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THE ANALYTICAL SOLUTIONS FOR VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS WITHIN

LOCAL FRACTIONAL OPERATORS BY

YANG-LAPLACE TRANSFORM

HASSAN KAMIL JASSIM

Abstract. In this paper, we apply the local fractional Laplace
transform method (or Yang-Laplace transform) on Volterra integro-
differential equations of the second kind within the local fractional
integral operators to obtain the analytical approximate solutions.
The iteration procedure is based on local fractional derivative op-
erators. This approach provides us with a convenient way to find
a solution with less computation as compared with local fractional
variational iteration method. Some illustrative examples are dis-
cussed. The results show that the methodology is very efficient and
a simple tool for solving integral equations.

1. Introduction

The standard order local fractional Volterra integro-differential equa-
tion of the second kind is given by [5]:

(1.1) ψ(kα)(x) = f(x) +
1

Γ(1 + α)

∫ x

0
K(x, t)ψ(t)(dt)α,

with the initial conditions

ψ(mα)(0) = am, m = 0, 1, . . . , k − 1,

where K(x, t) is the kernel of the local fractional integral equation, and
f(x) is a local fractional continuous function.
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Several analytical and numerical techniques were successfully applied
to deal with integral equations within local fractional derivative opera-
tors such as local fractional variational iteration method [5], Adomian
decomposition method [11], Picards successive approximation method
[8], and other methods .

The number of applicable mathematical and engineering problems
successfully solved by the tools of the fractional calculus is continu-
ously growing in last five decades [3, 4, 6]. Most of the local frac-
tional differential equations have exact analytic solutions, whilst oth-
ers need either analytical approximations or numerical techniques to
be applied, among them: local fractional Fourier and Laplace trans-
forms. The Yang-Laplace transform in fractal space is a generalization
of Laplace transforms derived from the local fractional calculus, as well
as the Yang-Fourier transform based on the local fractional calculus
is a generalization of Fourier transform in fractal space. The Laplace
and Fourier transforms are essential mathematical tools for the design,
analysis and monitory of systems and show insight into the transient
behavior the steady state behavior, and the stability of continuous time
systems. However, the classical Laplace-transform does not deal with
fractal functions, which are local fractional continuous non-differential
functions [7].

Our aims are to present the local fractional Laplace transform method
(Yang-Laplace transform) and to use it to solve the Volterra integro-
differential equations of the second kind with local fractional derivative
operators. The structure of the paper is as follows. In Section 2, the ba-
sic mathematical tools are introduced. In Section 3, the local fractional
Laplace transform method is analyzed. In Section 4, several examples for
Volterra integro-differential equations of the second kind are considered.
Finally, in Section 5 the conclusions are given.

2. Mathematical Fundamentals

In this section, we present some basic definitions and notations of the
local fractional calculus (see [1, 2, 9, 10]).

Definition 2.1. The local fractional derivative of ψ(x) of order α at
the point x = x0 is given by

ψ(α)(x0) =
dα

dxα
ψ(x)

∣∣∣∣
x=x0

= lim
x→x0

△α(ψ(x)− ψ(x0))

(x− x0)α
,

where
△α(ψ(x)− ψ(x0) ∼= Γ(α+ 1)(ψ(x)− ψ(x0)).
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The formulas of local fractional derivatives of special functions used
in the paper are as follows:

D(α)
x aψ(x) = aD(α)

x ψ(x),

dα

dxα

(
xnα

Γ(1 + nα)

)
=

x(n−1)α

Γ(1 + (n− 1)α)
.

Definition 2.2. The local fractional integral of ψ(x) in the interval [a, b]
is given by

aI
(α)
b ψ(x) =

1

Γ(1 + α)

∫ b

a
ψ(t)(dt)α

=
1

Γ(1 + α)
lim

△t−→0

N−1∑
j=0

ψ(tj)(△tj)α,

where the partition of the interval [a, b] is denoted as (tj , tj+1), j =
0, . . . , N − 1, t0 = a and tN = b with △tj = tj+1 − tj and △t =
max {△t0,△t1, . . .}.

