Some bi-Hamiltonian Systems and their Separation of Variables on 4-dimensional Real Lie Groups

Volume 18, No. 1, February 2021

Ghorbanali Haghighatdoost, Salahaddin Abdolhadi-Zangakani and Rasoul Mahjoubi-bahman

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807 Online ISSN: 2423-3900 Volume: 18 Number: 1 Pages: 89-105

Sahand Commun. Math. Anal. DOI: 10.22130/scma.2020.122380.764 Sahand Communications in Mathematical Analysis

Print ISSN 2322-5807

Online ISSN 2423-3900

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Sahand Communications in Mathematical Analysis (SCMA) Vol. 18 No. 1 (2021), 89-105 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2020.122380.764

Some bi-Hamiltonian Systems and their Separation of Variables on 4-dimensional Real Lie Groups

Ghorbanali Haghighatdoost $^{1*},$ Salahaddin Abdolhadi-Zangakani 2 and Rasoul Mahjoubi-bahman 3

ABSTRACT. In this work, we discuss bi-Hamiltonian structures on a family of integrable systems on 4-dimensional real Lie groups. By constructing the corresponding control matrix for this family of bi-Hamiltonian structures, we obtain an explicit process for finding the variables of separation and the separated relations in detail.

1. INTRODUCTION

The study of bi-Hamiltonian systems, i.e., systems with two compatible Poisson structures, started with pioneering works of Magri and Kosmann-Schwarzbach [5, 7] and subsequent fundamental papers of Gelfand and Dorfman [3], Magri and Morosi [6]. These works show that integrability of systems can be closely connected to their bi-Hamiltonian structures. It is proven that all classical systems have the bi-Hamiltonian structure, and also by using the bi-Hamiltonian methods, many new nontrivial and interesting examples of integrable systems can be found. Moreover, bi-Hamiltonian structure is a very important factor not only for finding new examples, but also for integration of systems, constructing separable variables and description of properties of solutions. In [1], the integrable Hamiltonian systems with the symmetry Lie group as a 4dimensional phase space which has symplectic structure is constructed. The list of symplectic 4-dimensional real Lie groups are classified in [8].

²⁰¹⁰ Mathematics Subject Classification. 53D07, 37J35, 70H06, 34B24, 34B27.

 $Key\ words\ and\ phrases.$ Integrable system, Bi-Hamiltonian, Control matrix, Variables of separation.

Received: 29 February 2020, Accepted: 03 December 2020.

^{*} Corresponding author.

The aim of this paper is to identify the variables of separation in the framework of the bi-Hamiltonian geometry. This process consists of the following calculation steps:

- (i) For the canonical Poisson structures of the Lie groups, the compatible Poisson bi-vectors are obtained.
- (ii) The control matrices associated to the Poisson bi-vectors are obtained.
- (iii) Variables of separation, eigenvalues of the control matrix, are calculated.
- (iv) The canonically conjugated momenta is obtained with respect to the canonical Poisson bracket.
- (v) The separated relations are identified.

2. **BI-HAMILTONIAN STRUCTURES**

In order to obtain the variables of separation based on the Hamiltonian geometry, we calculate the bi-Hamiltonian structure for the given integrable system $H_{1,2}$ on the Poisson manifold M with initial Poisson bi-vector P (see [10, 11, 13] for the complete bibliography).

A bi-Hamiltonian manifold M is a smooth manifold endowed with two compatible bi-vectors P, P' such that

(2.1)
$$[P,P] = 0, \quad [P,P'] = 0, \quad [P',P'] = 0,$$

where [,] is the Schouten bracket.

90

The bi-vectors P, P' determine a pair of compatible Poisson brackets on M,

$$\begin{split} \{f(z),g(z)\} &= \langle df,Pdg \rangle \\ &= \sum_{i,j=1}^{\dim M} P^{i,j}(z) \frac{\partial f(z)}{\partial z_i} \frac{\partial g(z)}{\partial z_j}, \end{split}$$

for all $f, g \in F(M)$ and similar brackets $\{,\}'$ to P'.

Let H_0, H_1, \ldots, H_n be functionally independent functions on M and in involution with respect to this compatible Poisson brackets

(2.2)
$$\{H_i, H_j\} = \{H_i, H_j\}' = 0$$
 $i = 0, \dots, n, j = 0, \dots, n.$

According to [10, 11, 13], let us suppose that the desired Poisson bivector P' is the Lie derivative of P along some unknown Liouville vector field X

$$(2.3) P' = L_X(P),$$

which must satisfy the equation

(2.4)
$$[P', P'] = [L_X(P), L_X(P)] = 0 \quad \Leftrightarrow \quad [L_X^2(P), P] = 0,$$

with respect to the Schouten bracket [.,.]. By (2.3) bi-vector P' is compatible with a given bi-vector P, i.e. [P, P'] = 0.

Within solutions of the equation (2.4) we choose partial solutions X such that

(2.5)
$${H_i, H_j}' = 0$$
 $i = 0, ..., n, j = 0, ..., n.$

Obviously enough, in their full generality the system of equations (2.3-2.5) is too difficult to be solved. It is because it has infinitely many solutions labeled by different separated coordinates, see [11] and [12]. In order to get particular solutions, we will use some special ansatze for the Liouville vector field X.

To solve equations (2.3)-(2.5) we will use polynomials of momenta ansatze for the components of the Liouville vector field $X = \sum X^i \partial_i$

(2.6)
$$X^{i} = \sum_{k=0}^{N} \sum_{m=0}^{k} g^{i}_{km}(y_{1}, y_{2}) y_{3}^{k-m} y_{4}^{m}.$$

First, we assume N = 2, it means that X^i will be generic second order polynomials in momenta y_3, y_4 with coefficients $g^i_{km}(y_1, y_2)$ depending on variables y_1 and y_2 . Substituting this ansatze (2.6) into the equations (2.3)-(2.5) and demanding that all the coefficients at powers of y_3 and y_4 vanish, one gets the over determined system of equations which can be solved in the modern computer algebra systems.

3. Variables of Separation and Separated Relations

In this section we consider new variables of separation and separated relations for mentioned integrable systems. Suppose the canonical variables of separation $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ and separated relations as

(3.1)
$$\phi_i(q_i, p_i, H_1, \dots, H_n) = 0, \quad i = 1, \dots, n, \text{ with } \det\left[\frac{\partial \phi_i}{\partial H_i}\right] \neq 0,$$

connecting single pairs (q_i, p_i) of canonical variables of separation with the *n* functionally independent Hamiltonian H_1, \ldots, H_n .

