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APPROXIMATION OF FIXED POINTS FOR A

CONTINUOUS REPRESENTATION OF

NONEXPANSIVE MAPPINGS IN HILBERT SPACES

EBRAHIM SOORI

Abstract. This paper introduces an implicit scheme for a contin-
uous representation of nonexpansive mappings on a closed convex
subset of a Hilbert space with respect to a sequence of invariant
means defined on an appropriate space of bounded, continuous real
valued functions of the semigroup. The main result is to prove the
strong convergence of the proposed implicit scheme to the unique
solution of the variational inequality on the solution of systems of
equilibrium problems and the common fixed points of a sequence of
nonexpansive mappings and a continuous representation of nonex-
pansive mappings.

1. Introduction

Let H be a Hilbert space and let G : H ×H → R be an equilibrium
function, that is G(u, u) = 0 for every u ∈ H. The Equilibrium Problem
is defined as follows:

(1.1) Find x̃ ∈ H such that G(x̃, y) ≥ 0 for all y ∈ H.

A solution of (1.1) is said to be an equilibrium point and the set of the
equilibrium points is denoted by SEP(G).

Let C be a closed convex subset of H. A mapping T of C into itself
is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ C.

Let f be an α-contraction on H (i.e. ∥f(x) − f(y)∥ ≤ α∥x − y∥,
x, y ∈ H with 0 ≤ α < 1), and A be a bounded linear operator on H.
The following variational inequality problem with viscosity is of great
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interest [8].
Find x∗ in C such that

(1.2) ⟨(A− γf)x∗, x− x∗⟩ ≥ 0 (x ∈ C),

which is the optimality condition for the minimization problem

min
x∈C

(
1

2
⟨Ax, x⟩+ h(x)

)
,

where γ satisfies ∥I − A∥ ≤ 1− αγ and h is a potential function for γf
(that is h′(x) = γf(x)).

Let C be a closed convex subset of a Hilbert space H. A mapping
T : C → C is called Lipschitzian, if there exists a nonnegative number
k such that ∥Tx− Ty∥ ≤ k∥x− y∥ for all x, y ∈ C.

Let B : C → H be a nonlinear map. Let PC be the projection of H
onto the convex subset C. The classical variational inequality problem,
denoted by V I(C,B) is to find u ∈ C such that

⟨Bu, v − u⟩ ≥ 0,

for all v ∈ C. For a given z ∈ H, u ∈ C satisfies the inequality

⟨u− z, v − u⟩ ≥ 0, (v ∈ C),

if and only if u = PCz. It is known that the projection operator PC is
nonexpansive. It is also known that PC satisfies

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2,

for x, y ∈ H.
Recall that the following definitions:

(1) B is called v-strongly monotone, if

⟨Bx−By , x− y⟩ ≥ v∥x− y∥2 for all x, y ∈ C,

for a constant v > 0. This implies that

∥Bx−By∥ ≥ v∥x− y∥,

that is, B is v-expansive and when v = 1, it is expansive.
(2) B is said to be v-cocoercive, if there exists a constant v > 0

such that

⟨Bx−By, x− y⟩ ≥ v∥Bx−By∥2 for all x, y ∈ C,

clearly, every v-cocoercive map B is 1/v-Lipschitz continuous
([18] ).

(3) B is called relaxed u-cocoercive, if there exists a constant u > 0
such that

⟨Bx−By, x− y⟩ ≥ (−u)∥Bx−By∥2 for all x, y ∈ C.
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(4) B is said to be relaxed (u, v)-cocoercive, if there exist two con-
stants u, v > 0 such that

⟨Bx−By, x− y⟩ ≥ (−u)∥Bx−By∥2 + v∥x− y∥2 for all x, y ∈ C.

For u = 0, B is v-strongly monotone. This class of maps is
more general than the class of strongly monotone maps. Clearly,
every v-strongly monotone map is a relaxed (u, v)-cocoercive
map.

(5) A semitopological semigroup is a semigroup S with a Hausdorff
topology such that for each a ∈ S, the mappings s → a.s and
s → s.a from S to S are continuous.

Plubtieng and Punpaeng in [10] proved a strong convergence theorem
for an implicit sequence {xn} obtained from the viscosity approximation
method for finding a common element in SEP(G)∩Fix(T) which satisfies
the variational inequality (1.2) (see also [16]):

Theorem 1.1. Let C be a nonempty closed convex subset of a Hilbert
space H. Let G be a bifunction from H ×H into R satisfying

(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e. G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(A3) For all x, y, z ∈ C,

lim sup
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(A4) For all x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.

For x ∈ H and r > 0, set Sr : H → C to be the resolvent of G i.e. Sr(x)
is the unique z ∈ C for which

G(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, (y ∈ C).

Let T be a nonexpansive mapping on H such that SEP(G)∩Fix(T) ̸= ∅.
Let f be a contraction of H into itself with α ∈ (0, 1), and let A be a
strongly positive bounded linear operator on H with coefficient γ > 0,
and 0 < γ < γ

α . Let {xn} be the sequence generated by{
xn = αnγf(xn) + (I − αnA)Tun, (n ∈ N),
G(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0 (y ∈ H),

where un = Srnxn, {rn} ⊂ (0,∞) and αn ⊂ [0, 1] satisfying lim
n→∞

αn = 0,

and lim inf
n→∞

rn > 0. Then, {xn} and {un} converge strongly to a point z

in Fix(T) ∩ SEP(G), which solves the variational inequality

⟨(A− γf)z, z − x⟩ ≤ 0, x ∈ Fix(T) ∩ SEP(G).
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The difference of this work with other works is that, we use of a
semitopological semigroup S, C(S) instead of B(S) and a sequence of
invariant means on an amenable subspace of C(S) and a continuous rep-
resentation of nonexpansive mappings and when S equipped by discrete
topology we conclude the results for B(S).

