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Some bi-Hamiltonian Systems and their Separation of

Variables on 4-dimensional Real Lie Groups

Ghorbanali Haghighatdoost1∗, Salahaddin Abdolhadi-Zangakani2 and Rasoul
Mahjoubi-bahman3

Abstract. In this work, we discuss bi-Hamiltonian structures on
a family of integrable systems on 4-dimensional real Lie groups.
By constructing the corresponding control matrix for this family of
bi-Hamiltonian structures, we obtain an explicit process for finding
the variables of separation and the separated relations in detail.

1. Introduction

The study of bi-Hamiltonian systems, i.e., systems with two com-
patible Poisson structures, started with pioneering works of Magri and
Kosmann-Schwarzbach [5, 7] and subsequent fundamental papers of
Gelfand and Dorfman [3], Magri and Morosi [6]. These works show that
integrability of systems can be closely connected to their bi-Hamiltonian
structures. It is proven that all classical systems have the bi-Hamiltonian
structure, and also by using the bi-Hamiltonian methods, many new
nontrivial and interesting examples of integrable systems can be found.
Moreover, bi-Hamiltonian structure is a very important factor not only
for finding new examples, but also for integration of systems, construct-
ing separable variables and description of properties of solutions. In [1],
the integrable Hamiltonian systems with the symmetry Lie group as a 4-
dimensional phase space which has symplectic structure is constructed.
The list of symplectic 4-dimensional real Lie groups are classified in [8].
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The aim of this paper is to identify the variables of separation in the
framework of the bi-Hamiltonian geometry. This process consists of the
following calculation steps:

(i) For the canonical Poisson structures of the Lie groups, the com-
patible Poisson bi-vectors are obtained.

(ii) The control matrices associated to the Poisson bi-vectors are
obtained.

(iii) Variables of separation, eigenvalues of the control matrix, are
calculated.

(iv) The canonically conjugated momenta is obtained with respect
to the canonical Poisson bracket.

(v) The separated relations are identified.

2. Bi-Hamiltonian Structures

In order to obtain the variables of separation based on the Hamilton-
ian geometry, we calculate the bi-Hamiltonian structure for the given
integrable system H1,2 on the Poisson manifold M with initial Poisson
bi-vector P (see [10, 11, 13] for the complete bibliography).

A bi-Hamiltonian manifold M is a smooth manifold endowed with
two compatible bi-vectors P , P ′ such that

(2.1) [P, P ] = 0, [P, P
′
] = 0, [P

′
, P

′
] = 0,

where [, ] is the Schouten bracket.
The bi-vectors P , P ′ determine a pair of compatible Poisson brackets
on M ,

{f(z), g(z)} = ⟨df, Pdg⟩

=

dimM∑
i,j=1

P i,j(z)
∂f(z)

∂zi

∂g(z)

∂zj
,

for all f, g ∈ F (M) and similar brackets {, }′ to P ′.
Let H0, H1, . . . ,Hn be functionally independent functions on M and

in involution with respect to this compatible Poisson brackets

(2.2) {Hi, Hj} = {Hi,Hj}′ = 0 i = 0, . . . , n , j = 0, . . . , n.

According to [10, 11, 13], let us suppose that the desired Poisson bi-
vector P ′ is the Lie derivative of P along some unknown Liouville vector
field X

(2.3) P ′ = LX(P ),

which must satisfy the equation

(2.4) [P ′, P ′] = [LX(P ), LX(P )] = 0 ⇔ [L2
X(P ), P ] = 0,
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with respect to the Schouten bracket [., .]. By (2.3) bi-vector P ′ is com-
patible with a given bi-vector P , i.e. [P, P ′] = 0.
Within solutions of the equation (2.4) we choose partial solutions X such
that

(2.5) {Hi, Hj}′ = 0 i = 0, . . . , n , j = 0, . . . , n.

Obviously enough, in their full generality the system of equations (2.3-
2.5) is too difficult to be solved. It is because it has infinitely many
solutions labeled by different separated coordinates, see [11] and [12].
In order to get particular solutions, we will use some special ansatze for
the Liouville vector field X.

To solve equations (2.3)-(2.5) we will use polynomials of momenta
ansatze for the components of the Liouville vector field X =

∑
Xi∂i

(2.6) Xi =
N∑
k=0

k∑
m=0

gikm(y1, y2)y
k−m
3 ym4 .