According to [2], the bi-involutivity of the integrals of motion (2.2) is equivalent to the existence of the control matrix $F = (F_{ij})$ defined by

(3.2)
$$P'dH_i = P \sum_{j=1,2}^{2} F_{ij}dH_j \quad i = 1, 2..$$

If this matrix is non-degenerate, then its eigenvalues are desired separated coordinates q_i which coincide with the Darboux-Nijenhuis coordinates (eigenvalues of the recursion operator $N = P'P^{-1}$) on the corresponding symplectic leaves (see for more details [10],[11]). Separated coordinates p_i are variables conjugated to q_i :

(3.3)
$$\{q_i, p_j\} = \delta_{i,j}$$

$$\{q_i, p_j\}' = \delta_{i,j}q_i,$$

$$\{q_i, q_j\} = \{q_i, q_j\}' = \{p_i, p_j\} = \{p_i, p_j\}' = 0.$$

In order to get explicit information about the separating relations (3.1) we will concentrate on the more precise notion of Stackel separability. Recall that independent integrals of motion (H_1, \ldots, H_n) are Stackel separable if the corresponding separated relations are given by the affine equations in H_j , that is,

(3.4)
$$\sum_{j=1}^{n} S_{i,j}(q_i, p_i) H_j - U_i(q_i, p_i) = 0, \quad i = 1, \dots, n ,$$

where S is an invertible matrix. The functions $S_{i,j}$ and U_i depend only on one pair (p_i, q_j) of canonical variables of separation.

In this case, S is called a Stackel matrix, and U is a Stackel potential. For Stackel separable systems the suitable normalized left eigenvectors of control matrix F form the Stackel matrix S

(3.5)
$$F = S^{-1} diag(q_1, \dots, q_n) S.$$

3.1. A family of Integrable Systems on 4-dimensional Real Lie Groups. In this section, we study the integrable Hamiltonian systems with the symmetry Lie group as a 4-dimensional phase space having symplectic structure. In other words, we consider non-degenerate Poisson structure and integrable Hamiltonian systems on the Lie groups $A_{4,1}$, $A_{4,2}^{-1}$, $A_{4,3}$, $A_{4,6}^{a,0}$, $A_{4,7}$, $A_{4,9}^1$, $A_{4,12}$ (see [1] for more details). Then for the canonical Poisson structure P, calculate the compatible Poisson bracket and bi-Hamiltonian structure for these 4-dimensional real Lie groups as Poisson manifold.

Now, we begin by analyzing the Lie group $A_{4,1}$. We first introduce the Poisson structure and an integrable Hamiltonian system on this Lie group, following [1]. According to (2.6), we find the Darboux coordinates and the Poisson bi-vector for $A_{4,1}$. Similar considerations apply to the well-known 4-dimentional Lie groups $A_{4,2}^{-1}$, $A_{4,3}$, $A_{4,6}^{a,0}$, $A_{4,7}$, $A_{4,9}^1$, $A_{4,12}$. Their nonzero Poisson brackets, Darboux coordinates, integrable Hamiltonian systems and Poisson bi-vectors are summarized in the tables 1 and 2.

3.2. Lie Group $A_{4,1}$. The non-degenerate Poisson structure on $A_{4,1}$ can be obtained in the following forms (see [1] for more details): (3.6)

$$\{x_1, x_2\} = -\frac{c}{2}x_4^2, \quad \{x_1, x_3\} = cx_4, \quad \{x_1, x_4\} = -d, \quad \{x_2, x_3\} = -c,$$

where c and d are arbitrary real constants and x_3, x_4 are the conjugate momentum of x_1 and x_2 respectively.

In this Lie group, we have the integrable system with the Hamiltonian H_1 and integral of motion H_2 as follows [1]:

(3.7)
$$H_1 = -y_3,$$

(3.8)
$$H_2 = -\frac{y_2^2 y_3}{2}$$

where the coordinates y_1, y_2, y_3, y_4 are Darboux coordinates:

$$\begin{split} y_1 &= \frac{x_3}{c} + \frac{cx_4^2}{8} + \frac{x_4^2}{2d}, \\ y_2 &= -x_1 + \frac{x_3^2}{c^2} + \frac{1}{4}cdx_2x_4 - \frac{x_3x_4^2}{4} - \frac{x_3x_4^2}{cd} - \frac{3c^2x_4^4}{64} + \frac{x_4^4}{4d^2} - \frac{cx_4^4}{8d}, \\ y_3 &= x_2 - \frac{2x_3x_4}{cd} - \frac{x_4^3}{d^2} - \frac{cx_4^3}{4d}, \\ y_4 &= \frac{x_4}{d}, \end{split}$$

such that they satisfy the following standard Poisson brackets:

(3.9)
$$\{y_1, y_3\} = 1, \quad \{y_2, y_4\} = 1.$$

In these coordinates y_1, y_2, y_3, y_4 the Poisson structure, P can be represented in matrix form as follows:

(3.10)
$$P = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix}$$

In other words the coordinate y_i can be used as a coordinates for the phase space R^4 ; such that the y_1 and y_2 are dynamical variables and $p_{y_1} = y_3$ and $p_{y_2} = y_4$ are their momentum conjugate.

The aim is to find the bi-Hamiltonian structures for given integrable system with integrals of motion H_1, H_2 on $A_{4,1}$ and Poisson structure P.

Now by (2.6) and solving the related differential equations, the Poisson bi-vector P' is obtained as follows:

(3.11)
$$P' = \begin{bmatrix} 0 & -y_4 & -a_3 + y_1 & 0 \\ * & 0 & 0 & -a_3 + y_1 \\ * & * & 0 & -y_4 \\ * & * & * & 0 \end{bmatrix},$$

where a_i is arbitrary real constants.

According (3.2), for this case, the control matrix F is as follows:

(3.12)
$$F = \begin{bmatrix} -a_3 + y_1 + \frac{y_2 y_4}{2y_3} & \frac{-y_4}{y_2 y_3} \\ \frac{y_2 y_4 (y_2^2 - 4y_3^2)}{4y_3} & -\frac{2a_3 y_3 - 2y_1 y_3 + y_2 y_4}{2y_3} \end{bmatrix}.$$

The eigenvalues of this matrix are the variables of separation q_1 and q_2 as follows:

$$A(\lambda) = \det(F - \lambda I)$$

= $(\lambda - q_1)(\lambda - q_2)$
= $\lambda^2 + \lambda(2a_3 - 2y_1) - 2a_3y_1 + y_1^2 - y_4^2 + a_3^2$,

that is

 $q_1 = y_1 - y_4 - a_3, \qquad q_2 = y_1 + y_4 - a_3.$ The corresponding momenta are defined by

$$p_1 = \frac{1}{2}(y_3 + y_2), \qquad p_2 = \frac{1}{2}(y_3 - y_2),$$

which satisfy (3.3).