In the other words, in this paper, motivated by N. Hussain, M. L.
Bami and E. Soori [5], and E. Soori [14], we introduce the following
general implicit algorithm for finding a common element of the set
of solutions of a system of equilibrium problems SEP(G) for a family
G = {Gk; k = 1, 2, . . . ,K} of bifunctions and of the set of fixed points
of a family {Ti}i∈N of nonexpansive mappings from C into itself and a
continuous representation S = {Tt : t ∈ S} of a semitopological semi-
group S as nonexpansive mappings from C into itself, with respect to
W -mappings and a sequence {µn} of invariant means defined on an ap-
propriate subspace of bounded, continuous real-valued functions of the
semigroup:

zn = ϵnγf(Wnzn) + (I − ϵnA)(I − rnB)TµnWnS
K
rK,n

· · ·S2
r2,nS

1
r1,nzn

(n ∈ N).

Our goal is to prove a result of strong convergence for an implicit
scheme to approach an element u∗ ∈

∩
n∈N Fix(Tn) ∩ SEP(G) which is

the unique solution of the variational inequalities V I(
∩

n∈N Fix(Tn) ∩
SEP(G),B), equivalently P∩

n∈N Fix(Tn)∩SEP(G)(I − λB)u∗ = u∗ for each

λ > 0, and we also have P∩
n∈N Fix(Tn)∩SEP(G)(I − (A− γf))u∗ = u∗.

2. preliminaries

Throughout this paper H denotes a Hilbert space. Moreover, we as-
sume that A is a bounded strongly positive operator on H with constant
γ; that is, there exists γ > 0 such that

⟨Ax, x⟩ ≥ γ∥x∥2 (x ∈ H).

For a map T : H → H, we denote by Fix(T) := {x ∈ H : x = Tx} the
fixed point set of T . Note that if T is a nonexpansive mapping, Fix(T)
is closed and convex (see [3]).

Let S be a semitopological semigroup. We denote by B(S) the Ba-
nach space of all bounded real-valued functions defined on S with supre-
mum norm and let C(S) be the subspace of B(S) which consists of all
bounded, continuous real-valued functions on S. For each s ∈ S and
f ∈ B(S), we define ls and rs in B(S) by

(lsf)(t) = f(st), (rsf)(t) = f(ts), (t ∈ S).
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Let X be a subspace of C(S) containing 1 and let X∗ be its topological
dual space. An element µ of X∗ is said to be a mean on X if ∥µ∥ =
µ(1) = 1. We often write µt(f(t)) instead of µ(f) for µ ∈ X∗ and
f ∈ X. Let X be left invariant (resp. right invariant), i.e. ls(X) ⊂ X
(resp. rs(X) ⊂ X) for each s ∈ S. A mean µ on X is said to be left
invariant (resp. right invariant), if µ(lsf) = µ(f) (resp. µ(rsf) = µ(f))
for each s ∈ S and f ∈ X.

Let f be a function on a semigroup S into a reflexive Banach space
E such that the weak closure of {f(t) : t ∈ S} is weakly compact and
let X be a subspace of C(S) containing all the functions t → ⟨f(t), x∗⟩
with x∗ ∈ E∗. We know from [4] that for any µ ∈ X∗, there exists a
unique element fµ in E such that ⟨fµ, x∗⟩ = µt ⟨f(t), x∗⟩ for all x∗ ∈ E∗.
We denote such fµ by

∫
f(t) dµ(t). Moreover, if µ is a mean on X then

from [6],
∫
f(t) dµ(t) ∈ co{f(t) : t ∈ S}.

Let C be a nonempty closed and convex subset of H. Then, a family
S = {Ts : s ∈ S} of mappings from C into itself is said to be a continu-
ous representation of S as nonexpansive mappings on C into itself if S
satisfies the following :

(1) Tstx = TsTtx for all s, t ∈ S and x ∈ C;
(2) for every x ∈ C, the mapping s 7→ Tsx from S into C is contin-

uous;
(3) for every s ∈ S, the mapping Ts : C → C is nonexpansive.

We denote by Fix(S) the set of common fixed points of S, that is
Fix(S)={x ∈ C : Tsx = x, (s ∈ S)}.

For an equilibrium function G : H × H → R, SEP(G) := {x ∈ H :
G(x, y) ≥ 0, (y ∈ H)} is the set of solutions of the related equilibrium
problem.

Let C be a closed convex subset of a Hilbert space H. Let PC be
the projection of H onto C. Then the projection operator PC assigns to
each x ∈ H, the unique point PCx ∈ C satisfying the property

∥x− PCx∥ = min
y∈C

∥x− y∥.

The following Lemma characterizes the projection PC :

Lemma 2.1 ([15]). Let C be a closed convex subset of a real Hilbert
space H, x ∈ H and y ∈ C. Then PCx = y if and only if it satisfies the
inequality

⟨x− y, y − z⟩ ≥ 0, (z ∈ C).

Lemma 2.2 ([7]). Let A be a strongly positive linear bounded operator
on a Hilbert space H with coefficient γ and 0 < ρ ≤ ∥A∥−1 Then ∥I −
ρA∥ ≤ 1− ργ.

The following result generalizes Theorem 3.3.3 of [15].



