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A GENERALIZATION OF KANNAN AND
CHATTERJEA FIXED POINT THEOREMS ON
COMPLETE »-METRIC SPACES

HAMID FARAJI' AND KOUROSH NOUROUZI**

ABSTRACT. In this paper, we give some results on the common
fixed point of self-mappings defined on complete b-metric spaces.
Our results generalize Kannan and Chatterjea fixed point theorems
on complete b-metric spaces. In particular, we show that two self-
mappings satisfying a contraction type inequality have a unique
common fixed point. We also give some examples to illustrate the
given results.

1. INTRODUCTION

The noation of a b-metric space was introduced by Bakhtin [B]. Since
then, b-metric fixed point theory grew up in the classical metric fixed
point theory to obtain a generalization of some known metric version of
fixed point results. For quantitive information on b-metric fixed point
theory, we refer the readers to [, 2, @, 5, @, B, [0, 02, I3] and some
references therein.

The following two theorems are due to Kannan [d] and Chattreja [G],

respectively.

Theorem 1.1. Let (X,d) be a complete metric space. If a map T :
X — X satisfies

(1.1) d(Tz,Ty) < a(d(z,Tx) + d(y, Ty)),

for all x,y € X, where a € |0, %), then T has a unique fized point.
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Theorem 1.2. Let (X,d) be a complete metric space and T : X — X
be a map satisfying
(1.2) d(Tz, Ty) < a(d(z,Ty) + d(y, Tx)).

1

for all z,y € X, where a € [0,5). Then T has a unique fived point.

In this paper we give a generalization of two theorems above in the
setting of b-metric spaces.

2. MAIN RESULTS

We recall that a function d : X x X — [0,00) on a nonempty set
X is a b-metric with parameter s > 1 if the triangle inequality in the
definition of a metric is replaced with the (b-triangular) inequality

d(z,y) < sld(z,z) + d(z,9)],

for all z,y,z € X. Then (X,d) is called a b-metric space.
The following definition will be needed for our main results.

Definition 2.1 ([T1]). A function ¢ : [0,00) — [0, 00) is said to be an
altering distance function if

(i): 9 is continuous and strictly increasing,

(ii): ¢ (t) = 0 if and only if t = 0.
The main idea of the following theorem is borrowed from Theorem 1
in [I4].
Theorem 2.2. Let (X,d) be a complete b-metric space with parameter
s>1and T, f be self-mappings on X which satisfy
(2.1) d(Sz,Ty) < ard(x, Sx) + a2d(y, Ty) + azd(z, Ty)
+ aqd(y, Sx) + asd(zx,y),
for all x,y € X, where ai,a9,as,aq,as are nonnegative real numbers
satisfying
(i): s?ay + s%ag + s2a3 + s2aq + s%a5 < 1,
(ii): a1 = a2 or ag = ay.
Then T and S have a unique common fized point.
Proof. Let xp € X and consider the sequence {z,} in which
Tont1 = STon, Topt2 = Txont1, n=0,1,2,3,....
By (1), we have
d(z1,x2) = d(Szo, Tx1)
< aid(zg, Szg) + azd(z1, Tx1)
+ agd(xo, Tr1) + asd(x1, Szo) + asd(xo, x1)
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< aid(zg,x1) + azd(x1, x2) + sazd(xo, 1)
+ sazd(z1, v2) + asd(zo, 71).
Therefore

(a1, z2) < a1+ saz + as

d .
— 1—a9 — sas (x()’xl)

So,
az + sa4 + as
1—a; — say

d(zg,x3) < d(xy,x3).