In this case, in the separated variables, the Stackel matrix S is equal to

(3.13)
$$S = \begin{bmatrix} 1 & 1 \\ \frac{y_2^2 + 2y_2y_3}{2} & \frac{y_2^2 - 2y_2y_3}{2} \end{bmatrix}$$

Now considering the initial integrals of motion $H_{1,2}$ (3.7, 3.8), the separated relations is as follows:

$$C: (3p_1^2 - 2p_1p_2 - p_2^2) H_1 - H_2 + (p_1 - p_2) (p_1 + p_2)^2 = 0.$$

In the later we present briefly some calculations for remaining Lie groups $\mathbf{A}_{4,2}^{-1}$, $\mathbf{A}_{4,3}$, $\mathbf{A}_{4,6}^{\mathbf{a},0}$, $\mathbf{A}_{4,7}$, $\mathbf{A}_{4,9}^{\mathbf{1}}$, $\mathbf{A}_{4,12}$. In other words, in the next subsections we find the control matrices, variables of separation and separated relations for integrable Hamiltonian systems which are obtained in [1] on these Lie groups

3.3. Lie Group $A_{4,2}^{-1}$. The Poisson bi-vector for this Lie group has the following form: (3.14)

$$P' = \begin{bmatrix} 0 & \frac{e^{-(2a_1y_2)}y_3}{a_1} & \frac{e^{-(a_1y_2)}a_2}{a_1} - a_3 & -2y_3(a_4 + f(y_2)) - y_3g(y_2) \\ * & 0 & 0 & -e^{-(2a_1y_2)}y_3^2 + \frac{e^{-(a_1y_2)}a_2}{a_1} - a_3 \\ * & * & 0 & -a_2e^{-(a_1y_2)}y_3 \\ * & * & * & 0 \end{bmatrix}$$

94

where a_i s are arbitrary real constants and $f(y_2), g(y_2)$ are functions of y_2 . In this case, Control matrix for the Poisson bivector P' (3.14) is as

In this case, Control matrix for the Poisson bivector P'' (3.14) is as follows:

$$(3.15) \quad F = \begin{bmatrix} \alpha & -\frac{\beta}{y_2^3 y_3^3 a_1} \\ \frac{e^{-(2y_2 a_1)} y_2 y_3^3 (y_3^2 + y_2 y_3^2 a_1 + e^{(y_2 a_1)} y_2^2 a_1 a_2)}{a_1} & -\frac{\gamma}{y_2 a_1} \end{bmatrix},$$

where

$$\begin{aligned} \alpha &= -\frac{e^{-(2y_2a_1)} \left(-y_3^2 - y_2 y_3^2 a_1 - e^{(y_2a_1)} y_2 a_2 - 2e^{(y_2a_1)} y_2^2 a_1 a_2 + e^{(2y_2a_1)} y_2 a_1 a_3\right)}{y_2 a_1} \\ \beta &= e^{-(2y_2a_1)} \left(y_3^2 + 2y_2 y_3^2 a_1 + 4e^{(y_2a_1)} y_2^2 a_1 a_2\right), \\ \gamma &= e^{-(2y_2a_1)} \left(y_3^2 + 2y_2 y_3^2 a_1 - e^{(y_2a_1)} y_2 a_2 + 2e^{(y_2a_1)} y_2^2 a_1 a_2 + e^{(2y_2a_1)} y_2 a_1 a_3\right). \end{aligned}$$

Variables of separation $q_{1,2}$ are the roots of the following polynomial

$$\begin{aligned} A(\lambda) &= \det(F - \lambda I) \\ &= \lambda^2 + \left(e^{-2y_2 a_1} y_3^2 - \frac{2e^{-y_2 a_1} a_2}{a_1} + 2a_3 \right) \lambda \\ &+ \left(\frac{e^{-2y_2 a_1} a_2^2}{a_1^2} + e^{-2y_2 a_1} y_3^2 a_3 - \frac{2e^{-y_2 a_1} a_2 a_3}{a_1} + a_3^2 \right). \end{aligned}$$

In other words, the roots of $A(\lambda)$ are obtained by

$$q_{1} = \frac{1}{2y_{2}^{3}y_{3}^{3}a_{1}}e^{-2y_{2}a_{1}}\left(-y_{2}^{3}y_{3}^{5}a_{1}+2e^{y_{2}a_{1}}y_{2}^{3}y_{3}^{3}a_{2}\right)$$
$$-\sqrt{y_{2}^{6}y_{3}^{1}0a_{1}^{2}-4e^{y_{2}a_{1}}y_{2}^{6}y_{3}^{8}a_{1}a_{2}}-2e^{2y_{2}a_{1}}y_{2}^{3}y_{3}^{3}a_{1}a_{3}\right)$$
$$q_{2} = \frac{1}{2y_{2}^{3}y_{3}^{3}a_{1}}e^{-2y_{2}a_{1}}\left(-y_{2}^{3}y_{3}^{5}a_{1}+2e^{y_{2}a_{1}}y_{2}^{3}y_{3}^{3}a_{2}\right)$$
$$+\sqrt{y_{2}^{6}y_{3}^{1}0a_{1}^{2}-4e^{y_{2}a_{1}}y_{2}^{6}y_{3}^{8}a_{1}a_{2}}-2e^{2y_{2}a_{1}}y_{2}^{3}y_{3}^{3}a_{1}a_{3}\right).$$

The corresponding momenta are defined by

$$p_{1} = -\frac{y_{1}}{y_{2}} - \left(\frac{1}{2}\right) \frac{y_{2} + y_{3}}{y_{2}} + \frac{\ln(y_{2})a_{1}}{(y_{2} + y_{3})y_{2}} - \ln(y_{2})$$
$$- \left(\frac{1}{2}\right) \frac{a_{1}\ln(-y_{2}y_{3})}{((y_{2} + y_{3})y_{2})} - \frac{2a_{2}}{y_{2}} ,$$
$$p_{2} = \frac{1}{4} \frac{2a_{1}\ln(y_{3}) + (4y_{1} + 2y_{4})y_{2} + 4y_{3}\left(a_{2} + \frac{y_{1}}{2} + \frac{y_{3}}{4}\right)}{y_{2}^{2}}.$$

