A GENERALIZATION OF KANNAN AND CHATTERJEA FIXED POINT THEOREMS ON COMPLETE b-METRIC SPACES

HAMID FARAJI ${ }^{1}$ AND KOUROSH NOUROUZI ${ }^{2 *}$

Abstract

In this paper, we give some results on the common fixed point of self-mappings defined on complete b-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete b-metric spaces. In particular, we show that two selfmappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.

1. Introduction

The noation of a b-metric space was introduced by Bakhtin [3]. Since then, b-metric fixed point theory grew up in the classical metric fixed point theory to obtain a generalization of some known metric version of fixed point results. For quantitive information on b-metric fixed point
 references therein.

The following two theorems are due to Kannan [9] and Chattreja [6], respectively.

Theorem 1.1. Let (X, d) be a complete metric space. If a map T : $X \rightarrow X$ satisfies

$$
\begin{equation*}
d(T x, T y) \leq \alpha(d(x, T x)+d(y, T y)), \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha \in\left[0, \frac{1}{2}\right)$, then T has a unique fixed point.

[^0]Theorem 1.2. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a map satisfying

$$
\begin{equation*}
d(T x, T y) \leq \alpha(d(x, T y)+d(y, T x)) \tag{1.2}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha \in\left[0, \frac{1}{2}\right)$. Then T has a unique fixed point.
In this paper we give a generalization of two theorems above in the setting of b-metric spaces.

2. Main Results

We recall that a function $d: X \times X \rightarrow[0, \infty)$ on a nonempty set X is a b-metric with parameter $s \geq 1$ if the triangle inequality in the definition of a metric is replaced with the (b-triangular) inequality

$$
d(x, y) \leq s[d(x, z)+d(z, y)],
$$

for all $x, y, z \in X$. Then (X, d) is called a b-metric space.
The following definition will be needed for our main results.
Definition 2.1 ([[]]). A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is said to be an altering distance function if
(i): ψ is continuous and strictly increasing,
(ii): $\psi(t)=0$ if and only if $t=0$.

The main idea of the following theorem is borrowed from Theorem 1 in [14].

Theorem 2.2. Let (X, d) be a complete b-metric space with parameter $s \geq 1$ and T, f be self-mappings on X which satisfy

$$
\begin{align*}
d(S x, T y) \leq & a_{1} d(x, S x)+a_{2} d(y, T y)+a_{3} d(x, T y) \tag{2.1}\\
& +a_{4} d(y, S x)+a_{5} d(x, y),
\end{align*}
$$

for all $x, y \in X$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are nonnegative real numbers satisfying
(i): $s^{2} a_{1}+s^{2} a_{2}+s^{3} a_{3}+s^{3} a_{4}+s^{2} a_{5}<1$,
(ii): $a_{1}=a_{2}$ or $a_{3}=a_{4}$.

Then T and S have a unique common fixed point.
Proof. Let $x_{0} \in X$ and consider the sequence $\left\{x_{n}\right\}$ in which

$$
x_{2 n+1}=S x_{2 n}, \quad x_{2 n+2}=T x_{2 n+1}, \quad n=0,1,2,3, \ldots
$$

By (2.1.), we have

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right)= & d\left(S x_{0}, T x_{1}\right) \\
\leq & a_{1} d\left(x_{0}, S x_{0}\right)+a_{2} d\left(x_{1}, T x_{1}\right) \\
& +a_{3} d\left(x_{0}, T x_{1}\right)+a_{4} d\left(x_{1}, S x_{0}\right)+a_{5} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & a_{1} d\left(x_{0}, x_{1}\right)+a_{2} d\left(x_{1}, x_{2}\right)+s a_{3} d\left(x_{0}, x_{1}\right) \\
& +s a_{3} d\left(x_{1}, x_{2}\right)+a_{5} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Therefore

$$
d\left(x_{1}, x_{2}\right) \leq \frac{a_{1}+s a_{3}+a_{5}}{1-a_{2}-s a_{3}} d\left(x_{0}, x_{1}\right)
$$

So,

$$
d\left(x_{2}, x_{3}\right) \leq \frac{a_{2}+s a_{4}+a_{5}}{1-a_{1}-s a_{4}} d\left(x_{1}, x_{2}\right)
$$