First, we assume N = 2, it means that Xi will be generic second order
polynomials in momenta y3, y4 with coefficients gikm(y1, y2) depending on
variables y1 and y2. Substituting this ansatze (2.6) into the equations
(2.3)-(2.5) and demanding that all the coefficients at powers of y3 and
y4 vanish, one gets the over determined system of equations which can
be solved in the modern computer algebra systems.

3. Variables of Separation and Separated Relations

In this section we consider new variables of separation and separated
relations for mentioned integrable systems. Suppose the canonical vari-
ables of separation (q1, . . . , qn, p1, . . . , pn) and separated relations as

(3.1) ϕi(qi, pi,H1, . . . , Hn) = 0, i = 1, . . . , n, with det

[
∂ϕi

∂Hi

]
̸= 0,

connecting single pairs (qi, pi) of canonical variables of separation with
the n functionally independent Hamiltonian H1, . . . , Hn.

According to [2], the bi-involutivity of the integrals of motion (2.2) is
equivalent to the existence of the control matrix F = (Fij) defined by

(3.2) P ′dHi = P

2∑
j=1,2

FijdHj i = 1, 2..

If this matrix is non-degenerate, then its eigenvalues are desired sep-
arated coordinates qi which coincide with the Darboux-Nijenhuis co-
ordinates (eigenvalues of the recursion operator N = P ′P−1) on the
corresponding symplectic leaves (see for more details [10],[11]).
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Separated coordinates pi are variables conjugated to qi:

{qi, pj} = δi,j(3.3)

{qi, pj}′ = δi,jqi,

{qi, qj} = {qi, qj}′ = {pi, pj} = {pi, pj}′ = 0.

In order to get explicit information about the separating relations (3.1)
we will concentrate on the more precise notion of Stackel separability.
Recall that independent integrals of motion (H1, . . . , Hn) are Stackel
separable if the corresponding separated relations are given by the affine
equations in Hj , that is,

(3.4)
n∑

j=1

Si,j(qi, pi)Hj − Ui(qi, pi) = 0, i = 1, . . . , n ,

where S is an invertible matrix. The functions Si,j and Ui depend only
on one pair (pj , qj) of canonical variables of separation.

In this case, S is called a Stackel matrix, and U is a Stackel potential.
For Stackel separable systems the suitable normalized left eigenvectors
of control matrix F form the Stackel matrix S

(3.5) F = S−1diag(q1, . . . , qn)S.

3.1. A family of Integrable Systems on 4-dimensional Real Lie
Groups. In this section, we study the integrable Hamiltonian systems
with the symmetry Lie group as a 4-dimensional phase space having sym-
plectic structure. In other words, we consider non-degenerate Poisson
structure and integrable Hamiltonian systems on the Lie groups A4,1,

A−1
4,2, A4,3, A

a,0
4,6, A4,7, A

1
4,9, A4,12 (see [1] for more details). Then

for the canonical Poisson structure P , calculate the compatible Poisson
bracket and bi-Hamiltonian structure for these 4-dimensional real Lie
groups as Poisson manifold.

Now, we begin by analyzing the Lie group A4,1. We first introduce
the Poisson structure and an integrable Hamiltonian system on this Lie
group, following [1]. According to (2.6), we find the Darboux coordinates
and the Poisson bi-vector for A4,1. Similar considerations apply to the

well-known 4-dimentional Lie groups A−1
4,2,A4,3,A

a,0
4,6,A4,7,A

1
4,9,A4,12.

Their nonzero Poisson brackets, Darboux coordinates, integrable Hamil-
tonian systems and Poisson bi-vectors are summarized in the tables 1
and 2.

3.2. Lie Group A4,1. The non-degenerate Poisson structure on A4,1

can be obtained in the following forms (see [1] for more details):
(3.6)

{x1, x2} = − c

2
x24, {x1, x3} = cx4, {x1, x4} = −d, {x2, x3} = −c,
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where c and d are arbitrary real constants and x3, x4 are the conjugate
momentum of x1 and x2 respectively.