In this case, in the separated variables, the Stackel matrix S is equal to

$$(3.16)$$

$$S = \begin{bmatrix} \frac{1}{\beta} & 1\\ \frac{1}{2y_3^2 + 4y_2y_3^2a_1 + 8e^{y_2a_1}y_2^2a_1a_2} & \frac{1}{2y_3^2 + 4y_2y_3^2a_1 + 8e^{y_2a_1}y_2^2a_1a_2} \end{bmatrix}$$

where

$$\beta = 2y_2^2y_3^5 + 3y_2^3y_3^5a_1 + 4e^{y_2a_1}y_2^4y_3^3a_1a_2 + \sqrt{y_2^6y_3^8a_1(y_3^2a_1 - 4e^{y_2a_1}a_2)},$$

and

$$\gamma = 2y_2^2 y_3^5 + 3y_2^3 y_3^5 a_1 + 4e^{y_2 a_1} y_2^4 y_3^3 a_1 a_2 - \sqrt{y_2^6 y_3^8 a_1 (y_3^2 a_1 - 4e^{y_2 a_1} a_2)}.$$

With regards to the integrals of motion $H_{1,2}$ for Lie group $\mathbf{A}_{4,2}^{-1}$, one can calculate separated relations as follows:

$$C: \frac{(q_1 - q_2)^2 (q_1 + q_2)}{\sqrt{q_1} (3q_1 + q_2)} H_2 + \frac{(q_1 - q_2)^2}{2\sqrt{q_1}} H_1$$
$$- \frac{3q_1 + 2q_1^{7/2} + q_2 - 4q_1^{5/2} q_2 + 4\sqrt{q_1} q_2^3 - \frac{2q_2^4}{\sqrt{q_1}}}{6q_1 + 2q_2} = 0.$$

3.4. Lie Group $A_{4,3}$. For this Lie group we have the following Poisson bi-vector:

(3.17)
$$P' = \begin{bmatrix} 0 & \frac{2a_6 - e^{a_1(y_2 + a_2)}}{a_1} & -a_7 - 2a_6y_3 & 0 \\ * & 0 & 0 & \alpha \\ * & * & 0 & 0 \\ * & * & * & 0 \end{bmatrix},$$

where

$$\alpha = -a_7 + 2a_6 \left(y_4^2 a_3 + a_4 + y_4 a_5 \right) - e^{a_1(y_2 + a_2)} \left(y_3 + y_4^2 a_3 + a_4 + y_4 a_5 \right)$$

and a_i s are arbitrary real constants.

In this case, Control matrix for the Poisson bi-vector P^\prime (3.17) is as follows:

(3.18)
$$F = \begin{bmatrix} -a_7 - 2a_6y_3 & 0\\ -\frac{\alpha}{a_1} & \beta \end{bmatrix},$$

where

$$\alpha = \left(-2a_6 + e^{a_1(y_2 + a_2)}\right) \\ \times \left(-y_3 + \left(y_3\left(-1 + y_2a_1\right) + y_2a_1\left(y_4^2a_3 + a_4 + y_4a_5\right)\right)\log[y_2]\right),$$

$$\beta = -a_7 + 2a_6 \left(y_4^2 a_3 + a_4 + y_4 a_5 \right) - e^{a_1 \left(y_2 + a_2 \right)} \left(y_3 + y_4^2 a_3 + a_4 + y_4 a_5 \right).$$

Bi-vector P^\prime (3.17) gives rise to the following Darboux-Nijenhuis coordinates

$$q_1 = -a_7 - 2a_6y_3$$

$$q_2 = -a_7 + 2a_6(y_4^2a_3 + a_4 + y_4a_5) - e^{a_1(y_2 + a_2)}(y_3 + y_4^2a_3 + a_4 + y_4a_5).$$

and momenta

$$p_1 = \frac{1}{2} \frac{y_1}{a_6} + \frac{1}{2} \frac{\ln(a_5y_4 + y_3)}{a_6a_1a_5}, \quad p_2 = \frac{1}{2} \frac{-\ln(a_5y_4 + y_3) + (2a_1a_5a_6 - y_2)a_1}{a_6a_1a_5}$$

In the separated variables, the Stackel matrix S is equal to

$$(3.19) S = \begin{bmatrix} 1 & 1 \\ \gamma & 0 \end{bmatrix},$$

where

$$\gamma = -\frac{y_3a_1 + y_4^2a_1a_3 + a_1a_4 + y_4a_1a_5}{-y_3 - y_3\ln y_2 + y_2y_3a_1\ln y_2 + y_2y_4^2a_1a_3\ln y_2 + y_2a_1a_4\ln y_2 + y_2y_4a_1a_5\ln y_2}.$$

If we come back to initial integrals of motion $H_{1,2}$ for Lie group $A_{4,3}$, then these separated relations go over to the equation

$$C: -\frac{\sqrt{q_1}(q_1 - q_2 + q_1 ln|q_1|)}{q_1 + q_2}H_2 - \sqrt{q_1}ln|q_1|H_1 - \frac{(q_1 - q_2)^2 + q_1(q_1 - q_2)ln|q_1| + \frac{1}{4}\sqrt{q_1}(q_1^2 - q_2^2)ln|q_1|^2}{q_1 + q_2} = 0.$$

3.5. Lie Group $A_{4,7}$. For this Lie group we have the following Poisson bi-vector:

(3.20)
$$P' = \begin{bmatrix} 0 & \frac{e^{(-2a_1(y_2+a_2))}y_3}{a_1} & -a_3 - 2a_4y_3 & \frac{\alpha}{9a_6} \\ * & 0 & 0 & \beta \\ * & * & 0 & 0 \\ * & * & * & 0 \end{bmatrix},$$

where a_i s are arbitrary real constants and

 $\alpha = e^{(-4y_2a_1)}(4a_4e^{(3y_2a_1)} + 3a_5)(2a_4e^{(3y_2a_1)}y_3 - 3(y_3a_5 + e^{(y_2a_1)}y_4a_6)),$ and

$$\beta = -a_3 - (4a_4y_3)/3 - e^{(-2a_1(y_2+a_2))}y_3^2 - e^{(-3y_2a_1)}y_3a_5 - e^{(-2y_2a_1)}y_4a_6.$$

Control matrix F for the Poisson bi-vector P' (3.20) is as follows:

(3.21)
$$F = \begin{bmatrix} \alpha & \beta \\ 0 & -a_3 - 2a_4y_3 \end{bmatrix}$$

where

$$\begin{aligned} \alpha &= -a_{310} - \frac{(4a_4y_3)}{3} - e^{(-2a_1(y_2+a_2))}y_3^2 \\ &- e^{(-3y_2a_1)}y_3a_5 - e^{(-2y_2a_1)}y_4a_6, \\ \beta &= -\frac{2}{3}a_4y_2y_3 + \frac{e^{(-2a_1(y_2+a_2))}y_3^2(1+y_2a_1)}{a_1} \\ &+ e^{(-3y_2a_1)}y_2y_3a_5 + e^{(-2y_2a_1)}y_2y_4a_6. \end{aligned}$$

Variables of separation $q_{1,2}$ are the roots of the following polynomial

$$A(\lambda) = \det(F - \lambda I)$$

= $\frac{1}{3} \Big(3a_3 + 3\lambda + 4a_4y_3 + 3e^{-2a_1(y_2 + a_2)}y_3^2 + 3e^{-3y_2a_1}y_3a_3 + 3e^{-2y_2a_1}y_4a_4 \Big) (a_3 + \lambda + 2a_4y_3)$

this is

$$q_1 = -a_3 - 2a_4,$$

$$q_2 = -a_3 - \frac{(4a_4y_3)}{3} - e^{(-2a_1(y_2 + a_2))}y_3^2 - e^{(-3y_2a_1)}y_3a_5 - e^{(-2y_2a_1)}y_4a_6.$$

The corresponding momenta are defined by

$$p_{1} = \frac{1}{2a_{4}c_{6}c_{1}e^{2c_{1}c_{2}+y_{2}c_{1}}} (-ln(e^{-3y_{2}c_{1}}y_{3}c_{5} + e^{-2y_{2}c_{1}}y_{4}c_{6} + e^{-2c_{1}(y_{2}+c_{2})}y_{3}^{2})y_{3}e^{y_{2}c_{1}} + (c_{6}y_{1}e^{2c_{1}c_{2}} - 2y_{3}y_{2})c_{1}e^{y_{2}c_{1}} + c_{5}e^{2c_{1}c_{2}}),$$

$$p_{2} = \frac{e^{c_{1}(3y_{2}+2c_{2})}c_{6}y_{4} + y_{3}c_{5}e^{2c_{1}(y_{2}+c_{2})}}{2c_{1}c_{6}(c_{6}y_{4}e^{c_{1}(y_{2}+2c_{2})} + e^{y_{2}c_{1}}y_{3}^{2} + e^{2c_{1}c_{2}}y_{3}c_{5})}.$$

In the separated variables, the Stackel matrix S is equal to

$$(3.22) S = \begin{bmatrix} 1 & 1\\ 0 & \frac{\alpha}{\beta} \end{bmatrix}.$$

Where

$$\alpha = a_1 \left(2a_4 e^{3y_2 a_1 + 2a_1(y_2 + 2)} y_3 - 3e^{3y_2 a_1} y_3^2 - 3e^{2a_1(y_2 + a_2)} y_3 a_3 - 3e^{y_2 a_1 + 2a_1(y_2 + a_2)} y_4 a_4 \right)$$

$$\beta = 2a_4 e^{a_1(5y_2 + 2a_2)} y_2 y_3 a_1 - 3e^{3y_2 a_1} y_3^2 (1 + y_2 a_1)$$

$$-3e^{2a_1(y_2+a_2)}y_2y_3a_1a_3-3e^{a_1(3y_2+2a_2)}y_2y_4a_1a_4.$$

With regards to the integrals of motion $H_{1,2}$ for Lie group $A_{4,7}$, we have the following separated relations:

$$C: \frac{q_1+q_2}{\sqrt{q_1}}H_1 + \frac{1}{q_1}H_2 - \frac{(q_1-q_2)(-1+q_1^2+q_1q_2)}{q_1^{3/2}} = 0.$$

3.6. Lie group $A_{4,6}^{a,0}$: For this Lie group we have the following Poisson bi-vector:

(3.23)
$$P' = \begin{bmatrix} 0 & 0 & y_2^2 + y_2 y_3 & -a_1 - 2a_2 y_3 - y_1 y_3 - y_3^2 f(y_2) \\ * & 0 & 0 & y_2^2 \\ * & * & 0 & 2y_2 y_3 + y_3^2 \\ * & * & * & 0 \end{bmatrix},$$

where a_i s are arbitrary real constants and $f(y_2)$ is a function of y_2 .

Control matrix for the Poisson bi-vector P' (3.23) is as follows:

(3.24)
$$F = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

where

$$\begin{split} \alpha &= y_2(y_2 + y_3) - e^{\frac{y_2}{d^2}} \left(-ay_2y_3 + d^2(2y_2 + y_3) \right) \cot\left(e^{-\frac{y_2}{d^2}}\right) \\ \beta &= -2e^{\frac{(1+a)y_2}{d^2}} y_3 \left(-ay_2y_3 + d^2(2y_2 + y_3) \right) \csc\left(e^{-\frac{y_2}{d^2}}\right) \\ \gamma &= \frac{e^{\frac{y_2 - 2ay_2}{d^2}} \cos\left(e^{-\frac{y_2}{d^2}}\right) \left(-e^{\frac{(-1+a)y_2}{d^2}} y_2y_3 + e^{\frac{ay_2}{d^2}} (-ay_2y_3 + d^2(2y_2 + y_3)) \cot\left(e^{-\frac{y_2}{d^2}}\right) \right)}{2y_3} \\ \delta &= e^{\frac{y_2 - ay_2}{d^2}} \left(e^{\frac{(-1+a)y_2}{d^2}} y_2^2 + e^{\frac{ay_2}{d^2}} \left(-ay_2y_3 + d^2(2y_2 + y_3) \right) \cot\left(e^{-\frac{y_2}{d^2}}\right) \right). \end{split}$$

Variables of separation $q_{1,2}$ are eigenvalues of the control matrix for Lie group $\mathbf{A}_{4,6}^{\mathbf{a},\mathbf{0}}$, and they are the roots of the following polynomial

$$A(\lambda) = \det(F - \lambda I)$$

= $\lambda^2 - \lambda(2y_2^2 + y_2y_3) + y_2^3y_3 + y_2^4$,

this is

$$q_1 = y_2^2, \qquad q_2 = y_2^2 + y_2 y_3.$$

The corresponding momenta are defined by

$$p_{1} = -\frac{y_{1}}{y_{2}} - \left(\frac{1}{2}\right) \frac{y_{2} + y_{3}}{y_{2}} + \frac{\ln(y_{2})a_{1}}{(y_{2} + y_{3})y_{2}} - \ln(y_{2}) - \left(\frac{1}{2}\right) \frac{a_{1}\ln(-y_{2}y_{3})}{((y_{2} + y_{3})y_{2})} - \frac{2a_{2}}{y_{2}},$$

$$p_{2} = \frac{1}{4} \frac{2a_{1}\ln(y_{3}) + (4y_{1} + 2y_{4})y_{2} + 4y_{3}(a_{2} + \frac{y_{1}}{2} + \frac{y_{3}}{4})}{y_{2}^{2}}.$$