54 E. SOORI

Theorem 2.3. Let S be a semitopological semigroup such that C(S)
has an invariant mean µ and let C be a closed convex subset of a Hilbert
space H. Let S = {Ts : s ∈ S} be a continuous representation of S as
nonexpansive mappings on C into itself and suppose Fix(S) ̸= ∅. If we
write Tµx instead of

∫
Ttx dµ(t), then the followings hold:

(i) TµTs = TsTµ = Tµ for all s ∈ S;
(ii) Tµ is a nonexpansive retraction of C onto Fix(S), i.e.,
∥Tµx− Tµy∥ ≤ ∥x− y∥ for all x, y ∈ C and T 2

µ = Tµ;

(iii) Tµx ∈ co{Tsx : s ∈ S} for each x ∈ C;
(iv) Tµx = x for each x ∈ Fix(S).

Proof. For proving (i)-(iii), see the proof of Theorem 3.3.3 of [15].
(iv) is clear, since for every x ∈ Fix(S), Tsx = x for all s ∈ S. Thus
co{Tsx : s ∈ S} = {x}. Hence by (iii), Tµx = x for each x ∈ Fix(S). □
Theorem 2.4 ([2]). Let C be a nonempty closed convex subset of a
Hilbert space H and G : C × C → R satisfy,

(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e. G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim inf
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(A4) for all x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.

For x ∈ H and r > 0, set Sr : H → C to be

Sr(x) :=

{
z ∈ C : G(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, (y ∈ C)

}
,

then Sr is well defined and the followings are valid:

(i) Sr is single-valued;
(ii) Sr is firmly nonexpansive, i.e. ∥Srx−Sry∥2 ≤ ⟨Srx− Sry, x− y⟩ ,

for all x, y ∈ H;
(iii) Fix Sr =SEP(G);
(iv) SEP(G); is closed and convex.

Theorem 2.5 ([1]). Let {rn} ⊂ (0,∞) be a sequence converging to
r > 0. For a bifunction G : H × H → R, satisfying conditions (A1)-
(A4), define Sr and Srn for n ∈ N as in Theorem 2.4, then for every
x ∈ H, we have

lim
n

∥Srn − Sr∥ = 0.

Definition 2.6. A vector space X is said to satisfy Opial’s condition,
if for each sequence {xn} in X which converges weakly to point x ∈ X,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥ (y ∈ X, y ̸= x).
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Note that every Hilbert space satisfies the Opial’s condition (see [9] and
[11]).

Let C be a nonempty convex subset of a Banach space. Let {Ti}i∈N
be a sequence of nonexpansive mappings of C into itself and let {λi} be
a real sequence such that 0 ≤ λi ≤ 1 for every i ∈ N. Following [13], for
any n ≥ 1, we define a mapping Wn of C into itself as follows,

Un,n+1 := I,(2.1)

Un,n := λnTnUn,n+1 + (1− λn)I,

...

Un,k := λkTkUn,k+1 + (1− λk)I,

...

Un,2 := λ2T2Un,3 + (1− λ2)I,

Wn := Un,1 := λ1T1Un,2 + (1− λ1)I.

The following result holds for the mappings Wn.

Theorem 2.7 ([13]). Let C be a nonempty closed convex subset of a
Hilbert space H. Let {Ti}i∈N be a sequence of nonexpansive mappings of
C into itself such that

∩∞
i=1 Fix(Ti) ̸= ∅ and let {λi} be a real sequence

such that 0 ≤ λi ≤ b < 1 for every i ∈ N. Then

(1) Wn is nonexpansive and Fix(Wn) =
∩n

i=1 Fix(Ti) for each n ≥
1,

(2) for each x ∈ C and for each positive integer j, the limit lim
n→∞

Un,jx

exists.

(3) The mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1 (x ∈ C),

is a nonexpansive mapping satisfying Fix(W) =
∩∞

i=1 Fix(Ti),
and it is called the W -mapping generated by {Ti}i∈N, and {λi}i∈N.

(4) If D is any bounded subset of C, then

lim
n→∞

sup
x∈D

∥Wx−Wnx∥ = 0.

3. main results

In this section, we deal with the strong convergence approximation
scheme for finding a common element of the set of solutions of a system of
an equilibrium problem and the set of common fixed points of a sequence
of nonexpansive mappings and a continuous representation.



56 E. SOORI

Theorem 3.1. Let S be a semitopological semigroup and let C be a
nonempty closed convex subset of a Hilbert space H. Suppose that S =
{Ts : s ∈ S} be a continuous representation of S as nonexpansive
mappings of C into itself. Let X be an amenable subspace of C(S)
such that 1 ∈ X, and the function t 7→ ⟨Ttx, y⟩ is an element of X
for each x ∈ C and y ∈ H. Let {µn} be a sequence of invariant
means on X. Let {Ti}i∈N be a sequence of nonexpansive mappings
from C into itself such that Ti(Fix(S)) ⊆ Fix(S) for every i ∈ N, and
G = {Gk : k = 1, 2, . . .K} be a finite family of bifunctions from C × C
into R, such that SEP(G) ⊆ Fix(S). Suppose that A is a strongly posi-
tive bounded linear operator with coefficient γ such that ∥A∥ ≤ 1 and let
B be an η-Lipschitzian, relaxed (u, v)-cocoercive mapping from C into
H, and f is an α-contraction on H. Moreover, let {rk,n}Kk=1, {rn}, {ϵn}
and {λn} be real sequences such that rk,n > 0, rn > 0, 0 < ϵn < 1
and 0 < λn ≤ c < 1 for some c, and γ is a real number such that
0 < 3γ < γ. For every n ∈ N, let Wn be the mapping generated by {Ti}
and {λn} as in (2.1), for every k ∈ {1, 2, . . . ,K} and n ∈ N. Let Sk

rk,n
be the resolvent generated by Gk and rk,n as in Theorem 2.4. Assume
that,

(i) for every k ∈ {1, 2, . . . ,K}, the function Gk satisfies (A1)−(A4)
of Theorem 2.4,

