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Fixed Point Theorems for Geraghty Type Contraction

Mappings in Complete Partial bv (s)-Metric Spaces

Ebru Altiparmak1∗ and Ibrahim Karahan2

Abstract. In this paper, necessary and sufficient conditions for
the existence and uniqueness of fixed points of generalized Geraghty
type contraction mappings are given in complete partial bv (s)-
metric spaces. The results are more general than several results
that exist in the literature because of the considered space. A nu-
merical example is given to support the obtained results. Also, the
existence and uniqueness of the solutions of an integral equation
has been verified considered as an application.

1. Introduction and Preliminaries

Generalizations of the notions and carrying theorems to the more
general situations are in the nature of mathematics. Since the fixed
point theorems for special classes of mappings defined in metric spaces
are very important in pure and applied sicences, many researchers have
tried to give some different kind of generalizations of metric spaces and
mappings. From this point of view, many authors introduced some
generalized metric spaces such as b-metric, rectangular, v-generalized,
bv (s), partial, partial b-metric and so on. Also, Geraghty, Ciric, cyclic,
Meir-Keeler and F -contraction mappings are just the small part of the
special classes of generalized contraction mappings. Among all these
mappings, Geraghty type mappings have a great importance in fixed
point theory.
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46 E. ALTIPARMAK AND I. KARAHAN

Let (X, d) be a metric space. A mapping T : X → X is called
Geraghty contraction if it satisfies

(1.1) d (Tx, Ty) ≤ β (d (x, y)) d (x, y) ,

for all x, y ∈ X and for a function β ∈ F where F denote the family of
all functions β : [0,∞) → [0, 1) satisfying

lim
n→∞

β (tn) = 1 implies lim
n→∞

tn

= 0.

Geraghty [15] also proved that a mapping which satisfies the inequality
(1.1) has a unique fixed point in a complete metric space. Then, many
authors made an effort to generalize and extend his results. Therefore,
Dukic et al. [11] extended his results to partial metric spaces, ordered
partial metric spaces and metric-type spaces. In 2010, Gordji [16] proved
similar theorems for special multivalued mappings. In 2015, Kadelburg
and Kumam [20] proved a common coupled fixed point theorems in met-
ric spaces. Also, Faraji et al. [14], Erhan [13], Aydi et al. [8] and Piao
[29] proved some fixed point theorems for Geraghty type contraction
mappings in b-metric space, Branciari b-metric space, metric like space
and 2-metric space, respectively. For more details, please see also the
other references. On the other hand, some authors generalized the class
of Geraghty type mappings. In recent years, Aydi et al. [8], Shahkoohi
and Razani [32], Karapınar and Samet [24], Chandok [9], Altun and
Sadarangani [6], Acar and Altun [2] and Alqahtani et al. [5] published
some papers about the existence and uniqueness of fixed points of differ-
ent kind of generalizations of Geraghty type contraction mappings, see
also [3, 4, 7, 8, 10, 12, 17–19, 22, 23, 25–28, 30, 31, 33]

In this paper, we extend most of these theorems by using generalized
Geraghty contraction mappings defined on partial bv (s)-metric spaces
which is introduced by Karahan and Isik [21] and Abdullahi and Kumam
[1] individually.

Definition 1.1. Let X be a nonempty set, d : X × X → [0,∞) be a
mapping and v ∈ N. Then, (X, d) is called a partial bv (s)-metric space
if there exists a real number s ≥ 1 such that following conditions hold
for all x, y, z1, z2, . . . , zv ∈ X :

(i) x = y ⇔ d (x, x) = d (x, y) = d (y, y) ,
(ii) d (x, x) ≤ d (x, y) ,
(iii) d (x, y) = d (y, x) ,

(iv) d (x, y) ≤ s [d (x, z1) + d (z1, z2) + · · ·+ d (zv−1, y)]−
v∑

i=1
d (zi, zi).
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It is easy to see that every bv(s)-metric space is a partial bv(s)-metric
space. However, the converse is not true in general. So, a partial bv(s)-
metric space is a generalized version of usual metric space, b-metric
space, rectangular metric space, v-generalized metric space, bv (s)-metric
space, partial metric space, partial b-metric space, partial rectangular
metric space and partial v-generalized metric space.