In this Lie group, we have the integrable system with the Hamiltonian
H1 and integral of motion H2 as follows [1]:

H1 = −y3,(3.7)

H2 = −y22y3
2

,(3.8)

where the coordinates y1, y2, y3, y4 are Darboux coordinates:

y1 =
x3
c

+
cx24
8

+
x24
2d

,

y2 = −x1 +
x23
c2

+
1

4
cdx2x4 −

x3x
2
4

4
− x3x

2
4

cd
− 3c2x44

64
+

x44
4d2

− cx44
8d

,

y3 = x2 −
2x3x4
cd

− x34
d2

− cx34
4d

,

y4 =
x4
d
,

such that they satisfy the following standard Poisson brackets:

(3.9) {y1, y3} = 1, {y2, y4} = 1.

In these coordinates y1, y2, y3, y4 the Poisson structure, P can be repre-
sented in matrix form as follows:

(3.10) P =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

In other words the coordinate yi can be used as a coordinates for the
phase space R4; such that the y1 and y2 are dynamical variables and
py1 = y3 and py2 = y4 are their momentum conjugate.

The aim is to find the bi-Hamiltonian structures for given integrable
system with integrals of motion H1,H2 on A4,1 and Poisson structure
P .

Now by (2.6) and solving the related differential equations, the Pois-
son bi-vector P ′ is obtained as follows:

(3.11) P ′ =


0 −y4 −a3 + y1 0
∗ 0 0 −a3 + y1
∗ ∗ 0 −y4
∗ ∗ ∗ 0

 ,

where ai is arbitrary real constants.
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According (3.2), for this case, the control matrix F is as follows:

(3.12) F =

−a3 + y1 +
y2y4
2y3

−y4
y2y3

y2y4(y
2
2 − 4y23)

4y3
−2a3y3 − 2y1y3 + y2y4

2y3

 .

The eigenvalues of this matrix are the variables of separation q1 and q2
as follows:

A(λ) = det(F − λI)

= (λ− q1)(λ− q2)

= λ2 + λ(2a3 − 2y1)− 2a3y1 + y21 − y24 + a23,

that is
q1 = y1 − y4 − a3, q2 = y1 + y4 − a3.

The corresponding momenta are defined by

p1 =
1

2
(y3 + y2), p2 =

1

2
(y3 − y2),

which satisfy (3.3).
In this case, in the separated variables, the Stackel matrix S is equal

to

(3.13) S =

 1 1
y22 + 2y2y3

2

y22 − 2y2y3
2

 .

Now considering the initial integrals of motion H1,2 (3.7, 3.8), the sep-
arated relations is as follows:

C :
(
3p21 − 2p1p2 − p22

)
H1 −H2 + (p1 − p2) (p1 + p2)

2 = 0.

In the later we present briefly some calculations for remaining Lie
groups A−1

4,2,A4,3,A
a,0
4,6,A4,7,A

1
4,9,A4,12. In other words, in the next

subsections we find the control matrices, variables of separation and sep-
arated relations for integrable Hamiltonian systems which are obtained
in [1] on these Lie groups

3.3. Lie Group A−1
4,2. The Poisson bi-vector for this Lie group has the

following form:
(3.14)

P ′ =


0

e−(2a1y2)y3
a1

e−(a1y2)a2
a1

− a3 −2y3(a4 + f(y2))− y3g(y2)

∗ 0 0 −e−(2a1y2)y23 +
e−(a1y2)a2

a1
− a3

∗ ∗ 0 −a2e
−(a1y2)y3

∗ ∗ ∗ 0

 ,
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where ais are arbitrary real constants and f(y2), g(y2) are functions of
y2.

In this case, Control matrix for the Poisson bivector P ′ (3.14) is as
follows:

(3.15) F =

 α − β

y32y
3
3a1

e−(2y2a1)y2y
3
3(y

2
3 + y2y

2
3a1 + e(y2a1)y22a1a2)

a1
− γ

y2a1

 ,

where

α = −
e−(2y2a1)

(
−y23 − y2y

2
3a1 − e(y2a1)y2a2 − 2e(y2a1)y22a1a2 + e(2y2a1)y2a1a3

)
y2a1

β = e−(2y2a1)
(
y23 + 2y2y

2
3a1 + 4e(y2a1)y22a1a2

)
,

γ = e−(2y2a1)
(
y23 + 2y2y

2
3a1 − e(y2a1)y2a2 + 2e(y2a1)y22a1a2 + e(2y2a1)y2a1a3

)
.