By repeating this procedure, we get

(2.2)  d(xon—1,22) < (T)n(k)n_ld(xo,xl), n=1,2,3,...,
and

(2.3) d(zon, Tont1) < (r)n(k:)"d(:ro,:nl), n=12,3,...,

where

r_a1+sa3+a5 k_a2+sa4+a5

1—ag9—sas’ 1—a; — say
Let m,n € N and m > n. Then by (22) and (E23), we have

d(2n, Tom) < sd(Tan, Toni1) + -+ 872 (w22, Tom-1)
+ S2m_2nd(l‘2m,1,$2m)
< STEMN A4 oo g2 bpmelpmel )y 2me2ngmpm—L )
= Sa"\ 4 - 4 g2 LgmTLy | Ime g g meLy
= 5" A1 + s7) 4 - - - 4 8772 TIN(1 4 s77)
= s(1+sr)Aa™ (1 + s*a + (s?a)? + -+ + (sPa)™ "),

where o = 7k and \ = d(z0, x1). Since s?a < 1, we get

n

d(xon, Tam) < s(1+ sr)A

1-s2a’

Therefore {z3,} is a Cauchy sequence. Let zg, — z. Using (E33), we
have

sd(w, T2n) + sd(T2n, Tan+1)

sd(x,zon) + A" n=0,1,2,3,....

d(x,zon41) <
<

So limy, oo T2n+1 = = and therefore lim,— , = . Now, we show that
x is the unique fixed point of T" and S. Using (270), we have

d(z,Sz) < s(d(:z:,a:gn) + d(zop, S:L‘))
= sd(x,x2,) + sd(Trop—1,ST)
< sd(z, xo,) + sard(x, Sx) + sasd(xon—1, TTon—1)
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+ sagd(x, Txon—1) + sasd(x2p—1,5x) + sasd(z, x2n—1)
< sd(z, xo,) + sard(x, Sx) + sasd(xon—1, TTon—1)
+ sagd(x, Txon_1) + s2ay (d(z2n—1,2) + d(z, Sz))
+ sasd(x, xon—1),
and so

d(z,Sz) < sard(z, Sx) + sasd(x, Sz).

This implies that Sz = x. Similarly, Tz = x. To see the uniqueness
of the common fixed point of T" and S, assume on the contrary that
Tr=Sx=xand Ty = Sy =y but z # y. By (E), we have

d(z,y) = d(Sz,Ty) < ard(z, Sx) + ad(y, Ty) + asd(x, Ty)
+ asd(y, Sz) + asd(z,y)
= (a3 + a4 + as)d(z,y) < d(z,y),
which is a contradiction. 0

Putting T' = S,a1 = as,a3 = a4 = a5 = 0 and s = 1, Theorem P2
reduces to Theorem .

Example 2.3. Let X = {1,2,3} and d : X x X — [0,00) be defined
as follows: d(1,2) =d(2,1) =1,d(3,2) = d(2,3) = g,d(l,S) =d(3,1) =
5,d(0,0) = d(1,1) = d(2,2) = 0. It is easy to check that (X,d) is a b-
metric space with parameter s = % Define the mappings 7,5 : X — X
by T1=T3=1,T2=3 and S1 =52=53=1. Let a1 = as = a3 =
a5 =0,a4 = %. Then the conditions of Theorem P2 are satisfied.

Consider the following notation:
@ = {:[0,00) x [0,00) = [0,00)[p(0,0) > 0, () > 0 if (w,) # (0,0)
and ¢(liminf a,,liminf b,) < liminf p(ay,, bn)}
n—oo n—o0 n—oo

Theorem 2.4. Let (X, d) be a complete b-metric space with the param-
eter s > 1 and T, f be self-mappings on X which satisfy

d(z, fy) + ‘““)

( s+1
(2.4) Y(sd(Tz, fy)) < 1+ gp(d(az, fy),d(y, Tx)) ’

for all x,y € X, where ¢ is an altering distance function, ¢ € ® and T
1s continuous. Then T and f have a unique common fized point.
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Proof. Let xg € X, 21 = Txg and zo = fx1. Define the sequence {x, } by
Tont1 = 1o, and xopyo = fxony1, for every n > 0. By the inequality
(242), we have