In the separated variables, the Stackel matrix S is equal to

(3.25)
$$S = \begin{bmatrix} 1 & 1 \\ -\frac{e^{-\frac{ay_2}{d^2}}\cos(e^{-\frac{y_2}{d^2}})}{2y_3} & \frac{\alpha}{2y_3(-ay_2y_3 + d^2(2y_2 + y_3))} \end{bmatrix}.$$

where

$$\alpha = e^{-\frac{(1+a)y_2}{d^2}} \left(-e^{\frac{y_2}{d^2}} \left(-ay_2y_3 + d^2(2y_2 + y_3) \right) \cos\left(e^{-\frac{y_2}{d^2}}\right) + y_2y_3 \sin\left(e^{-\frac{y_2}{d^2}}\right) \right)$$

With regards to the integrals of motion $H_{1,2}$ for Lie group $\mathbf{A}_{4,6}^{\mathbf{a},\mathbf{0}}$, one can calculate separated relations as follows:

$$C: -\frac{\sqrt{q_1}e^{\frac{a\sqrt{q_1}}{d^2}}\cos(e^{\frac{\sqrt{q_1}}{d^2}})}{2(q_2-q_1)}H_1 + \alpha H_2 - 1/2e^{-a\frac{\sqrt{q_1}}{d^2}}\cos(e^{-\frac{\sqrt{q_1}}{d^2}})(q_1-q_2)/\sqrt{q_1} + e^{a\frac{\sqrt{q_1}}{d^2}}\cos(e^{-\frac{\sqrt{q_1}}{d^2}}) + (e^{(-1+a)\frac{\sqrt{q_1}}{d^2}}\sqrt{q_1}(q_1-q_2)\sin(e^{-\frac{\sqrt{q_1}}{d^2}}))/(a\sqrt{q_1}(q_1-q_2) + d^2(q_1+q_2))) = 0.$$

where

$$\alpha = \frac{e^{-((1+a)\sqrt{q_1})/d^2} (e^{\frac{\sqrt{q_1}}{d^2}} \sqrt{q_1} (a\sqrt{q_1}(q_1-q_2) + d^2(q_1+q_2)) \cos(e^{-\frac{\sqrt{q_1}}{d^2}}) + q_1(q_1-q_2) \sin(e^{-\frac{\sqrt{q_1}}{d^2}}))}{2(q_1-q_2)(a\sqrt{q_1}(q_1-q_2) + d^2(q_1+q_2))}$$

3.7. Lie group $A_{4,9}^1$: For this Lie group we have the following Poisson bi-vector:

$$(3.26) P' = \begin{bmatrix} 0 & 2y_2(2 - \sqrt{y_2} + y_3) & -a_1 - y_3(2 + y_3) & \alpha \\ * & 0 & 0 & -a_1 - \sqrt{y_2}y_3 \\ * & * & 0 & 0 \\ * & * & * & 0 \end{bmatrix}$$

where $\alpha = -a_2 - 2(y_3 + 2y_4 - \sqrt{y_2}y_4 + y_3y_4) - y_3$ and a_i - are arbitrary real constants.

In this case, Control matrix for the Poisson bi-vector P^\prime (3.20) is as follows:

$$(3.27) \quad F = \begin{bmatrix} -a_1 - \sqrt{y_2}y_3 & -a_2 - 2y_3 - 4y_4 + 2\sqrt{y_2}y_4 - 2y_3y_4 - y_3 \\ 0 & -a_1 - 2y_3 - y_3^2 \end{bmatrix}.$$

In this case, bi-vector P' (3.26) gives rise to the following Darboux-Nijenhuis coordinates

$$q_1 = -a_1 - y_3(2 + y_3), \qquad q_2 = -a_1 - \sqrt{y_2}y_3,$$

and momenta

$$p_1 = \frac{y_1}{2+2y_3} + \frac{y_2y_4}{(1+y_3)y_3}, \qquad p_2 = -\frac{2\sqrt{y_2}y_4}{y_3}.$$

In the separated variables, the Stackel matrix S is equal to

(3.28)
$$S = \begin{bmatrix} 1 & 1 \\ 0 & -\frac{-2y_3 + \sqrt{y_2}y_3 - y_3^2}{a_2 + 2y_3 + 4y_4 - 2\sqrt{y_2}y_4 + 2y_3y_4 + y_3} \end{bmatrix}$$

Now considering the initial integrals of motion $H_{1,2}$ for Lie group $\mathbf{A}_{4,9}^1$, the separated relations is as follows:

$$C: \alpha H_1 + H_2 - \beta + \sqrt{1 - a_1 - q_1} + 1 = 0.$$

Where

$$\begin{split} \alpha &= \frac{(q_1-q_2)(a_1+q_2)}{a_1(a_2-3(1+\sqrt{1-a_1-q_1}))+(1+\sqrt{1-a_1-q_1})q_1p_2-q_2(-a_2+(1+\sqrt{1-a_1-q_1})(3+p_2)} \ , \\ \beta &= \frac{(a_1-2(1+\sqrt{1-a_1-q_1})+q_1)(q_1-q_2)p_2}{2(a_1(3-a_2+3\sqrt{1-a_1-q_1})-(1+\sqrt{1-a_1-q_1})q_1p_2+q_2(-a_2+(1+\sqrt{1-a_1-q_1})(3+p_2)))} \end{split}$$

3.8. Lie group $A_{4,12}$: For this Lie group we have the following Poisson bi-vector:

(3.29)
$$P' = \begin{bmatrix} 0 & 0 & y_2^2 - 2y_1y_3^2 & 2y_1y_2 \\ * & 0 & 0 & y_2^2 \\ * & * & 0 & 0 \\ * & * & * & 0 \end{bmatrix}.$$

In this case, Control matrix for the Poisson bi-vector P' (3.29) is as follows:

(3.30)
$$F = \begin{bmatrix} y_2^2 & 4e^{-2y_4}y_1y_2y_3^2 \\ 0 & y_2^2 - 2y_1y_3^2 \end{bmatrix}.$$