Variables of separation q1,2 are the roots of the following polynomial

A(λ) = det(F − λI)

= λ2 +

(
e−2y2a1y23 −

2e−y2a1a2
a1

+ 2a3

)
λ

+

(
e−2y2a1a22

a21
+ e−2y2a1y23a3 −

2e−y2a1a2a3
a1

+ a23

)
.

In other words, the roots of A(λ) are obtained by

q1 =
1

2y32y
3
3a1

e−2y2a1
(
− y32y

5
3a1 + 2ey2a1y32y

3
3a2

−
√

y62y
1
30a

2
1 − 4ey2a1y62y

8
3a1a2 − 2e2y2a1y32y

3
3a1a3

)
q2 =

1

2y32y
3
3a1

e−2y2a1
(
− y32y

5
3a1 + 2ey2a1y32y

3
3a2

+
√

y62y
1
30a

2
1 − 4ey2a1y62y

8
3a1a2 − 2e2y2a1y32y

3
3a1a3

)
.

The corresponding momenta are defined by

p1 = −y1
y2

−
(
1

2

)
y2 + y3

y2
+

ln(y2)a1
(y2 + y3)y2

− ln(y2)

−
(
1

2

)
a1 ln(−y2y3)

((y2 + y3)y2)
− 2a2

y2
,

p2 =
1

4

2a1 ln(y3) + (4y1 + 2y4)y2 + 4y3
(
a2 +

y1
2 + y3

4

)
y22

.
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In this case, in the separated variables, the Stackel matrix S is equal to

(3.16)

S =

 1 1
β

2y23 + 4y2y23a1 + 8ey2a1y22a1a2

γ

2y23 + 4y2y23a1 + 8ey2a1y22a1a2


where

β = 2y22y
5
3 + 3y32y

5
3a1 + 4ey2a1y42y

3
3a1a2 +

√
y62y

8
3a1(y

2
3a1 − 4ey2a1a2),

and

γ = 2y22y
5
3 + 3y32y

5
3a1 + 4ey2a1y42y

3
3a1a2 −

√
y62y

8
3a1(y

2
3a1 − 4ey2a1a2).

With regards to the integrals of motion H1,2 for Lie group A−1
4,2, one can

calculate separated relations as follows:

C :
(q1 − q2)

2(q1 + q2)√
q1(3q1 + q2)

H2 +
(q1 − q2)

2

2
√
q1

H1

−
3q1 + 2q

7/2
1 + q2 − 4q

5/2
1 q2 + 4

√
q1q

3
2 −

2q42√
q1

6q1 + 2q2
= 0.

3.4. Lie Group A4,3. For this Lie group we have the following Poisson
bi-vector:

(3.17) P ′ =


0

2a6 − ea1(y2+a2)

a1
−a7 − 2a6y3 0

∗ 0 0 α
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

where

α = −a7 + 2a6
(
y24a3 + a4 + y4a5

)
− ea1(y2+a2)

(
y3 + y24a3 + a4 + y4a5

)
and ais are arbitrary real constants.

In this case, Control matrix for the Poisson bi-vector P ′ (3.17) is as
follows:

(3.18) F =

[
−a7 − 2a6y3 0

− α

a1
β

]
,

where

α =
(
−2a6 + ea1(y2+a2)

)
×

(
−y3 +

(
y3 (−1 + y2a1) + y2a1

(
y24a3 + a4 + y4a5

))
log[y2]

)
,
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and

β = −a7 + 2a6
(
y24a3 + a4 + y4a5

)
− ea1(y2+a2)

(
y3 + y24a3 + a4 + y4a5

)
.

Bi-vector P ′ (3.17) gives rise to the following Darboux-Nijenhuis coor-
dinates

q1 = −a7 − 2a6y3

q2 = −a7 + 2a6(y
2
4a3 + a4 + y4a5)− ea1(y2+a2)(y3 + y24a3 + a4 + y4a5).

and momenta

p1 =
1

2

y1
a6

+
1

2

ln(a5y4 + y3)

a6a1a5
, p2 =

1

2

− ln(a5y4 + y3) + (2a1a5a6 − y2)a1
a6a1a5

.

In the separated variables, the Stackel matrix S is equal to

(3.19) S =

[
1 1
γ 0

]
,

where

γ = − y3a1 + y24a1a3 + a1a4 + y4a1a5
−y3 − y3 ln y2 + y2y3a1 ln y2 + y2y24a1a3 ln y2 + y2a1a4 ln y2 + y2y4a1a5 ln y2

.

