipschitzian, relazed (u,v)-cocoercive
mapping from H into H, and [ is an a-contraction on H. Moreover,
let {ren 3B i, {rn}, {en}, and {)\,} be real sequences such that ry,, > 0,
rn>0,0<e¢, <1, and 0 < A, <c <1 for some c, and v is a real
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number such that 0 < 3y < 7. For every n € N, let W), be the mapping
generated by {T;}, and {\,} as in (E), for every k € {1,2,..., K},
and n € N. Assume that,

(i) lizn en =0,

(ii) for every k € {1,2,..., K}, liminfry,, exists and is a positive
n

real number,

(iii) {rn} C [0,b] for some b with 0 < b < 2(1’;;“72), v > un?,
r

. . n
limr, =0, im— =0,
n n. €p

(v) § = Npen Fix(Tn) # 0,

(vi) Fix(Pz(I — AB)) NFix(Pz(I — (A — ~f))) # 0, for each A\ > 0.
Let {z,} be the sequence generated by

Zn = e Yf(Whzn) + (I — €, A) I — 1, B)Wyzn, (n €N),

then, {z,} strongly converges to u* € § which is:

(i) the unique solution of the variational inequalities VI(§, B), equiv-
alently Pz(I — AB)u* = u* for each A > 0,
(ii) the unique solution of the variational inequality:

(A=Aflu’sz—u) >0, (z€3),

or equivalently,
u* = Py(I — (A= f),

(iii) the unique solution of the minimization problem

1

where h is a potential function for vf.

Proof. Take Gy, =0 for every k € {1,2,...,K},S={[} and C = H in
Theorem B Then, we have Fix(S) = Hand SE_ .- S2 Sl 2, = z,.

r2m " Tln
So from Theorem B, the sequences {z,} converges strongly to z*. [

Remark 4.4. Since v-strongly monotone mappings are relaxed (u,v)-
cocoercive, Theorem B is valid if we replace the relaxed (u, v)-cocoercive
condition on B by condition that B is an r-strongly monotone mapping.
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