The formulas of local fractional integrals of special functions used in
the paper are as follows:

0I
(α)
x aψ(t) = a0I

(α)
x ψ(t),

0I
(α)
x

(
tnα

Γ(1 + nα)

)
=

x(n+1)α

Γ(1 + (n+ 1)α)
.

Definition 2.3. Let

1

Γ(1 + α)

∫ ∞

0
|f(x)|(dx)α < k <∞.

The Yang-Laplace transform of f(x) is given by

Lα{ψ(x)} = ΨL,α
s (s)

=
1

Γ(1 + α)

∫ ∞

0
Eα(−sαxα)ψ(x)(dx)α,

where the latter integral converges and sα ∈ Rα.

Definition 2.4. The inverse formula of the Yang-Laplace transform of
f(x) is given by

L−1
α

(
ΨL,α

s (s)
)
= ψ(x)

=
1

(2π)α

∫ β+iω

β−iω
Eα(s

αxα)ΨL,α
s (s)(ds)α,

where sα = βα + iαωα; fractal imaginary unit iα and Re(s) = β > 0.
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Definition 2.5. The convolution of two functions is defined symboli-
cally by

ψ1(x) ∗ ψ2(x) =
1

Γ(1 + α)

∫ x

0
ψ1(t)ψ2(x− t)(dt)α,

or

ψ2(x) ∗ ψ1(x) =
1

Γ(1 + α)

∫ x

0
ψ2(t)ψ1(x− t)(dt)α.

Theorem 2.6 (The convolution theorem). Let

Lα {ψ1(x)} = ΨL,α
s,1 (s), Lα {ψ2(x)} = ΨL,α

s,2 (s),

then
Lα {ψ1(x) ∗ ψ2(x)} = ΨL,α

s,1 (s)Ψ
L,α
s,2 (s).

Theorem 2.7. Suppose that

Lα {ψ1(x)} = ΨL,α
s,1 (s), Lα {ψ2(x)} = ΨL,α

s,2 (s),

then

Lα{ψ(kα)(x)} = skαΨL,α
s (s)− · · · − ψ((k−1)α)(0);

Lα{Eα(a
αxα)} =

1

sα − aα
.

3. Local Fractional Laplace Transform Method

In view of the convolution theorem for the Yang-Laplace transform,
if the kernel K(x, t) in equation (1.1) be a difference kernel, then the
local fractional Volterra integro-differential equation can be written as

(3.1) ψ(kα)(x) = f(x) +
1

Γ(1 + α)

∫ x

0
K(x− t)ψ(t)(dt)α.

By taking Yang-Laplace transform of both sides of (3.1):

skαΨL,α
s (s)− s(k−1)αψ(0)− · · · − ψ((k−1)α)(0)(3.2)

= FL,α
s (s) +KL,α

s (s)ΨL,α
s (s),

where

ΨL,α
s (s) = Lα {ψ(x)} , FL,α

s (s) = Lα {f(x)} , KL,α
s (s) = Lα {K(x)} .

Substituting the initial conditions into (3.2), we obtain

skαΨL,α
s (s)− a0s

(k−1)α − a1s
(k−2)α − · · · − ak−1(3.3)

= FL,α
s (s) +KL,α

s (s)ΨL,α
s (s).

Solving (3.3) for ΨL,α
s (s) gives

(3.4) ΨL,α
s (s) =

FL,α
s (s) + a0s

(k−1)α + a1s
(k−2)α + · · ·+ ak−1

skα −KL,α
s (s)

.
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The solution ψ(x) is obtained by applying the inverse Yang-Laplace
transform of both sides of (3.4). Therefore, we obtain

ψ(x) = L−1
α

[
FL,α
s (s) + a0s

(k−1)α + a1s
(k−2)α + · · ·+ ak−1

skα −KL,α
s (s)

]
.