If we come back to initial integrals of motion H1,2 for Lie group A4,3,
then these separated relations go over to the equation

C : −
√
q1(q1 − q2 + q1ln|q1|)

q1 + q2
H2 −

√
q1ln|q1|H1

−
(q1 − q2)

2 + q1(q1 − q2)ln|q1|+ 1
4

√
q1(q

2
1 − q22)ln|q1|2

q1 + q2
= 0.

3.5. Lie Group A4,7. For this Lie group we have the following Poisson
bi-vector:

(3.20) P ′ =


0

e(−2a1(y2+a2))y3
a1

−a3 − 2a4y3
α

9a6
∗ 0 0 β
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

where ais are arbitrary real constants and

α = e(−4y2a1)(4a4e
(3y2a1) + 3a5)(2a4e

(3y2a1)y3 − 3(y3a5 + e(y2a1)y4a6)),

and

β = −a3 − (4a4y3)/3− e(−2a1(y2+a2))y23 − e(−3y2a1)y3a5 − e(−2y2a1)y4a6.

Control matrix F for the Poisson bi-vector P ′ (3.20) is as follows:
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(3.21) F =

[
α β
0 −a3 − 2a4y3

]
where

α = −a310 −
(4a4y3)

3
− e(−2a1(y2+a2))y23

− e(−3y2a1)y3a5 − e(−2y2a1)y4a6,

β = −2

3
a4y2y3 +

e(−2a1(y2+a2))y23(1 + y2a1)

a1

+ e(−3y2a1)y2y3a5 + e(−2y2a1)y2y4a6.

Variables of separation q1,2 are the roots of the following polynomial

A(λ) = det(F − λI)

=
1

3

(
3a3 + 3λ+ 4a4y3 + 3e−2a1(y2+a2)y23 + 3e−3y2a1y3a3

+ 3e−2y2a1y4a4

)
(a3 + λ+ 2a4y3)

this is

q1 = −a3 − 2a4,

q2 = −a3 −
(4a4y3)

3
− e(−2a1(y2+a2))y23 − e(−3y2a1)y3a5 − e(−2y2a1)y4a6.

The corresponding momenta are defined by

p1 =
1

2a4c6c1e2c1c2+y2c1
(−ln(e−3y2c1y3c5 + e−2y2c1y4c6

+ e−2c1(y2+c2)y23)y3e
y2c1 + (c6y1e

2c1c2 − 2y3y2)c1e
y2c1 + c5e

2c1c2),

p2 =
ec1(3y2+2c2)c6y4 + y3c5e

2c1(y2+c2)

2c1c6(c6y4ec1(y2+2c2) + ey2c1y23 + e2c1c2y3c5)
.

In the separated variables, the Stackel matrix S is equal to

(3.22) S =

[
1 1

0
α

β

]
.

Where

α = a1

(
2a4e

3y2a1+2a1(y2+2)y3 − 3e3y2a1y23 − 3e2a1(y2+a2)y3a3

− 3ey2a1+2a1(y2+a2)y4a4

)
β = 2a4e

a1(5y2+2a2)y2y3a1 − 3e3y2a1y23(1 + y2a1)
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− 3e2a1(y2+a2)y2y3a1a3 − 3ea1(3y2+2a2)y2y4a1a4.

With regards to the integrals of motion H1,2 for Lie group A4,7, we have
the following separated relations:

C :
q1 + q2√

q1
H1 +

1

q1
H2 −

(q1 − q2)(−1 + q21 + q1q2)

q
3/2
1

= 0.