Now, we give definitions of a convergent sequence, Cauchy sequence
and complete partial bv(s)-metric spaces in the following manner.

Definition 1.2 ([21]). Let (X, d) be a partial bv(s)-metric space and
{xn} be any sequence in X. Then,

(i) the sequence {xn} is said to be convergent to x, if

lim
n→∞

d (xn, x) = d (x, x) .

(ii) the sequence {xn} is said to be Cauchy sequence in (X, d) if
lim

n,m→∞
d (xn, xm) exist and is finite.

(iii) (X, d) is said to be a complete partial bv(s)-metric space if for
every Cauchy sequence {xn} in X there exists x ∈ X such that

lim
n,m→∞

d (xn, xm) = lim
n→∞

d (xn, x)

= d (x, x) .

Note that the limit of a convergent sequence may not be unique in a
partial bv(s) metric space.

In partial bv(s)-metric spaces, the mapping β : [0,∞) →
[
0, 1s

)
used

in the definition of Geraghty type contractions has been modified in a
way to satisfy the following condition:

lim sup
n→∞

β (tn) =
1

s
implies lim

n→∞
tn = 0.

Then, the set of such mappings is denoted by Fs.

2. Main Results

In this section, we present some fixed point theorems for generalized
Geraghty type contraction mappings in complete partial bv (s)-metric
spaces.

Theorem 2.1. Let (X, d) be a complete partial bv (s)-metric space with
a parameter s ≥ 1 and T be a mapping on X satisfying,

(2.1) d (Tx, Ty) ≤ β (M (x, y))M (x, y) ,

for all x, y ∈ X, where

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)} ,
and β ∈ Fs. Then T has a unique fixed point u and d (u, u) = 0.
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Proof. Let x0 ∈ X be an arbitrary initial point. Let define the sequence
{xn} by using Picard iterative method, that is, xn = Txn−1 = Tnx0. If
there exists n ∈ N such that xn = xn+1, then xn becomes a fixed point
of T . So, we can assume that xn ̸= xn+1 for all n ∈ N. By (2.1), we
have

d (xn, xn+1) = d (Txn−1, Txn)(2.2)

≤ β (M (xn−1, xn))M (xn−1, xn)

where

M (xn−1, xn) = max {d (xn−1, xn) , d (xn−1, Txn−1) , d (xn, Txn)}
= max {d (xn−1, xn) , d (xn−1,xn) , d (xn, xn+1)}
= max {d (xn−1, xn) , d (xn, xn+1)} .

If d (xn−1, xn) ≤ d (xn, xn+1) , then, we get M (xn−1, xn) = d (xn, xn+1).
From (2.2) we have,

d (xn, xn+1) ≤ β (M (xn−1, xn))M (xn−1, xn)

<
1

s
d (xn+1, xn) .

Since the last inequality is a contradiction, we obtain that

d (xn, xn+1) ≤ d (xn−1, xn) , ∀n ∈ N.
By the same way, we can show that

d (xn, xn+1) ≤ β (M (xn−1, xn))M (xn−1, xn)(2.3)

<
1

s
d (xn−1, xn) .

This means that {d (xn−1, xn)} is a decreasing sequence. Therefore,
there exists d ≥ 0 such that lim

n→∞
d (xn−1, xn) = d. We assert that d = 0.

Suppose on the contrary that d > 0. Then, from (2.3), we have

d ≤ lim sup
n→∞

β (M (xn−1, xn)) d.

Then, it is clear that

1

s
≤ 1

≤ lim sup
n→∞

β (M (xn−1, xn))

≤ 1

s
.

Since β ∈ Fs, we get lim
n→∞

M (xn−1, xn) = 0 and so lim
n→∞

d (xn−1, xn) =

0 which is a contradiction, namely d = 0. Now, we show that {xn} is a
Cauchy sequence. So, we need to show that lim

n,m→∞
d (xn, xm) exists and
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is finite. Particularly, we show that lim
n,m→∞

d (xn, xm) = 0. Assume on

the contrary that lim
n,m→∞

d (xn, xm) ̸= 0. Then, there exists ε > 0 such

that there exist subsequences
{
xm(k)

}
and

{
xn(k)

}
of {xn} for which

n (k) > m (k) > k,

(2.4) d
(
xm(k), xn(k)

)
≥ ε

and

(2.5) d
(
xm(k)+v−1, xn(k)−1

)
< ε.