Variables of separation $q_{1,2}$ are eigenvalues the control matrix. For Lie group $A_{4,6}^{a,0}$, they are the roots of the following polynomial

$$A(\lambda) = \det(F - \lambda I) = \lambda^2 - 2\lambda y_2^2 + y_2^4 + 2\lambda y_1 y_3^2 - 2y_1 y_2^2 y_3^2,$$

this is

$$q_1 = y_2^2, \qquad q_2 = y_2^2 - 2y_1y_3^2.$$

The corresponding momenta are defined by

$$p_1 = \frac{1}{2} \left(\frac{y_4}{y_2} - \frac{1}{y_3} \right), \qquad p_2 = \frac{1}{2} \left(y_2^2 + 2y_1 y_3^2 + \frac{1}{y_3} \right)$$

In the separated variables, the Stackel matrix S is equal to

(3.31)
$$S = \begin{bmatrix} 1 & 1 \\ 0 & -\frac{e^{2y_4}}{2y_2} \end{bmatrix}$$

Now considering the initial integrals of motion $H_{1,2}$ for Lie group $A_{4,12}$, the separated relations is as follows:

$$C: -\frac{e^{2\sqrt{q_1}(2p_1+2p_2-2q_1+q_2)}}{2\sqrt{q_1}}H_1 + H_2 -\frac{1}{2}\left(-2 + e^{2\sqrt{q_1}(2p_1+2p_2-2q_1+q_2)}\right)(2p_2 - 2q_1 + q_2) = 0$$

4. Conclusion

Starting with integrals of motion for integrable systems on 4-dimensional real Lie groups considered as Poisson manifold, we have found the Poisson bi-vectors which are compatible with the canonical Poisson bi-vector on Lie group space. In such Poisson bi-vectors, it is assumed that the Lie derivative of P along some unknown Liouville vector field X. As a result, the system of equations (2.3)-(2.5) has infinitely many solutions.

We are able to obtain a particular answer, assuming that the components of the Liouville vector field are second order polynomials in momenta. An application of the corresponding control matrices allows us to get a framework of the bi-Hamiltonian geometry using two families of variables of separation and of separated relations.

References

- J. Abedi-Fardad, A. Rezaei-Aghdam and GH. Haghighatdoost, Integrable and superintegrable Hamiltonian systems with 4dimensional real Lie algebras as symmetry of the systems, J.Math. Phys., 55 (2014), pp. 1-12.
- G. Falqui and M. Pedroni, Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom., 6 (2003), pp. 139-179.
- I.M. Gel'fand and I. Ya. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct Anal Its Appl, 13 (1979), pp. 248-262.
- Gh. Haghighatdoost, H. Abbasi Makrani and R. Mahjoubi, On the cyclic Homology of multiplier Hopf algebras, Sahand Commun. Math. Anal., 9 (2018), pp. 113-128.
- Y. Kosmann-Schwarzbach and F. Magri, *Poisson-Nijenhuis struc*tures, Ann. Inst. H. Poincare, 53 (1990), pp. 35 - 81.
- F. Magri and C. Morosi, A Geometrical Characterization of Integrable Hamiltonian Systems through the theory of PoissonNijenhuis manifolds, Dipartimento di Matematica F. Enriques, 1984 - Pages 176.

102

- F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), pp. 1156-1162.
- 8. G. Ovando, Four dimensional symplectic Lie algebras, Beitr. Algebra Geom., 47 (2006), pp. 419-434.
- A.V. Tsiganov, New Variables of Separation for the SteklovLyapunov System, SIGMA, Symmetry Integrability Geom. Meth- ods Appl., 8 (2012), pp. 12-14.
- A.V. Tsiganov, On bi-hamiltonian structure of some integrable systems on so * (4), J. Nonlinear Math. Phys., 15 (2008), pp. 171-185.
- A.V. Tsiganov, On bi-hamiltonian geometry of the Lagrange top, J. Phys. A: Math. Theor., 41 (2008), pp. 1-12.
- A.V. Tsiganov, On the two different bi-Hamiltonian structures for the Toda lattice, J. Phys. A, Math. Theor., 40 (2007), pp. 6395-6406.
- A.V. Vershilov, A.V. Tsiganov, On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion, J. Phys. A, Math. Theor., 42 (2009), pp. 1-12.