By repeating this procedure, we get

$$
\begin{equation*}
d\left(x_{2 n-1}, x_{2 n}\right) \leq(r)^{n}(k)^{n-1} d\left(x_{0}, x_{1}\right), \quad n=1,2,3, \ldots \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq(r)^{n}(k)^{n} d\left(x_{0}, x_{1}\right), \quad n=1,2,3, \ldots \tag{2.3}
\end{equation*}
$$

where

$$
r=\frac{a_{1}+s a_{3}+a_{5}}{1-a_{2}-s a_{3}}, \quad k=\frac{a_{2}+s a_{4}+a_{5}}{1-a_{1}-s a_{4}}
$$

Let $m, n \in \mathbb{N}$ and $m>n$. Then by (2.2) and (2.3$]$), we have

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 m}\right) \leq & s d\left(x_{2 n}, x_{2 n+1}\right)+\cdots+s^{2 m-2 n-1} d\left(x_{2 m-2}, x_{2 m-1}\right) \\
& +s^{2 m-2 n} d\left(x_{2 m-1}, x_{2 m}\right) \\
\leq & s r^{n} k^{n} \lambda+\cdots+s^{2 m-2 n-1} r^{m-1} k^{m-1} \lambda+s^{2 m-2 n} r^{m} k^{m-1} \lambda \\
= & s \alpha^{n} \lambda+\cdots+s^{2 m-2 n-1} \alpha^{m-1} \lambda+s^{2 m-2 n} r \alpha^{m-1} \lambda \\
= & s \alpha^{n} \lambda(1+s r)+\cdots+s^{2 m-2 n-1} \alpha^{m-1} \lambda(1+s r) \\
= & s(1+s r) \lambda \alpha^{n}\left(1+s^{2} \alpha+\left(s^{2} \alpha\right)^{2}+\cdots+\left(s^{2} \alpha\right)^{m-n-1}\right)
\end{aligned}
$$

where $\alpha=r k$ and $\lambda=d\left(x_{0}, x_{1}\right)$. Since $s^{2} \alpha<1$, we get

$$
d\left(x_{2 n}, x_{2 m}\right) \leq s(1+s r) \lambda \frac{\alpha^{n}}{1-s^{2} \alpha}
$$

Therefore $\left\{x_{2 n}\right\}$ is a Cauchy sequence. Let $x_{2 n} \rightarrow x$. Using (2.3), we have

$$
\begin{aligned}
d\left(x, x_{2 n+1}\right) & \leq s d\left(x, x_{2 n}\right)+s d\left(x_{2 n}, x_{2 n+1}\right) \\
& \leq s d\left(x, x_{2 n}\right)+\lambda \alpha^{n} \quad n=0,1,2,3, \ldots
\end{aligned}
$$

So $\lim _{n \rightarrow \infty} x_{2 n+1}=x$ and therefore $\lim _{n \rightarrow \infty} x_{n}=x$. Now, we show that x is the unique fixed point of T and S. Using (2.1), we have

$$
\begin{aligned}
d(x, S x) & \leq s\left(d\left(x, x_{2 n}\right)+d\left(x_{2 n}, S x\right)\right) \\
& =s d\left(x, x_{2 n}\right)+s d\left(T x_{2 n-1}, S x\right) \\
& \leq s d\left(x, x_{2 n}\right)+s a_{1} d(x, S x)+s a_{2} d\left(x_{2 n-1}, T x_{2 n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +s a_{3} d\left(x, T x_{2 n-1}\right)+s a_{4} d\left(x_{2 n-1}, S x\right)+s a_{5} d\left(x, x_{2 n-1}\right) \\
\leq & s d\left(x, x_{2 n}\right)+s a_{1} d(x, S x)+s a_{2} d\left(x_{2 n-1}, T x_{2 n-1}\right) \\
& +s a_{3} d\left(x, T x_{2 n-1}\right)+s^{2} a_{4}\left(d\left(x_{2 n-1}, x\right)+d(x, S x)\right) \\
& +s a_{5} d\left(x, x_{2 n-1}\right)
\end{aligned}
$$

and so

$$
d(x, S x) \leq s a_{1} d(x, S x)+s a_{4} d(x, S x)
$$

This implies that $S x=x$. Similarly, $T x=x$. To see the uniqueness of the common fixed point of T and S, assume on the contrary that $T x=S x=x$ and $T y=S y=y$ but $x \neq y$. By (ㄹ..त), we have