4. Illustrative Examples

Example 4.1. Let us consider the following Volterra integro-differential
equation of the second kind involving local fractional derivative:

(4.1) ψ(α)(x) = 1 +
1

Γ(1 + α)

∫ x

0
ψ(t)(dt)α, ψ(0) = 1.

Taking the Yang-Laplace transform of (4.1) gives

Lα

{
ψ(α)(x)

}
= Lα {1}+ Lα {1 ∗ ψ(x)} ,

so that

sαΨL,α
s (s)− ψ(0) =

1

sα
+

1

sα
ΨL,α

s (s).

Using the given initial condition and solving for ΨL,α
s (s) we find

(4.2) ΨL,α
s (s) =

1

sα − 1
.

By taking the Yang-Laplace inverse of the equation (4.2), the nondiffer-
entiable solution is given by

ψ(x) = Eα(x
α),

which is equal to the result based on the local fractional variational
iteration method [5].

Example 4.2. Consider the following Volterra integro-differential equa-
tion of the second kind involving local fractional derivative:

ψ(2α)(x) = 1 +
1

Γ(1 + α)

∫ x

0

(x− t)α

Γ(1 + α)
ψ(t)(dt)α,(4.3)

ψ(0) = 1, ψ(α)(0) = 0.

The Yang-Laplace transform of (4.3) yields

Lα

{
ψ(2α)(x)

}
= Lα {1}+ Lα

{
xα

Γ(1 + α)

}
{ψ(x)} ,

so that

s2αΨL,α
s (s)− sαψ(0)− ψ(α)(0) =

1

sα
+

1

s2α
ΨL,α

s (s).
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Using the given initial condition and solving for ΨL,α
s (s) we find

(4.4) ΨL,α
s (s) =

1

2

1

sα − 1
+

1

2

1

sα + 1
.

By taking the Yang-Laplace inverse of the equation (4.4), the nondiffer-
entiable solution is given by

ψ(x) =
1

2
Eα(x

α) +
1

2
Eα(−xα)

= coshα(x
α),

which is equal to the result based on the local fractional variational
iteration method [5].

Example 4.3. Consider the following Volterra integro-differential equa-
tion of the second kind with local fractional derivative:
(4.5)

ψ(4α)(x) = sinα(x
α) + cosα(x

α) +
2

Γ(1 + α)

∫ x

0
sinα(x

α − tα)ψ(t)(dt)α,

with the initial conditions

ψ(0) = ψ(α)(0) = ψ(2α)(0) = ψ(3α)(0) = 1.

Taking the Yang-Laplace transform of (4.5) gives

Lα

{
ψ(4α)(x)

}
= Lα {sinα(xα)}+Lα {cosα(xα)}+2Lα {sinα(xα)} {ψ(x)} ,

so that

s4αΨL,α
s (s)− s3αψ(0)− s2αψ(α)(0)− sαψ(2α) − ψ(3α)(0)

=
1

s2α + 1
− sα

s2α + 1
+

2

s2α + 1
ΨL,α

s (s).

Using the given initial condition and solving for ΨL,α
s (s) we find

(4.6) ΨL,α
s (s) =

1

sα − 1
.

By taking the Yang-Laplace inverse of the equation (4.6), the nondiffer-
entiable solution is given by

ψ(x) = Eα(x
α).

5. Conclusions

In this work, we considered the local fractional Laplace transform
method to solve the Volterra integro-differential equations of the second
kind within the local fractional operators and their nondifferentiable
approximate solutions were obtained. The proposed method is a pow-
erful tool for solving many integral equations within the local fractional
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derivatives. This method can be applied to various industrial methods.
Our goal in the future is to apply the Yang-Laplace transform method
to system of coupled PDEs within local fractional derivative operators.

Acknowledgment. The author is very grateful to the referees for their
valuable suggestions and opinions.
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