It follows from (2.4) and triangular inequality that

ε ≤ d
(
xm(k), xn(k)

)
≤ s

[
d
(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1, xm(k)+2

)
+ · · ·

+d
(
xm(k)+v−1, xm(k)+v

)
+ d

(
xm(k)+v, xn(k)

)]
−

v∑
i=1

d
(
xm(k)+i, xm(k)+i

)
≤ sd

(
xm(k), xm(k)+1

)
+ sd

(
xm(k)+1, xm(k)+2

)
+ · · ·

+ sd
(
xm(k)+v−1, xm(k)+v

)
+ sd

(
xm(k)+v, xn(k)

)
.

By taking limsup for k → ∞, we obtain

(2.6)
ε

s
≤ lim sup

k→∞
d
(
xm(k)+v, xn(k)

)
.

Thus, we get

lim sup
k→∞

M
(
xm(k)+v−1, xn(k)−1

)
= lim sup

k→∞
max

{
d
(
xm(k)+v−1, xn(k)−1

)
,

d
(
xm(k)+v−1, Txm(k)+v−1

)
, d

(
xn(k)−1, Txn(k)−1

)}
= lim sup

k→∞
max

{
d
(
xm(k)+v−1, xn(k)−1

)
,

d
(
xm(k)+v−1, xm(k)+v

)
, d

(
xn(k)−1, xn(k)

)}
< ε.

From (2.6) and (2.1), we have

ε

s
≤ lim sup

k→∞
d
(
xm(k)+v, xn(k)

)
≤ lim sup

k→∞
β
(
M

(
xm(k)+v−1, xn(k)−1

))
M

(
xm(k)+v−1, xn(k)−1

)
≤ lim sup

k→∞
β
(
M

(
xm(k)+v−1, xn(k)−1

))
lim sup
k→∞

M
(
xm(k)+v−1, xn(k)−1

)
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≤ ε lim sup
k→∞

β
(
M

(
xm(k)+v−1, xn(k)−1

))
.

Then, we obtain 1
s ≤ lim sup

k→∞
β
(
M

(
xm(k)+v−1, xn(k)−1

))
≤ 1

s . Since β ∈

Fs, thus lim
k→∞

M
(
xm(k)+v−1, xn(k)−1

)
= 0. As a result, we get that the

sequence
{
d
(
xm(k)+v−1, xn(k)−1

)}
converges to 0 as k → ∞. From (2.4)

and using the triangular inequality, we have

ε ≤ d
(
xm(k), xn(k)

)
≤ s

[
d
(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1, xm(k)+2

)
+ · · ·+ d

(
xm(k)+v−1, xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)]
−

v−1∑
i=1

d
(
xm(k)+i, xm(k)+i

)
− d

(
xn(k)−1, xn(k)−1

)
≤ sd

(
xm(k), xm(k)+1

)
+ sd

(
xm(k)+1, xm(k)+2

)
+ · · ·

+ sd
(
xm(k)+v−1, xn(k)−1

)
+ sd

(
xn(k)−1, xn(k)

)
.

Therefore, we have lim
k→∞

d
(
xm(k), xn(k)

)
= 0. This contradicts condition

(2.4). Hence {xn} is a Cauchy sequence in X. Because of the complete-
ness of X, there exists a point u in X such that

lim
n→∞

d (xn, u) = lim
n,m→∞

d (xn, xm)

= d (u, u) = 0.

Now, we show that u is a fixed point of T . It follows from triangular
inequality and (2.1) that

d (u, Tu) ≤ s [d (u, xn+1) + d (xn+1, xn+2) + · · ·+ d (xn+v−1, xn+v)

+d (xn+v, Tu)]−
v∑

i=1

d (xn+i, xn+i)

≤ sd (u, xn+1) + sd (xn+1, xn+2)+

+ · · ·+ sd (xn+v−1, xn+v) + sd (xn+v, Tu) .