$$
\begin{aligned}
d(x, y)=d(S x, T y) \leq & a_{1} d(x, S x)+a_{2} d(y, T y)+a_{3} d(x, T y) \\
& +a_{4} d(y, S x)+a_{5} d(x, y) \\
= & \left(a_{3}+a_{4}+a_{5}\right) d(x, y)<d(x, y),
\end{aligned}
$$

which is a contradiction.
Putting $T=S, a_{1}=a_{2}, a_{3}=a_{4}=a_{5}=0$ and $s=1$, Theorem [.2] reduces to Theorem [D.

Example 2.3. Let $X=\{1,2,3\}$ and $d: X \times X \rightarrow[0, \infty)$ be defined as follows: $d(1,2)=d(2,1)=1, d(3,2)=d(2,3)=\frac{6}{9}, d(1,3)=d(3,1)=$ $\frac{1}{9}, d(0,0)=d(1,1)=d(2,2)=0$. It is easy to check that (X, d) is a bmetric space with parameter $s=\frac{3}{2}$. Define the mappings $T, S: X \rightarrow X$ by $T 1=T 3=1, T 2=3$ and $S 1=S 2=S 3=1$. Let $a_{1}=a_{2}=a_{3}=$ $a_{5}=0, a_{4}=\frac{2}{9}$. Then the conditions of Theorem [2.2 are satisfied.

Consider the following notation:

$$
\begin{gathered}
\Phi=\{\varphi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty) \mid \varphi(0,0) \geq 0, \varphi(x, y)>0 \text { if }(x, y) \neq(0,0) \\
\text { and } \left.\varphi\left(\liminf _{n \rightarrow \infty} a_{n}, \liminf _{n \rightarrow \infty} b_{n}\right) \leq \liminf _{n \rightarrow \infty} \varphi\left(a_{n}, b_{n}\right)\right\} .
\end{gathered}
$$

Theorem 2.4. Let (X, d) be a complete b-metric space with the parameter $s \geq 1$ and T, f be self-mappings on X which satisfy

$$
\begin{equation*}
\psi(s d(T x, f y)) \leq \frac{\psi\left(\frac{d(x, f y)+\frac{d(y, T x)}{s^{3}}}{s+1}\right)}{1+\varphi(d(x, f y), d(y, T x))}, \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$, where ψ is an altering distance function, $\varphi \in \Phi$ and T is continuous. Then T and f have a unique common fixed point.

Proof. Let $x_{0} \in X, x_{1}=T x_{0}$ and $x_{2}=f x_{1}$. Define the sequence $\left\{x_{n}\right\}$ by $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=f x_{2 n+1}$, for every $n \geq 0$. By the inequality (2.4), we have

$$
\begin{align*}
\psi\left(s d\left(x_{2 n+1}, x_{2 n+2}\right)\right) & =\psi\left(s d\left(T x_{2 n}, f x_{2 n+1}\right)\right) \tag{2.5}\\
& \leq \frac{\psi\left(\frac{d\left(x_{2 n}, f x_{2 n+1}\right)+\frac{d\left(x_{2 n+1}, T x_{2 n}\right)}{s^{3}}}{1+\varphi\left(d\left(x_{2 n}, f x_{2 n+1}\right), d\left(x_{2 n+1}, T x_{2 n}\right)\right)}\right.}{s+1} \\
& \leq \frac{\psi\left(\frac{d\left(x_{2 n}, x_{2 n+2}\right)}{s+1}\right)}{1+\varphi\left(d\left(x_{2 n}, x_{2 n+2}\right), 0\right)}
\end{align*}
$$

for each $n \geq 0$. Since φ is nonnegative,

$$
\psi\left(s d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \psi\left(\frac{d\left(x_{2 n}, x_{2 n+2}\right)}{s+1}\right), \quad n=0,1,2, \ldots
$$

This implies that

$$
\begin{align*}
s d\left(x_{2 n+1}, x_{2 n+2}\right) & \leq \frac{d\left(x_{2 n}, x_{2 n+2}\right)}{s+1} \\
& \leq \frac{s}{s+1}\left(d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \tag{2.6}
\end{align*}
$$

for each $n \geq 0$. So

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq d\left(x_{2 n}, x_{2 n+1}\right), \quad n=0,1,2, \ldots \tag{2.7}
\end{equation*}
$$