Appendix

system	nonzero Poisson brackets	Darboux coordinates	H_{1}, H_{2}
$A_{4.1}$	$\{x_1, x_2\} = -\frac{c}{2}x_4^2$	$y_1 = \frac{x_3}{2} + \frac{cx_4^2}{2} + \frac{x_4^2}{2d}$	$H_1 = -y_3$
,	$\{x_1, x_2\} = cx_4$	$u_2 = -x_1 + \frac{x_3^2}{x_4^2} + \frac{1}{2}cdx_2x_4 - \frac{x_3x_4^2}{x_4^2}$	$H_2 = -\frac{y_2^2 y_3}{y_2^2 y_3}$
	[-1,-3]4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2
		$-\frac{-3}{cd} - \frac{-3}{64} + \frac{-3}{4d^2} - \frac{-3}{8d}$	
	$\{x_1, x_4\} = -d$	$y_3 = x_2 - \frac{2x_3x_4}{cd} - \frac{x_4}{d^2} - \frac{cx_4}{4d}$	
	$\{x_2, x_3\} = -c$	$y_4 = \frac{x_4}{d}$	
Δ^{-1}	$\begin{cases} x_1 & x_2 \end{bmatrix} = 2c$	$u_1 = -\frac{e^x 4}{2} + r_2$	$H_1 = \frac{1}{1}$
A4,2	$\{x_1, x_2\} = 2c$	$y_1 = -\frac{1}{b} + x_3$	$m_1 = \frac{1}{y_2 y_3^2}$
	$\{x_1, x_3\} = -c$	$y_2 = \frac{-2ae^{x_4} - bx_1 + abx_2}{ab^2}$	$H_2 = -y_2 y_3$
	$\{x_2, x_4\} = -d \ e^{-x_4}$	$y_3 = \frac{2e^{x_4}}{x_{a}^{b}} + \frac{x_1}{a}$	
		$y_4 = e^{x_4}$	
$A_{4,3}$	$\{x_1, x_2\} = c \ x_4 \ e^{-x_4}$	$y_1 = \frac{dx_2}{f} + \frac{chx_3}{2df} - \frac{cx_3x_4}{f}$	$H_1 = -y_3$
	$\{x_1, x_3\} = d \ e^{-x_4}$	$y_2 = \frac{x_1}{h} - \frac{de^{-x_4}x_2}{fh} - \frac{ce^{-x_4}x_3^2}{2df}$	$H_2 = y_2 y_3 \ln y_2 $
		$+\frac{ce^{-x_4}x_3x_4}{ce^{-x_4}x_3x_4}$	
	$\{x_1, x_4\} = h \ e^{-x_4}$	$y_3 = \frac{x_3}{d}$	
	$\{x_2, x_3\} = f$	$y_4 = e^{x_4}$	
$A^{a,0}_{4,6}$	$\{x_1, x_4\} = d \ e^{-ax_4}$	$y_1 = x_3$	$H_1 = e^{(\frac{2ay_2}{d^2})} y_3^2$
4,0	$\{x_2, x_2\} = c$	$u_2 = -\frac{e^{2ax_4}x_1}{1}$	$H_2 =$
	[[[]]_2,[]]_3] 0	92 ad	$\frac{ay_2}{\sqrt{2}}$ $\frac{-\frac{y_2}{\sqrt{2}}}{\sqrt{2}}$
		$u_2 = -\frac{x_2}{x_2}$	$-e a^2 y_3 \cos(e a^2)$
		$y_4^{93} = e^{-ax_4}$	
A4 7	$\{x_1, x_3\} = -2cx_3e^{-2x_4}$	$u_1 = \frac{e^{2x_4}x_2}{2}$	$H_1 = -u_2 u_3$
	$\{x_1, x_4\} = ce^{-2x_4}$	$u_{2} = -\frac{2c}{1-e^{2x_{4}}+e^{4x_{4}}x_{1}+e^{4x_{4}}x_{2}x_{3}}$	$H_0 = -u_0$
	$\{x_1, x_4\} = 2ce^{-2x_4}$	$y_2 = 2c$ $y_3 = x_3$	112 - 93
		$y_4 = e^{-2x_4}$	
$A^{1}_{4,9}$	$\{x_1, x_3\} = 2cx_3e^{-2x_4}$	$y_1 = -\frac{e^{2x_4}x_2}{2c}$	$H_1 = -y_4$
-,.	$\{x_1, x_4\} = -c \ e^{-2x_4}$	$u_2 = \frac{-1 - e^{2x_4} + e^{4x_4} x_1 + e^{4x_4} x_2 x_3}{2}$	$H_2 = -y_3$
	$\{x_2, x_3\} = -2c \ e^{-2x_4}$	$y_3 = x_3$	2 00
		$y_4 = e^{-2x_4}$	
$A_{4,12}$	$\{x_1, x_3\} = -ce^{-x_3}(a\cos(x_4))$	$y_1 = e^{2x_3}(ax_1 - bx_2)\cos(x_4)$	$H_1 = -\frac{y_2}{y_3}$
	$+b\sin(x_4))$	$+e^{2x_3}(bx_1+ax_2)\sin(x_4)$	1
	$\{x_1, x_4\} = ce^{-x_3}(-b\cos(x_4))$	$y_2 = -e^{x_3}(bx_1 + ax_2)\cos(x_4)$	$H_2 = -\frac{1}{y_3}$
	$+a\sin(x_4))$	$+(-ax_1+bx_2)\sin(x_4)$	
	$(x_2, x_3) = ce^{-a} \sin(x_4)$	$y_3 - c$,	
	$\{x_2, x_4\} = -ce^{-x_3}(a\cos(x_4))$	$y_4 = x_4$	
	$+b\sin(x_4))$		

TABLE 1. Integrable systems on four dimensional real Lie groups.

system Poisson bi-vector 0 $-y_4$ $-a_3 + y_1$ Ő 0 $-a_3 + y_1$ P' = $A_{4,1}$ * 0 $-y_4$ Ő $e^{-(2a_1y_2)}y_3$ $e^{-(a_1y_2)}a_2$ 0 $-a_{3}$ $-2y_3(a_4 + f(y_2)) - y_3g(y_2)$ a_1 a_1 $(a_1y_2)a_2$ P' = $A_{4,2}^{-1}$ 0 0 a_3 $(a_1y_2)y_3$ 0 $-a_2e$ * 0 ÷ $2a_6 - e^{a_1(y_2 + a_2)}$ $-a_7 - 2a_6y_3$ 0 0 $a_1 \\ 0$ P' = $A_{4.3}$ 0 α 0 0 * 0 * $e^{a_1(y_2+a_2)}(y_3+y_4^2a_3+a_4+y_4a_5)$ $2a_6(y_4^2a_3 + a_4 + y_4a_5)$ $\alpha =$ a_7 $\frac{(50+543)}{-y_1y_3-y_3^2f(y_2)}$ 0 $2a_2y_3$ 0 $y_2^2 + y_2 y_3$ $-a_1$ * 0 0 $A_{4.6}^{a,0}$ P' =0 $2y_2y_3 + y_3^2$ 0 $-2a_{1}$ (y_2+a_2) y_3 α 0 $-a_3 - 2a_4y_3$ $\overline{9a_6}$ ${}^{a_1}_{0}$ P' = $\mathbf{A_{4,7}}$ 0 β 0 0 0 $\begin{array}{c} (4a_{320}e^{(3y_2a_1)} + 3a_5)(2a_4e^{(3y_2a_1)}y_3 - 3(y_3a_5 + e^{(y_2a_1)}y_4a_6)) \\ a_4y_3)/3 - e^{(-2a_1(y_2+a_2))}y_3^2 - e^{(-3y_2a_1)}y_3a_5 - e^{(-2y_2a_1)}y_4a_6 \end{array}$ $\alpha = \epsilon$ $(4a_4y_3)/3 - e^{(-2a_1(y_2+a_2))}y_3^2$ $\beta =$ $\frac{e^{\sqrt{-2a}}}{\sqrt{y_2}+y_3)}$ a_3 $y_3(2+y_3)$ $2y_2(2$ $-a_1$ α $-\sqrt{y_2}y_3 \\ 0$ 0 * $-a_1$ $A_{4.9}^{1}$ P' =0 0 $\sqrt{y_2}y_4 + y_3y_4$) $2(y_3 + 2y_4)$ $\alpha =$ an $- y_{3}$ 0 0 $y_2^2 - 2y_1y_3^2$ $2y_1y_2$ 0 0 * y_2^2 $\mathbf{A_{4,12}}$ P' =* 0 0 0

TABLE 2. The Poisson bi-vector over four dimensional real Lie groups.

 1 Department of Mathematics, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.

E-mail address: gorbanali@azaruniv.ac.ir

 2 Department of Mathematics, University of Bonab, Tabriz, Iran. $E\text{-}mail\ address:$ S.Abdolhadi@ubonab.ac.ir

³ DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BONAB, TABRIZ, IRAN. *E-mail address:* r.mahjoubi@ubonab.ac.ir