(ii) lim
n

ϵn = 0,

(iii) for every k ∈ {1, 2, . . . ,K}, lim inf
n

rk,n exists and is a positive

real number,

(iv) {rn} ⊂ [0, b] for some b with 0 ≤ b ≤ 2(v−uη2)
η2

, v > uη2,

lim
n

rn = 0, lim
n

rn
ϵn

= 0,

(v) F :=
∩

n∈N Fix(Tn) ∩ SEP(G) ̸= ∅,

(vi) Fix(PF(I− λB)) ∩ Fix(PF(I− (A− γf))) ̸= ∅, for each λ > 0.

Let {zn} be the sequence generated by

zn = ϵnγf(Wnzn) + (I − ϵnA)(I − rnB)TµnWnS
K
rK,n

· · ·S2
r2,nS

1
r1,nzn

(n ∈ N),(3.1)

then {zn} strongly converges to u∗ ∈ F which is:

(i) the unique solution of the variational inequalities V I(F, B),
equivalently PF(I − λB)u∗ = u∗ for each λ > 0,
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(ii) the unique solution of the variational inequality:

⟨(A− γf)u∗, x− u∗⟩ ≥ 0 (x ∈ F),

or equivalently,

u∗ = PF(I − (A− γf))u∗,

(iii) the unique solution of the minimization problem

min
x∈F

1

2
⟨Ax, x⟩+ h(x),

where h is a potential function for γf .

Proof. Since ϵn → 0, we may assume that ϵn ≤ min
{
∥A∥−1, 1γ̄

}
. We

show that ⟨(I − ϵnA)x , x⟩ ≥ 0, for all x ∈ H. We may assume that
∥x∥ = 1, so we have

⟨(I − ϵnA)x , x⟩ = 1− ϵn⟨Ax , x⟩ ≥ 1− ϵn∥A∥ ≥ 0.

By Lemma 2.2, we have

∥I − ϵnA∥ ≤ 1− ϵnγ̄.

By proposition 2 in [12], there exists a unique element u∗ ∈ F such
that V I(F, B) = {u∗}, equivalently PF(I − λB)u∗ = u∗ for each λ > 0,
hence, by condition (vi),

PF(I − (A− γf))u∗ = u∗.

We show that I − rnB is nonexpansive. Indeed, from the relaxed
(u, v)-cocoercive and η-Lipschitzian definition on B and condition (iv),
we have

∥(I − rnB)x− (I − rnB)y∥2 = ∥(x− y)− rn(Bx−By)∥2

= ∥x− y∥2 − 2rn⟨x− y,Bx−By⟩
+ r2n∥Bx−By∥2

≤ ∥x− y∥2 − 2rn

[
− u∥Bx−By∥2

+ v∥x− y∥2
]
+ r2n∥Bx−By∥2

≤ ∥x− y∥2 + 2rnη
2u∥x− y∥2

− 2rnv∥x− y∥2 + η2r2n∥x− y∥2

= (1 + 2rnη
2u− 2rnv + η2r2n)∥x− y∥2

≤ ∥x− y∥2,
which implies that the mapping I − rnB is nonexpansive.

We put Sk
n := Sk

rk,n
· · ·S2

r2,nS
1
r1,n for every k ∈ {1, 2, . . . ,K}, S0

n := I

and Bn = (I − rnB).
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Putting µ1 = µ, since S is a semitopological semigroup, by Lemma 3.4.3
in [15], we have Tµn = Tµ for all n ∈ N. Therefore we have

zn = ϵnγf(Wnzn) + (I − ϵnA)BnTµWnS
K
n zn, (n ∈ N).

We divide the proof into seven steps. Step1. The existence of zn which
satisfies (3.1).

Proof. This follows immediately from the fact that for every n ∈ N, the
mapping Nn given by

Nnx := ϵnγf(Wnx) + (I − ϵnA)BnTµWnS
K
n x (x ∈ H),

is a contraction. To see this, put βn = 1 + ϵnγα− ϵnγ̄, then
0 ≤ βn < 1(n ∈ N). Using Lemma 2.2, we have

∥Nnx−Nny∥ ≤ ϵnγ∥f(Wnx)− f(Wny)∥
+ (1− ϵnγ̄) ∥BnTµWnS

K
n x−BnTµWnS

K
n y∥

≤ ϵnγα∥x− y∥+ (1− ϵnγ̄)∥x− y∥
= (1 + ϵnγα− ϵnγ̄)∥x− y∥
= βn∥x− y∥.

Therefore, by Banach Contraction Principle [[15],p.4], there exist a unique
point zn such that Nnzn = zn. □

Step2. {zn} is bounded.