Similarly, we deduce that

$$
\begin{equation*}
d\left(x_{2 n+2}, x_{2 n+3}\right) \leq d\left(x_{2 n+1}, x_{2 n+2}\right), \quad n=0,1,2, \ldots \tag{2.8}
\end{equation*}
$$

Using (2.7) and ([2.8), by induction we get

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n}\right), \quad n=0,1,2, \ldots
$$

Thus $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a decreasing sequence of nonnegative real numbers. Let $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$. Passing to the limit as $n \rightarrow \infty$ in (2.6), we have

$$
s r \leq \frac{1}{s+1} \lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right) \leq \frac{s}{2}(r+r)=s r
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right)=s r(s+1) \tag{2.9}
\end{equation*}
$$

From (2.5) and (2.7), we get

$$
\psi\left(\limsup _{n \rightarrow \infty} s d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \frac{\lim \sup _{n \rightarrow \infty} \psi\left(\frac{d\left(x_{2 n}, x_{2 n+2}\right)}{s+1}\right)}{1+\liminf _{n \rightarrow \infty} \varphi\left(d\left(x_{2 n}, x_{2 n+2}\right), 0\right)}
$$

$$
\leq \frac{\psi\left(\frac{\limsup _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right)}{s+1}\right)}{1+\varphi\left(\liminf _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right), 0\right)}
$$

Therefore

$$
\psi(s r) \leq \frac{\psi\left(\frac{s r(s+1)}{s+1}\right)}{1+\varphi(s r(s+1), 0)}
$$

and so $1+\varphi(\operatorname{sr}(s+1), 0) \leq 1$. Since $\varphi \in \Phi$, we get $r=0$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{2.10}
\end{equation*}
$$

Now we show that $\left\{x_{2 n}\right\}$ is a Cauchy sequence. Suppose on the contrary that $\left\{x_{2 n}\right\}$ is not a Cauchy sequence. Then there exists $\varepsilon>0$ for which we can find subsequences $\left\{x_{2 m(k)}\right\}$ and $\left\{x_{2 n(k)}\right\}$ of $\left\{x_{2 n}\right\}$ such that $n(k)$ is the smallest index for which $n(k)>m(k)>k$,

$$
\begin{equation*}
d\left(x_{2 m(k)}, x_{2 n(k)}\right) \geq \varepsilon \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{2 m(k)}, x_{2 n(k)-2}\right)<\varepsilon \tag{2.12}
\end{equation*}
$$

From (2.1]) and ($2 .[2])$, we have

$$
\begin{aligned}
\varepsilon & \leq d\left(x_{2 m(k)}, x_{2 n(k)}\right) \\
\leq & s\left(d\left(x_{2 m(k)}, x_{2 n(k)-2}\right)+d\left(x_{2 n(k)-2}, x_{2 n(k)}\right)\right) \\
\leq & s \varepsilon+s^{2}\left(d\left(x_{2 n(k)-2}, x_{2 n(k)-1}\right)\right. \\
& \left.+d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)\right)
\end{aligned}
$$

for all $k \geq 1$. Passing to the limit as $k \rightarrow \infty$ in the above inequality and using (2.10) we have

$$
\begin{equation*}
\varepsilon \leq \limsup _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right) \leq s \varepsilon \tag{2.13}
\end{equation*}
$$

Moreover, from ([D.工) we get

$$
\begin{aligned}
\varepsilon & \leq d\left(x_{2 m(k)}, x_{2 n(k)}\right) \\
& \leq s\left(d\left(x_{2 m(k)}, x_{2 m(k)+1}\right)+d\left(x_{2 m(k)+1}, x_{2 n(k)}\right)\right)
\end{aligned}
$$

for all $k \geq 1$. Letting $k \rightarrow \infty$, we have

$$
\begin{equation*}
\varepsilon \leq s \lim _{k \rightarrow \infty} d\left(x_{2 m(k)+1}, x_{2 n(k)}\right) \tag{2.14}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right) \leq & s\left(d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)+d\left(x_{2 n(k)}, x_{2 m(k)+1}\right)\right) \\
\leq & s d\left(x_{2 n(k)-1}, x_{2 n(k)}\right) \\
& +s^{2}\left(d\left(x_{2 n(k)}, x_{2 m(k)}\right)+d\left(x_{2 m(k)}, x_{2 m(k)+1}\right)\right)
\end{aligned}
$$

for all $k \geq 1$. Letting $k \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right) \leq s^{3} \varepsilon . \tag{2.15}
\end{equation*}
$$