3.6. Lie group Aa,0
4,6: For this Lie group we have the following Poisson

bi-vector:

(3.23) P ′ =


0 0 y22 + y2y3 −a1 − 2a2y3 − y1y3 − y23f(y2)
∗ 0 0 y22
∗ ∗ 0 2y2y3 + y23
∗ ∗ ∗ 0

 ,

where ais are arbitrary real constants and f(y2) is a function of y2 .
Control matrix for the Poisson bi-vector P ′ (3.23) is as follows:

(3.24) F =

[
α β
γ δ

]
where

α = y2(y2 + y3) − e
y2
d2
(
−ay2y3 + d

2
(2y2 + y3)

)
cot

(
e
− y2

d2

)
β = −2e

(1+a)y2
d2 y3

(
−ay2y3 + d

2
(2y2 + y3)

)
csc

(
e
− y2

d2

)

γ =

e
y2−2ay2

d2 cos

(
e
− y2

d2

)(
−e

(−1+a)y2
d2 y2y3 + e

ay2
d2 (−ay2y3 + d2(2y2 + y3)) cot

(
e
− y2

d2

))
2y3

δ = e
y2−ay2

d2

(
e
(−1+a)y2

d2 y
2
2 + e

ay2
d2
(
−ay2y3 + d

2
(2y2 + y3)

)
cot

(
e
− y2

d2

))
.

Variables of separation q1,2 are eigenvalues of the control matrix for Lie

group Aa,0
4,6, and they are the roots of the following polynomial

A(λ) = det(F − λI)

= λ2 − λ(2y22 + y2y3) + y32y3 + y42,

this is

q1 = y22, q2 = y22 + y2y3.

The corresponding momenta are defined by

p1 = −y1
y2

−
(
1

2

)
y2 + y3

y2
+

ln(y2)a1
(y2 + y3)y2

− ln(y2)−
(
1

2

)
a1 ln(−y2y3)

((y2 + y3)y2)
− 2a2

y2
,

p2 =
1

4

2a1 ln(y3) + (4y1 + 2y4)y2 + 4y3(a2 +
y1
2 + y3

4 )

y22
.
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In the separated variables, the Stackel matrix S is equal to

(3.25) S =

 1 1

−e−
ay2
d2 cos(e−

y2
d2 )

2y3

α

2y3(−ay2y3 + d2(2y2 + y3))

 .

where

α = e−
(1+a)y2

d2

(
−e

y2
d2

(
−ay2y3 + d2(2y2 + y3)

)
cos

(
e−

y2
d2

)
+ y2y3 sin

(
e−

y2
d2

))
With regards to the integrals of motion H1,2 for Lie group Aa,0

4,6, one
can calculate separated relations as follows:

C : −
√
q1e

a
√

q1
d2 cos(e

√
q1

d2 )

2(q2 − q1)
H1 + αH2 − 1/2e−a

√
q1

d2 cos(e−
√

q1
d2 )(q1 − q2)/

√
q1

+ ea
√

q1
d2 cos(e−

√
q1

d2 ) + (e(−1+a)
√

q1
d2

√
q1(q1 − q2) sin(e

−
√

q1
d2 ))/(a

√
q1(q1 − q2)

+ d2(q1 + q2))) = 0.

where

α =
e−((1+a)

√
q1)/d2 (e

√
q1

d2
√
q1(a

√
q1(q1 − q2) + d2(q1 + q2)) cos(e

−
√

q1
d2 ) + q1(q1 − q2) sin(e

−
√

q1
d2 ))

2(q1 − q2)(a
√
q1(q1 − q2) + d2(q1 + q2))

.

3.7. Lie group A1
4,9 : For this Lie group we have the following Poisson

bi-vector:

(3.26) P ′ =


0 2y2(2−

√
y2 + y3) −a1 − y3(2 + y3) α

∗ 0 0 −a1 −
√
y2y3

∗ ∗ 0 0
∗ ∗ ∗ 0


where α = −a2 − 2(y3 + 2y4 −

√
y2y4 + y3y4)− y3 and ai- are arbitrary

real constants.
In this case, Control matrix for the Poisson bi-vector P ′ (3.20) is as

follows:

(3.27) F =

[
−a1 −

√
y2y3 −a2 − 2y3 − 4y4 + 2

√
y2y4 − 2y3y4 − y3

0 −a1 − 2y3 − y23

]
.

In this case, bi-vector P ′ (3.26) gives rise to the following Darboux-
Nijenhuis coordinates

q1 = −a1 − y3(2 + y3), q2 = −a1 −
√
y2y3,

and momenta

p1 =
y1

2 + 2y3
+

y2y4
(1 + y3)y3

, p2 = −
2
√
y2y4

y3
.
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In the separated variables, the Stackel matrix S is equal to

(3.28) S =

1 1

0 −
−2y3 +

√
y2y3 − y23

a2 + 2y3 + 4y4 − 2
√
y2y4 + 2y3y4 + y3

 .