Proof. Let p ∈ F. Since SK
n p = Tµp = Wnp = p, we have

∥zn − p∥ =
∥∥∥ϵnγf(Wnzn)− ϵnγf(Wnp) + ϵnγf(Wnp)

+ (I − ϵnA)(BnTµWnS
K
n zn − p)− ϵnAp

∥∥∥
≤ ∥ϵnγf(Wnzn)− ϵnγf(Wnp)∥+ ∥(I − ϵnA)(BnTµWnS

K
n zn − p)∥

+ ∥ϵnγf(p)− ϵnAp∥

≤ ϵnγα∥zn − p∥+ (1− ϵnγ)
[
∥BnTµWnS

K
n zn −Bnp∥+ ∥Bnp− p∥

]
+ ϵn∥γf(p)−Ap∥

≤ ϵnγα∥zn − p∥+ (1− ϵnγ)∥zn − p∥+ rn(1− ϵnγ)∥Bp∥
+ ϵn∥γf(p)−Ap∥.

Thus,

∥zn − p∥ ≤ rn(1− ϵnγ)

ϵn(γ − αγ)
∥Bp∥+ 1

γ − αγ
∥γf(p)−Ap∥.
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By (iv),

lim
n→∞

rn(1− ϵnγ)

ϵn(γ − αγ)
= 0,

therefore { rn(1−ϵnγ)
ϵn(γ−αγ) }n∈N is a bounded sequence of positive real numbers,

hence, the sequence {zn} is bounded. □
Step 3. For every fixed k ∈ {1, 2, . . . ,K}, we have

lim
n

∥Sk
nzn − Sk+1

n zn∥ = 0.

Proof. Let p ∈ F and k ∈ {1, 2, . . . ,K−1}. Put ρn = TµWnS
K
n zn. Since

by (ii) of Theorem 2.4, Sk+1
rk+1,n

is firmly nonexpansive, we conclude that

∥p− Sk+1
n zn∥2 = ∥Sk+1

rk+1,n
p− Sk+1

rk+1,n
Sk
nzn∥2

≤
⟨
Sk+1
rk+1,n

Sk
nzn − p , Sk

nzn − p
⟩

=
1

2

(
∥Sk+1

rk+1,n
Sk
nzn − p∥2 + ∥Sk

nzn − p∥2

− ∥Sk
nzn − Sk+1

rk+1,n
Sk
nzn∥2

)
.

Therefore,

(3.2) ∥Sk+1
n zn − p∥2 ≤ ∥zn − p∥2 − ∥Sk

nzn − Sk+1
n zn∥2.

Then by using (3.2) and the inequality

(3.3) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ ,
we obtain

∥zn − p∥2 = ∥ϵn(γf(Wnzn)−Ap) + (I − ϵnA)(Bnρn − p)∥2

≤
(
ϵn∥γf(Wnzn)−Ap∥+ (1− ϵnγ)∥Bnρn − p∥

)2
≤ ϵn∥γf(Wnzn)−Ap∥2 + ∥Bnρn − p∥2

+ 2ϵn∥γf(Wnzn)−Ap∥∥Bnρn − p∥
≤ ϵn∥γf(Wnzn)−Ap∥2 + ∥SK

n zn − p∥2 + 2rn⟨−Bp,Bnρn − p⟩
+ 2ϵn∥γf(Wnzn)−Ap∥∥Bnρn − p∥

≤ ϵn∥γf(Wnzn)−Ap∥2 + ∥Sk+1
n zn − p∥2

+ 2rn∥Bp∥∥Bnρn − p∥+ 2ϵn∥γf(Wnzn)−Ap∥∥Bnρn − p∥

≤ ϵn∥γf(Wnzn)−Ap∥2 + (∥zn − p∥2 − ∥Sk
nzn − Sk+1

n zn∥2)
+ 2rn∥Bp∥∥Bnρn − p∥+ 2ϵn∥γf(Wnzn)−Ap∥∥Bnρn − p∥.

That is,

∥Sk
nzn − Sk+1

n zn∥2 ≤ ϵn∥γf(Wnzn)−Ap∥2
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+ 2rn∥Bp∥∥Bnρn − p∥
+ 2ϵn∥γf(Wnzn)−Ap∥∥Bnρn − p∥.

Therefore, from (ii), (iv) and that {f(Wnzn)} and {Bnρn} are bounded
sequences, we conclude

lim
n→∞

∥Sk
nzn − Sk+1

n zn∥ = 0.

□
Step 4. lim

n→∞
∥zn −BnTµWnS

K
n zn∥ = 0.

Proof. Since {γf(Wnzn)− ABnTµWnS
K
n zn} is a bounded sequence, we

have

lim
n→∞

∥zn −BnTµWnS
K
n zn∥ = lim

n→∞
∥ ϵnγf(Wnzn)

+ (I − ϵnA)BnTµWnS
K
n zn −BnTµWnS

K
n zn ∥

= lim
n→∞

ϵn∥γf(Wnzn)−ABnTµWnS
K
n zn ∥

= 0.

□
Step 5. The weak limit set of {zn} which is denoted by ωω{zn} is a

subset of F.

Proof. Let x∗ ∈ ωω{zn}, and let {znj} be a subsequence of {zn} such
that znj ⇀ x∗. We need to show that x∗ ∈ F.

From Step 3, we obtain also that Sk
nj
znj ⇀ x∗, for all k ∈ {1, . . . ,K}.

Note that by (A2) and given y ∈ C and k ∈ {0, 1, . . . ,K − 1}, we have

1

rk+1,n
⟨y − Sk+1

n zn , S
k+1
n zn − Sk

nzn⟩ ≥ Gk+1

(
y, Sk+1

n zn

)
.