(2.5)  Y(sd(xan+1, T2nt2)) = (sd(Tw2n, froni1))
d(x2n41, Tr2n)

d(xon, front1) + -8
¥ s+1

— 1+ o(d(xon, front1), d(xont1, TTop))
y (dmnw>

s+ 1
< ;
1+ ¢(d(z2n, T2n+2),0)
for each n > 0. Since ¢ is nonnegative,

77b(<9d(x2n-|-1)x2n-&-2)) < 1/} (

This implies that

d(z2n, Tont2) n—0 1.9

8 + 1 ) ) ) 9
d(z2n, Tan4+2)
s+1

(d($2n; 372n+1) + d($2n+17 x2n+2)) y

sd(xon+1, Tant2) <
S
s+1

(2.6 <
for each n > 0. So
(2.7) d(xon+1, Ton+2) < d(Ton, Ton+1), n=0,1,2,....
Similarly, we deduce that
(2.8)  d(zont2,Ton+s) < d(xop+1,Tont2), n=0,1,2,....
Using (E70) and (E8), by induction we get

d(xn, Tpt1) < d(Tp—1,2,), n=0,1,2,....

Thus {d(zn,znt1)} is a decreasing sequence of nonnegative real num-
bers. Let lim,, o d(zp, zp+1) = r. Passing to the limit as n — oo in
(21), we have

. s
sr < o} nh_}ngo d(zon, Tont2) < 5(7“ +7r) = sr
Therefore
(2.9) lim d(xon, Tant2) = sr(s+1).

n—o0

From (Z3) and (Z9), we get
d($2n,$2n+2)>

limsup,, . ¥ (
Y(lim sup sd(zon+1, Tont+2)) < st
n—00 b ent ~ 1+ 1lim 1nfn~>oo Qo(d(xm” l‘2n+2), O)
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9 lim sup,, _,~ d(z2n, T2n+2)
s+1
~ 1+ p(liminf, o0 d(xon, T2n42),0)

sr(s+1
I e )
~ 1+ ¢(sr(s+1),0)
and so 1+ ¢(sr(s+1),0) < 1. Since ¢ € ®, we get r = 0. Therefore

(2.10) lim d(xy,zp4+1) = 0.

n—oo

Therefore

Now we show that {z2,} is a Cauchy sequence. Suppose on the contrary
that {z2,} is not a Cauchy sequence. Then there exists ¢ > 0 for which
we can find subsequences {Zop )} and{xa, )} of {x2,} such that n(k)
is the smallest index for which n(k) > m(k) > k,

(211) d(£2m(k)7$2n(k)) > €,
and
(2.12) A(Tom (k) Ton(k)—2) < €

From (Z11) and (212), we have
€ < d(Tam(k)s Tan(k))
< s(d(@am(k)> Tan(k)—2) T ATan(k)—2, Tan(k)))
< se + 8% (d(@an()—2> Tan(k)—1)
+ d(Zan(k)—1, Tan(k)))

for all kK > 1. Passing to the limit as k — oo in the above inequality and
using (Z10) we have

(2.13) e < limsup d(Top(k)> Tank)) < s

k—oo

Moreover, from (1) we get
e < d(QO(k)v l'Qn(k:))
< S(d(ﬂfzm(k)awzm(k)ﬂ) + d(x2m(k)+17 l’zn(k))),
for all k > 1. Letting k — oo, we have
2.14 < s li .
( ) €x S kg{olo d($2m(k)+17 xQn(k))
On the other hand, we have
A(Ton(k)—1> Tam(k)+1) < 8(d(Zank)—1> T2nk)) + AT2nk)> T2mk)+1))
< sd(Zan (k)15 Tan(k))

+ 53 (d(T2n(k)> T2m(k)) + AT2m (k) Tam()+1))s
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for all £ > 1. Letting kK — oo, we get

(2.15) li}?Lsolip d(Tan (k) =15 Tam(k)+1) < s3e.
Also from (Z7IT) one can show that

(2.16) e < li’gg}f d(Tom (ks Tan(k))-
Using (24),(E13),(214) and (213), we have

P(e) < (s 1i£LS£P A(Tom (k)11 Tan(k)))

= (s lim sup d(Tﬂigm(k), f332n(k:)—1))

k—o0

1
d(Tom (ks fTom(k)—1) + ngd(ﬂhn(k)—h TTomk))
s+1

< lim sup
koo 1+ @(d(Tam)s [Tonm) 1) ATan(ky—1, T2 k)