Also from ([.]I) one can show that

$$
\begin{equation*}
\varepsilon \leq \liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right) . \tag{2.16}
\end{equation*}
$$

$$
\begin{aligned}
\psi(\varepsilon) & \leq \psi\left(s \limsup _{k \rightarrow \infty} d\left(x_{2 m(k)+1}, x_{2 n(k)}\right)\right) \\
& =\psi\left(s \limsup _{k \rightarrow \infty} d\left(T x_{2 m(k)}, f x_{2 n(k)-1}\right)\right) \\
& \leq \limsup _{k \rightarrow \infty} \frac{\psi\left(\frac{d\left(x_{2 m(k)}, f x_{2 n(k)-1}\right)+\frac{1}{s^{3}} d\left(x_{2 n(k)-1}, T x_{2 m(k)}\right)}{s+1}\right)}{1+\varphi\left(d\left(x_{2 m(k)}, f x_{2 n(k)-1}\right), d\left(x_{2 n(k)-1}, T x_{2 m(k)}\right)\right)} \\
& \psi\left({\left.\lim \sup _{k \rightarrow \infty} \frac{d\left(x_{2 m(k)}, x_{2 n(k)}\right)+\frac{1}{s^{3}} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)}{s+1}\right)}_{1+\liminf _{k \rightarrow \infty} \varphi\left(d\left(x_{2 m(k)}, x_{2 n(k)}\right), d\left(x_{2 n(k)-1}, T x_{2 m(k)}\right)\right)}^{s}\right) \\
& \leq \frac{\psi\left(\limsup _{k \rightarrow \infty} \frac{d\left(x_{2 m(k)}, x_{2 n(k)}\right)+\frac{1}{s^{3}} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)}{s+1}\right)}{1+\varphi\left(\liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right), \liminf _{k \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)\right)} \\
\leq & \frac{\psi\left(\frac{s \varepsilon+\varepsilon}{s+1}\right)}{1+\varphi\left(\liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right), \liminf _{n \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)\right)} \\
& =\frac{\psi(\varepsilon)}{1+\varphi\left(\liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right), \liminf _{k \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)\right)} .
\end{aligned}
$$

Consequently

$$
\varphi\left(\liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right), \liminf _{k \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)\right)=0 .
$$

Because $\varphi \in \Phi$, we have

$$
\liminf _{n \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right)=\liminf _{n \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 m(k)+1}\right)=0 .
$$

which contradicts ([.16). This implies that $\left\{x_{2 n}\right\}$ is a Cauchy sequence and so is $\left\{x_{n}\right\}$. Hence, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Since T is continuous, we have

$$
T x^{*}=\lim _{n \rightarrow \infty} T x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=x^{*},
$$

i.e., x^{*} is a fixed point of T. Moreover, from (2.4) we have

$$
\begin{aligned}
\psi\left(s d\left(x^{*}, f x^{*}\right)\right) & =\psi\left(s d\left(T x^{*}, f x^{*}\right)\right) \\
& \leq \frac{\psi\left(\frac{d\left(x^{*}, f x^{*}\right)+\frac{d\left(x^{*}, T x^{*}\right)}{s^{3}}}{s+1}\right)}{1+\varphi\left(d\left(x^{*}, f x^{*}\right), d\left(x^{*}, T x^{*}\right)\right)} \\
& =\frac{\psi\left(\frac{d\left(x^{*}, f x^{*}\right)}{s+1}\right)}{1+\varphi\left(d\left(x^{*}, f x^{*}\right), 0\right)} \\
& \leq \psi\left(\frac{d\left(x^{*}, f x^{*}\right)}{s+1}\right) .
\end{aligned}
$$

Since ψ is a strictly increasing function, we have

$$
s d\left(x^{*}, f x^{*}\right) \leq \frac{d\left(x^{*}, f x^{*}\right)}{s+1}
$$