Thus,

⟨y − Sk+1
nj

znj ,
Sk+1
nj

znj − Sk
nj
znj

rk+1,nj

⟩ ≥ Gk+1

(
y, Sk+1

nj
znj

)
.(3.4)

By condition (A4), Gi(y, .) for every i, is lower semicontinuous and con-
vex, and thus weakly semicontinuous. Step 3 and condition
lim inf

n
rk,n > 0 imply that

Sk+1
nj

znj − Sk
nj
znj

rk+1,nj

→ 0

in norm. Therefore, letting j → ∞ in 3.4 yields

Gk+1(y, x
∗) ≤ lim

j
Gk+1

(
y, Sk+1

nj
znj

)
≤ 0,
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for all y ∈ C and k ∈ {0, 1, . . . ,K − 1}. Replacing y with
yt := ty + (1− t)x∗ with t ∈ (0, 1), and using (A1) and (A4), we obtain

0 = Gk+1(yt, yt) ≤ tGk+1(yt, y) + (1− t)Gk+1(yt, x
∗) ≤ tGk+1(yt, y).

Hence Gk+1 (ty + (1− t)x∗, y) ≥ 0 for all t ∈ (0, 1) and y ∈ C, and
k ∈ {0, 1, . . . ,K − 1}. Letting t → 0+ and using (A3), we conclude
Gk+1(x

∗, y) ≥ 0. Therefore,

x∗ ∈
K∩
k=1

SEP(Gk) = SEP(G).(3.5)

Hence, by our assumption, x∗ ∈ Fix(S).
By Theorem 2.7, we have, for every z ∈ C,

Wnjz → Wz.(3.6)

Assume that x∗ /∈ Fix(W), then Wx∗ ̸= x∗. Since x∗ ∈ Fix(S), by our
assumption, we have Tix

∗ ∈ Fix(S) for all i ∈ N, and then Wnx
∗ ∈

Fix(S). Therefore, Since S is a semitopological semigroup, by (iv) of
Theorem 2.3, TµWnx

∗ = Wnx
∗. Then, from Opial’s property of Hilbert

spaces, (3.5), (3.6), and Step 4 we have

lim inf
j→∞

∥znj − x∗∥ < lim inf
j→∞

∥znj −Wx∗∥

≤ lim inf
j→∞

∥znj −BnjTµWnjS
K
n znj∥

+ lim inf
j→∞

∥BnjTµWnjS
K
n znj −BnjTµWnjS

K
n x∗∥

+ lim inf
j→∞

∥BnjTµWnjx
∗ − TµWnjx

∗∥

+ lim inf
j→∞

∥TµWnjx
∗ −Wx∗∥

≤ lim inf
j→∞

∥znj −BnjTµWnjS
K
n znj∥+ lim inf

j→∞
∥znj − x∗∥

+ lim inf
j→∞

∥BnjWnjx
∗ −Wnjx

∗∥

+ lim inf
j→∞

∥Wnjx
∗ −Wx∗∥

= lim inf
j→∞

∥znj −BnjTµWnjS
K
n znj∥+ lim inf

j→∞
∥znj − x∗∥

+ lim inf
j→∞

rn∥BWnjx
∗∥+ lim inf

j→∞
∥Wnjx

∗ −Wx∗∥

= lim inf
j→∞

∥znj − x∗∥,

Which is a contradiction. Therefore, x∗ must belong to Fix(W). Hence,
x∗ ∈ Fix(W)∩SEP(G). By Theorem 2.7, we have x∗ ∈ (

∩∞
i=1 Fix(Ti))∩

SEP(G). Therefore, x∗ ∈ F. □
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Step 6. Let u∗ be the unique solution of the variational inequality
V I(F, B). Then

Γ1 := lim sup
n

⟨−Bu∗ , zn − u∗⟩ ≤ 0,(3.7)

and

Γ2 := lim sup
n

⟨(γf −A)u∗ , zn − u∗⟩ ≤ 0.(3.8)

Proof. Note that, from the definition of Γ1, and the fact that {zn} is a
bounded sequence, we can select a subsequence {znj} of {zn} with the
following properties:

(i) lim
j
⟨−Bu∗, znj − u∗⟩ = Γ1;

(ii) znj converge weakly to a point z1.

By Step 5, we have z1 ∈ F and then
Γ1 = lim

j
⟨−Bu∗, znj − u∗⟩ = ⟨−Bu∗, z1 − u∗⟩ ≤ 0.

Since PF(I−(A−γf))u∗ = u∗, by Lemma 2.1, ⟨(γf−A)u∗ , z−u∗⟩ ≤ 0,
for each z ∈ F. Similarly, we can select a subsequence {zni} of {zn} with
the following properties:

(i) lim
i
⟨(γf −A)u∗, zni − u∗⟩ = Γ2;

(ii) zni converge weakly to a point z2.

By Step 5, we have z2 ∈ F and then
Γ2 = lim

j
⟨(γf −A)u∗, zni − u∗⟩ = ⟨(γf −A)u∗, z2 − u∗⟩ ≤ 0. □

Step 7. {zn} converges strongly to u∗.