Now considering the initial integrals of motion H1,2 for Lie group A1
4,9,

the separated relations is as follows:

C : αH1 +H2 − β +
√

1− a1 − q1 + 1 = 0.

Where

α =
(q1 − q2)(a1 + q2)

a1(a2 − 3(1 +
√
1 − a1 − q1)) + (1 +

√
1 − a1 − q1)q1p2 − q2(−a2 + (1 +

√
1 − a1 − q1)(3 + p2)

,

β =
(a1 − 2(1 +

√
1 − a1 − q1) + q1)(q1 − q2)p2

2(a1(3 − a2 + 3
√
1 − a1 − q1) − (1 +

√
1 − a1 − q1)q1p2 + q2(−a2 + (1 +

√
1 − a1 − q1)(3 + p2)))

3.8. Lie group A4,12 : For this Lie group we have the following Poisson
bi-vector:

(3.29) P ′ =


0 0 y22 − 2y1y

2
3 2y1y2

∗ 0 0 y22
∗ ∗ 0 0
∗ ∗ ∗ 0

 .

In this case, Control matrix for the Poisson bi-vector P ′ (3.29) is as
follows:

(3.30) F =

[
y22 4e−2y4y1y2y

2
3

0 y22 − 2y1y
2
3

]
.

Variables of separation q1,2 are eigenvalues the control matrix. For Lie

group Aa,0
4,6, they are the roots of the following polynomial

A(λ) = det(F − λI) = λ2 − 2λy22 + y42 + 2λy1y
2
3 − 2y1y

2
2y

2
3,

this is

q1 = y22, q2 = y22 − 2y1y
2
3.

The corresponding momenta are defined by

p1 =
1

2

(
y4
y2

− 1

y3

)
, p2 =

1

2

(
y22 + 2y1y

2
3 +

1

y3

)
.

In the separated variables, the Stackel matrix S is equal to

(3.31) S =

[
1 1

0 − e2y4
2y2

]
.
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Now considering the initial integrals of motion H1,2 for Lie group A4,12,
the separated relations is as follows:

C : −e2
√
q1(2p1+2p2−2q1+q2)

2
√
q1

H1 +H2

− 1

2

(
−2 + e2

√
q1(2p1+2p2−2q1+q2)

)
(2p2 − 2q1 + q2) = 0

4. Conclusion

Starting with integrals of motion for integrable systems on
4-dimensional real Lie groups considered as Poisson manifold, we have
found the Poisson bi-vectors which are compatible with the canonical
Poisson bi-vector on Lie group space. In such Poisson bi-vectors, it is
assumed that the Lie derivative of P along some unknown Liouville vec-
tor field X. As a result, the system of equations (2.3)-(2.5) has infinitely
many solutions.

We are able to obtain a particular answer, assuming that the com-
ponents of the Liouville vector field are second order polynomials in
momenta. An application of the corresponding control matrices allows
us to get a framework of the bi-Hamiltonian geometry using two families
of variables of separation and of separated relations.
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Appendix

Table 1. Integrable systems on four dimensional real
Lie groups.

system nonzero Poisson brackets Darboux coordinates H1, H2

A4,1 {x1, x2} = − c
2x

2
4 y1 =

x3
c +

cx2
4

8 +
x2
4

2d H1 = −y3

{x1, x3} = cx4 y2 = −x1 +
x2
3

c2
+ 1

4 cdx2x4 − x3x2
4

4 H2 = − y2
2y3
2

− x3x2
4

cd − 3c2x4
4

64 +
x4
4

4d2
− cx4

4
8d

{x1, x4} = −d y3 = x2 − 2x3x4
cd − x3

4
d2

− cx3
4

4d

{x2, x3} = −c y4 =
x4

d

A−1
4,2 {x1, x2} = 2c y1 = − ex4

b + x3 H1 =
1

y2y2
3

{x1, x3} = −c y2 =
−2aex4−bx1+abx2

ab2
H2 = −y2y3

{x2, x4} = −d e−x4 y3 = 2ex4
b +

x1
a

y4 = ex4

A4,3 {x1, x2} = c x4 e−x4 y1 =
dx2
f +

chx2
3

2df − cx3x4
f H1 = −y3

{x1, x3} = d e−x4 y2 =
x1
h − de−x4x2

fh − ce−x4x2
3

2df H2 = y2y3 ln |y2|

+
ce−x4x3x4

fh

{x1, x4} = h e−x4 y3 =
x3
d

{x2, x3} = f y4 = ex4

Aa,0
4,6 {x1, x4} = d e−ax4 y1 = x3 H1 = e

(
2ay2
d2

)
y2
3

{x2, x3} = c y2 = − e2ax4x1
ad H2 =

−e
ay2
d2 y3 cos(e

− y2
d2 )