Therefore $f x^{*}=x^{*}$. Hence x^{*} is a common fixed point of T and f. To see the uniqueness of the common fixed point of T and f, assume on the contrary that $T u=f u=u$ and $T v=f v=v$ but $u \neq v$. We have

$$
\begin{aligned}
\psi(s d(u, v)) & =\psi(s d(T u, f v)) \\
& \psi\left(\frac{d(u, f v)+\frac{d(v, T u)}{s^{3}}}{s+1}\right) \\
\leq & \frac{\psi(d(u, f v), d(v, T u))}{1+}
\end{aligned}
$$

Since $s \geq 1$, we get

$$
\psi(s d(u, v)) \leq \frac{\psi\left(\frac{d(u, v)+d(v, u)}{2}\right)}{1+\varphi(d(u, v), d(v, u))}
$$

Then

$$
\psi(d(u, v)) \leq \frac{\psi(d(u, v))}{1+\varphi(d(u, v), d(v, u))}
$$

i.e, $\varphi(d(u, v), d(v, u))=0$. This implies that $u=v$.

In Theorem [2.4, if $\psi(t)=t$ and $\varphi(u, v)=\frac{1}{s(s+1) \alpha}-1$, where $\alpha \in\left[0, \frac{1}{s(s+1)}\right)$, we get the following corollary.

Corollary 2.5. Let (X, d) be a complete b-metric space with the parameter $s \geq 1$ and T, f be self-mappings on X which satisfy

$$
d(T x, f y) \leq \alpha\left(d(x, f y)+\frac{1}{s^{3}} d(y, T x)\right),
$$

for all $x, y \in X$, where $\alpha \in\left[0, \frac{1}{s(s+1)}\right)$ and T is continuous. Then T and f have a unique common fixed point.

Also, in the case that $s=1$ and $T=f$, Corollary [2.5 would be an extension of Chatterjea Theorem [6].

Example 2.6. Let $X=\{0,1,2\}$ and $d: X \times X \rightarrow[0, \infty)$ be defined as follows: $d(0,1)=d(1,0)=1, d(0,2)=d(2,0)=\frac{1}{5}, d(1,2)=d(2,1)=$ $\frac{3}{5}, d(0,0)=d(1,1)=d(2,2)=0$. It is easy to check that (X, d) is a bmetric space with parameter $s=\frac{5}{4}$. Define $T: X \rightarrow X$ by $T 0=0, T 1=$ $2, T 2=0$ and $f(x)=0$ for all $x \in X$. Define $\psi:[0, \infty) \rightarrow[0, \infty)$ and $\varphi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=t$ and $\varphi(u, v)=\frac{1}{15}$ for all $u, v \in[0, \infty)$. Then, the inequality (2, 4) holds for all $x, y \in X$.

References

1. H. Alsulami, E. Karapnar, and H. Piri, Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc., (2015), Art. ID 969726, 8 pp.
2. H. Aydi, M.F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), No. 2, 337-346.
3. I.A. Bakhtin, The contraction mapping principle in almost metric space, Functional analysis, (Russian), Ulýanovsk. Gos. Ped. Inst., Ulýanovsk, (1989) 26-37.
4. M.F. Bota and E. Karapinar, A note on "Some results on multivalued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math., 11 (2013), no. 9, 1711-1712.
5. M.F. Bota, E. Karapinar, and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via $\alpha-\psi$-contractive mapping in b metric space, Abstr. Appl. Anal. (2013), Art. ID 825293, 6 pp.
6. S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972) 727-730.
7. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993) 5-11.
8. S. Czerwik, Nonlinear Set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998) 263-276.
9. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968) 71-76.
10. M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), no. 9, 3123-3129.
11. M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), no. 1, 1-9.
12. W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014.
13. M.A. Kutbi, E. Karapinar, J. Ahmad, and A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl. 2014, (2014:126), 11 pp.
14. C.S. Wong, Common fixed points of two mappings, Pacific J. Math., 48 (1973) 299-312.
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

E-mail address: Hamid_ftmath@yahoo.com
${ }^{2}$ Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.

E-mail address: nourouzi@kntu.ac.ir

[^0]: 2010 Mathematics Subject Classification. 47H10.
 Key words and phrases. b-metric space, Common fixed point, Altering distance function.

 Received: 23 November 2016, Accepted: 18 December 2016.

 * Corresponding author.