Proof. Put un = BnTµWnS
K
n zn. By using the inequality (3.3), we have

∥zn − u∗∥2 =
∥∥ϵnγ(f(Wnzn)− f(Wnu

∗)) + (I − ϵnA)(un −Bnu
∗)

− ϵnAu
∗ + ϵnγf(Wnu

∗) + (I − ϵnA)(Bnu
∗ − u∗)

∥∥2
≤

∥∥ϵnγ(f(Wnzn)− f(Wnu
∗)) + (I − ϵnA)(un −Bnu

∗)

+ ϵn
(
γf(u∗)−Au∗

)∥∥2 + 2⟨(I − ϵnA)(Bnu
∗ − u∗) , zn − u∗⟩

≤
(
ϵnγ∥f(Wnzn)− f(Wnu

∗)∥2 + (1− ϵnγ̄)∥un −Bnu
∗∥2

+ 2ϵnγ(1− ϵnγ̄)∥un −Bnu
∗∥∥f(Wnzn)− f(Wnu

∗)∥
)

+ 2ϵn⟨γf(u∗)−Au∗ , zn − u∗⟩
+ 2⟨(I − ϵnA)(Bnu

∗ − u∗) , zn − u∗⟩
≤ ϵnγ∥zn − u∗∥2 + (1− ϵnγ̄)∥zn − u∗∥2 + 2ϵnγ(1− ϵnγ̄)∥zn − u∗∥2

+ 2ϵn⟨γf(u∗)−Au∗ , zn − u∗⟩+ 2rn⟨−Bu∗ , zn − u∗⟩
+ 2ϵnrn∥ABu∗∥∥zn − u∗∥,
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therefore,

ϵn(γ̄ − 3γ + 2ϵnγγ̄))∥zn − u∗∥2 ≤ 2ϵn⟨γf(u∗)−Au∗ , zn − u∗⟩
+ 2rn⟨−Bu∗ , zn − u∗⟩

+ 2ϵnrn∥ABu∗∥∥zn − u∗∥,

from Step 2, there exists a positive number M0 such that ∥zn−u∗∥ ≤ M0

for each n ∈ N, hence, from (3.7), (3.8), (ii) and (iv), we conclude

lim sup
n→∞

∥zn − u∗∥2 ≤ lim sup
n→∞

2

γ̄ − 3γ + 2ϵnγγ̄
⟨γf(u∗)−Au∗ , zn − u∗⟩

+ lim sup
n→∞

2rn
ϵn(γ̄ − 3γ + 2ϵnγγ̄)

⟨−Bu∗ , zn − u∗⟩

+ lim sup
n→∞

2rn
γ̄ − 3γ + 2ϵnγγ̄

∥ABu∗∥M0 ≤ 0.

That is zn → x∗. □

□

4. Examples and applications

Theorem 4.1. Let S be a semitopological semigroup, and let C be a
nonempty closed convex subset of a Hilbert space H, and u be an ar-
bitrary point in H. Suppose that S = {Ts : s ∈ S} be a continuous
representation of S as nonexpansive mappings of C into itself. Let X
be an amenable subspace of C(S) such that 1 ∈ X, and the function
t 7→ ⟨Ttx, y⟩ is an element of X for each x ∈ C and y ∈ H. Let {µn} be
a sequence of invariant means on X. Let {Ti}i∈N be a sequence of non-
expansive mappings from C into itself such that Ti(Fix(S)) ⊆ Fix(S)
for every i ∈ N, and G = {Gk : k = 1, 2, . . .K} be a finite family
of bifunctions from C × C into R, such that SEP(G) ⊆ Fix(S). Sup-
pose that A is a strongly positive bounded linear operator with coefficient
γ such that ∥A∥ ≤ 1, and let B be an η-Lipschitzian, relaxed (u, v)-
cocoercive mapping from C into H. Moreover, let {rk,n}Kk=1, {rn}, {ϵn},
and {λn} be real sequences such that rk,n > 0, rn > 0, 0 < ϵn < 1, and
0 < λn ≤ c < 1 for some c, and γ is a real number such that 0 < 3γ < γ.
For every n ∈ N, let Wn be the mapping generated by {Ti}, and {λn}
as in (2.1), for every k ∈ {1, 2, . . . ,K} and n ∈ N. Let Sk

rk,n
be the

resolvent generated by Gk and rk,n as in Theorem 2.4. Assume that,

(i) for every k ∈ {1, 2, . . . ,K}, the function Gk satisfies (A1)−(A4)
of Theorem 2.4,

(ii) lim
n

ϵn = 0,
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(iii) for every k ∈ {1, 2, . . . ,K}, lim inf
n

rk,n exists, and is a positive

real number,

(iv) {rn} ⊂ [0, b] for some b with 0 ≤ b ≤ 2(v−uη2)
η2

, v > uη2,

lim
n

rn = 0, lim
n

rn
ϵn

= 0,

(v) F :=
∩

n∈N Fix(Tn) ∩ SEP(G) ̸= ∅,

(vi) Fix(PF(I− λB)) ∩ {x ∈ H : PF[(I− A)x + u] = x} ̸= ∅, for each
λ > 0.

Let {zn} be the sequence generated by

zn = ϵnu+ (I − ϵnA)(I − rnB)TµnWnS
K
rK,n

· · ·S2
r2,nS

1
r1,nzn, (n ∈ N),

then {zn} strongly converges to u∗ ∈ F which is:

(i) the unique solution of the variational inequalities V I(F, B),
equivalently PF(I − λB)u∗ = u∗ for each λ > 0,

(ii) the unique solution of the variational inequality:

⟨Au∗ − u, x− u∗⟩ ≥ 0, (x ∈ F),

or equivalently,

u∗ = PF[(I −A)u∗ + u],

Proof. It suffices to take f ≡ u and γ = 1 in Theorem 3.1. □
Theorem 4.2. Let S be a semitopological semigroup, and H be a Hilbert
space. Suppose that S = {Ts : s ∈ S} be a continuous representation
of S as nonexpansive mappings of H into itself. Let X be an amenable
subspace of C(S) such that 1 ∈ X, and the function t 7→ ⟨Ttx, y⟩ is an
element of X for each x, y ∈ H. Let {µn} be a sequence of invariant
means on X. Let G = {Gk : k = 1, 2, . . .K} be a finite family of bifunc-
tions from H × H into R, such that SEP(G) ⊆ Fix(S). Suppose that
A is a strongly positive bounded linear operator with coefficient γ such
that ∥A∥ ≤ 1, and let B be an η-Lipschitzian, relaxed (u, v)-cocoercive
mapping from H into H, and f is an α-contraction on H. Moreover,
let {rk,n}Kk=1, {rn}, {ϵn}, and {λn} be real sequences such that rk,n > 0,
rn > 0, 0 < ϵn < 1, and 0 < λn ≤ c < 1 for some c, and γ is a real
number such that 0 < 3γ < γ. For every n ∈ N, let {λn} be as in
(2.1), for every k ∈ {1, 2, . . . ,K}, and n ∈ N. Let Sk

rk,n
be the resolvent

generated by Gk and rk,n as in Theorem 2.4. Assume that,

(i) for every k ∈ {1, 2, . . . ,K}, the function Gk satisfies (A1)−(A4)
of Theorem 2.4,
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(ii) lim
n

ϵn = 0 and,

(iii) for every k ∈ {1, 2, . . . ,K}, lim inf
n

rk,n exists, and is a positive

real number,

(iv) {rn} ⊂ [0, b] for some b with 0 ≤ b ≤ 2(v−uη2)
η2

, v > uη2,

lim
n

rn = 0, lim
n

rn
ϵn

= 0,

(v) F := SEP(G) ̸= ∅,

(vi) Fix(PF(I− λB)) ∩ Fix(PF(I− (A− γf))) ̸= ∅, for each λ > 0.

Let {zn} be the sequence generated by

zn = ϵnγf(zn) + (I − ϵnA)(I − rnB)TµnS
K
rK,n

· · ·S2
r2,nS

1
r1,nzn, (n ∈ N),

then {zn} strongly converges to u∗ ∈ F which is:

(i) the unique solution of the variational inequalities V I(F, B),
equivalently PF(I − λB)u∗ = u∗ for each λ > 0,

(ii) the unique solution of the variational inequality:

⟨(A− γf)u∗, x− u∗⟩ ≥ 0 (x ∈ F),

or equivalently,

u∗ = PF(I − (A− γf))u∗,

(iii) the unique solution of the minimization problem

min
x∈F

1

2
⟨Ax, x⟩+ h(x),

where h is a potential function for γf .

Proof. Take Ti = I for every i ∈ N, and C = H in Theorem 3.1. Then,
we have Wn = I for all n ∈ N. So from Theorem 3.1, the sequences {zn}
converges strongly to x∗ ∈ Fix(S). □
Theorem 4.3. Let S be a semitopological semigroup, and let H be a
Hilbert space. Let X be an amenable subspace of C(S) such that 1 ∈ X,
and the function t 7→ ⟨Ttx, y⟩ is an element of X for each x, y ∈ H.
Let {µn} be a sequence of invariant means on X. Let {Ti}i∈N be a
sequence of nonexpansive mappings from H into itself. Suppose that
A is a strongly positive bounded linear operator with coefficient γ such
that ∥A∥ ≤ 1, and let B be an η-Lipschitzian, relaxed (u, v)-cocoercive
mapping from H into H, and f is an α-contraction on H. Moreover,
let {rk,n}Kk=1, {rn}, {ϵn}, and {λn} be real sequences such that rk,n > 0,
rn > 0, 0 < ϵn < 1, and 0 < λn ≤ c < 1 for some c, and γ is a real
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number such that 0 < 3γ < γ. For every n ∈ N, let Wn be the mapping
generated by {Ti}, and {λn} as in (2.1), for every k ∈ {1, 2, . . . ,K},
and n ∈ N. Assume that,

(i) lim
n

ϵn = 0,

(ii) for every k ∈ {1, 2, . . . ,K}, lim inf
n

rk,n exists and is a positive

real number,

(iii) {rn} ⊂ [0, b] for some b with 0 ≤ b ≤ 2(v−uη2)
η2

, v > uη2,

lim
n

rn = 0, lim
n

rn
ϵn

= 0,

(v) F :=
∩

n∈N Fix(Tn) ̸= ∅,

(vi) Fix(PF(I− λB)) ∩ Fix(PF(I− (A− γf))) ̸= ∅, for each λ > 0.

Let {zn} be the sequence generated by

zn = ϵnγf(Wnzn) + (I − ϵnA)(I − rnB)Wnzn, (n ∈ N),

then, {zn} strongly converges to u∗ ∈ F which is:

(i) the unique solution of the variational inequalities V I(F, B), equiv-
alently PF(I − λB)u∗ = u∗ for each λ > 0,

(ii) the unique solution of the variational inequality:

⟨(A− γf)u∗, x− u∗⟩ ≥ 0, (x ∈ F),

or equivalently,

u∗ = PF(I − (A− γf))u∗,

(iii) the unique solution of the minimization problem

min
x∈F

1

2
⟨Ax, x⟩+ h(x),

where h is a potential function for γf .

Proof. Take Gk = 0 for every k ∈ {1, 2, . . . ,K}, S = {I} and C = H in
Theorem 3.1. Then, we have Fix(S) = H and SK

rK,n
· · ·S2

r2,nS
1
r1,nzn = zn.

So from Theorem 3.1, the sequences {zn} converges strongly to x∗. □

Remark 4.4. Since v-strongly monotone mappings are relaxed (u, v)-
cocoercive, Theorem 3.1 is valid if we replace the relaxed (u, v)-cocoercive
condition on B by condition that B is an r-strongly monotone mapping.
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