y3 = − x2
c

y4 = e−ax4

A4,7 {x1, x3} = −2cx3e
−2x4 y1 =

e2x4x2
2c H1 = −y2y3

{x1, x4} = ce−2x4 y2 = −−1−e2x4+e4x4x1+e4x4x2x3
2c H2 = −y3

{x2, x3} = 2ce−2x4 y3 = x3

y4 = e−2x4

A1
4,9 {x1, x3} = 2cx3e

−2x4 y1 = − e2x4x2
2c H1 = −y4

{x1, x4} = −c e−2x4 y2 =
−1−e2x4+e4x4x1+e4x4x2x3

2c H2 = −y3

{x2, x3} = −2c e−2x4 y3 = x3

y4 = e−2x4

A4,12 {x1, x3} = −ce−x3 (a cos(x4) y1 = e2x3 (ax1 − bx2) cos(x4) H1 = − y2
y3

+b sin(x4)) +e2x3 (bx1 + ax2) sin(x4)
{x1, x4} = ce−x3 (−b cos(x4) y2 = −ex3 (bx1 + ax2) cos(x4) H2 = − 1

y3
+a sin(x4)) +(−ax1 + bx2) sin(x4)

{x2, x3} = ce−x3 (b cos(x4) y3 = ex3

−a sin(x4))

{x2, x4} = −ce−x3 (a cos(x4) y4 = x4

+b sin(x4))
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Table 2. The Poisson bi-vector over four dimensional
real Lie groups.

system Poisson bi-vector

A4,1 P ′ =

0 −y4 −a3 + y1 0
∗ 0 0 −a3 + y1

∗ ∗ 0 −y4

∗ ∗ ∗ 0



A−1
4,2 P ′ =


0

e−(2a1y2)y3

a1

e−(a1y2)a2

a1

− a3 −2y3(a4 + f(y2)) − y3g(y2)

∗ 0 0 −e−(2a1y2)y2
3 +

e−(a1y2)a2

a1

− a3

∗ ∗ 0 −a2e
−(a1y2)y3

∗ ∗ ∗ 0



A4,3 P ′ =


0

2a6 − ea1(y2+a2)

a1

−a7 − 2a6y3 0

∗ 0 0 α
∗ ∗ 0 0
∗ ∗ ∗ 0


α = −a7 + 2a6(y

2
4a3 + a4 + y4a5) − ea1(y2+a2)(y3 + y2

4a3 + a4 + y4a5)

Aa,0
4,6 P ′ =


0 0 y2

2 + y2y3 −a1 − 2a2y3 − y1y3 − y2
3f(y2)

∗ 0 0 y2
2

∗ ∗ 0 2y2y3 + y2
3

∗ ∗ ∗ 0



A4,7 P ′ =


0

e(−2a1(y2+a2))y3

a1

−a3 − 2a4y3
α

9a6
∗ 0 0 β
∗ ∗ 0 0
∗ ∗ ∗ 0


α = e(−4y2a1)(4a320e

(3y2a1) + 3a5)(2a4e
(3y2a1)y3 − 3(y3a5 + e(y2a1)y4a6))

β = −a3 − (4a4y3)/3 − e(−2a1(y2+a2))y2
3 − e(−3y2a1)y3a5 − e(−2y2a1)y4a6

A1
4,9 P ′ =

0 2y2(2 − √
y2 + y3) −a1 − y3(2 + y3) α

∗ 0 0 −a1 − √
y2y3

∗ ∗ 0 0
∗ ∗ ∗ 0


α = −a2 − 2(y3 + 2y4 − √

y2y4 + y3y4) − y3

A4,12 P ′ =


0 0 y2

2 − 2y1y
2
3 2y1y2

∗ 0 0 y2
2

∗ ∗ 0 0
∗ ∗ ∗ 0


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