1
d(Zom(k), Tan(k)) + 3 Uan(k) 15 Tam(k)+1)
s+1

¢ | lim SUPg— o0

IA

1+ lim infj o0 @ (d(@2mk)s T2n(k)) s A @20 (k) -1, TT2m(1)))

1
A(Tom (k) Ton(k)) + ?d($2n(k)—la Tom(k)+1)
s+1

Y | limsupy_

T 1+ o(liminfy o d(Tomk), Tongk) ) Bminfr_ o d(Zon(k)—1, Tom(k)+1))

se +¢€
w(s—kl)

1+ ‘;0( liminfg o d(l'Qm(k)’ x?n(k))a lim inf,, o0 d(x2n(k)—17 w?m(k)—i—l))

¥(e)

1+ o(liminfy oo d(Tom(k), Tongk) ) Bminfr_ o d(T2n )1, Tamk)+1))

Consequently
lim inf lim inf =0.
i inf d(@om k), Ton(k)), B INE (220 (k)15 Tom(r)+1)) = 0
Because ¢ € @, we have
linni}ig.}f d(l‘zm(k)a@n(k)) = linn_1>i£f d(x2n(k)—1a $2m(k)+1) = 0.

which contradicts (218). This implies that {z2,} is a Cauchy sequence
and so is {z,}. Hence, there exists * € X such that lim,_, . x, = z*.
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Since T' is continuous, we have

Tt = g Toan = iy, wan =27,

i.e., z* is a fixed point of T. Moreover, from (Z4) we have
W(sd(z*, fo*)) = (sd(Tx™, fz*))
« po Az, Tx¥)
da*, fa) + LT
s+1

1+ p(d(z*, fz*), d(z*, Tz¥))
d(x*, fo*
w( ( ))
s+1
1+ p(d(z*, fz*),0)
d(z*, fx*)
< —_— .
=¥ ( s+1
Since 1) is a strictly increasing function, we have
d(z*, fz*)
d * * < ) .
Therefore fx* = x*. Hence x* is a common fixed point of 7" and f. To
see the uniqueness of the common fixed point of T" and f, assume on the
contrary that Tu = fu =wu and Tv = fv = v but u # v. We have

Y(sd(u,v)) = P(sd(Tu, fv))
d(u, fv) + d('u;ng
s+1

(4

1+ p(d(u, fv),d(v,Tu))
Since s > 1, we get

. " <d(u,v) ;d(v,u))

Pl ) = o, o). (o)
e w(d(u, )
U, v
YD) < T o, 0), do )
i.e, p(d(u,v),d(v,u)) = 0. This implies that u = v. O
In Theorem A, if ¢(t) = t and p(u,v) = .S(.H—ll)a — 1, where

a € [0, ﬁ), we get the following corollary.
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Corollary 2.5. Let (X,d) be a complete b-metric space with the param-
eter s > 1 and T, f be self-mappings on X which satisfy

T, 19) < o (o, ) + a0, 72)).

forallx,y € X, where o € [0, ﬁ) and T is continuous. Then T and

f have a unique common fized point.

Also, in the case that s = 1 and T = f, Corollary 23 would be an
extension of Chatterjea Theorem [f].

Example 2.6. Let X = {0,1,2} and d : X x X — [0,00) be defined
as follows: d(0,1) = d(1,0) = 1,d(0,2) = d(2,0) = £,d(1,2) = d(2,1) =
%,d(0,0) =d(1,1) = d(2,2) = 0. Tt is easy to check that (X,d) is a b-
metric space with parameter s = %. DefineT: X — X by T0=0,T1 =
2,72 = 0 and f(z) = 0 for all x € X. Define ¢ : [0,00) — [0,00)
and ¢ : [0,00) x [0,00) — [0,00) by ¥(t) = ¢t and ¢(u,v) = & for all
u,v € [0,00). Then, the inequality (Z4) holds for all z,y € X.
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