Taking limitsup as n→ ∞, we obtain

d (u, Tu) ≤ s lim sup
n→∞

d (u, xn+1) + s lim sup
n→∞

d (xn+1, xn+2)(2.7)

+ · · ·+ lim sup
n→∞

d (xn+v−1, xn+v)

+ s lim sup
n→∞

β (M (xn+v−1, u)) lim sup
n→∞

M (xn+v−1, u) ,

where

lim sup
n→∞

M (xn+v−1, u)

= lim sup
n→∞

max {d (xn+v−1, u) , d (xn+v−1, Txn+v−1) , d (u, Tu)}
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= lim sup
n→∞

max {d (xn+v−1, u) , d (xn+v−1, xn+v) , d (u, Tu)}

= d (u, Tu) .

Thus, from (2.7) we have,

d (u, Tu) ≤ s lim sup
n→∞

β (M (xn+v−1, u)) d (u, Tu) .

Consequently,

1

s
≤ lim sup

n→∞
β (M (xn+v−1, u)) ≤

1

s
.

Since β ∈ Fs , we conclude that lim
n→∞

M (xn+v−1, u) = 0. Therefore we

obtain Tu = u, that is, u is a fixed point. Now, we need to show that
u is a unique fixed point. Suppose to the contrary that there exists a
distinct fixed point v. From (2.1) we have,

d (u, v) = d (Tu, Tv)

≤ β (M (u, v))M (u, v) ,

where

M (u, v) = max {d (u, v) , d (u, Tu) , d (v, Tv)} ,
= d (u, v) .

Therefore, we have

d (u, v) <
1

s
d (u, v) .

This is a contradiction. So u = v, that is, u is a unique fixed point of
T . This completes the proof. □

Corollary 2.2. Let (X, d) be a complete bv (s)-metric space with a con-
stant s ≥ 1 and let β ∈ Fs be a given function. Let T be a mapping on
X satisfying,

(2.8) d (Tx, Ty) ≤ β (M (x, y))M (x, y) ,

for all x, y ∈ X, where

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)} .

Then T has a unique fixed point u and d (u, u) = 0.

Remark 2.3. In Theorem 2.1, if we take the constant v = 2, then we
derive Corollary 3.4 of [13] in Branciari b metric spaces.

Now, we prove a fixed point theorem for Geraghty type contraction
mappings in a complete partial bv (s)-metric space. Precisely, if d (x, y) is
taken instead of (2.1) in Theorem 2.1, the following theorem is obtained.
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Theorem 2.4. Let (X, d) be a complete partial bv (s)-metric space with
parameter s ≥ 1 and T : X → X be a mapping. Assume that there exists
β ∈ Fs such that

(2.9) d (Tx, Ty) ≤ β (d (x, y)) d (x, y) ,

for all x, y ∈ X. Then T has a unique fixed point z ∈ X and for each
x ∈ X the Picard sequence {Tnx} converges to z in (X, d).

Proof. Let x0 ∈ X be an arbitrary initial point and Txn−1 = xn for
n ∈ N. If xn0 = xn0+1 for some n0, then it is obtained that xn = xn0

for all n ≥ n0 and the proof is completed. So, we can suppose that
xn ̸= xn+1 for all n ∈ N. Then, using (2.9) we obtain

d (xn+1, xn) = d (Txn, Txn−1)

≤ β (d (xn, xn−1)) d (xn, xn−1)

<
1

s
d (xn, xn−1) .

Similiarly to the proof of Theorem 2.1, it can be proved that
lim
n→∞

d (xn−1, xn) = 0 and {xn} is a Cauchy sequence in the partial

bv (s)-metric space X. Because of the completeness of X, {xn} con-
verges to a point z in X. Now, we want to show that {xn} has a unique
limit. Suppose on the contrary that the sequence {xn} converges to y
and z. We need to show that y = z. From the third condition of the
definition of partial bv (s)-metric space, we get

d (y, z) ≤ s [d (y, xn) + d (xn, xn+1) + · · ·+ d (xn+v−2, xn+v−1)

+d (xn+v−1, z)]−
v−1∑
k=1

d (xn+i, xn+i)

≤ s [d (y, xn) + d (xn, xn+1) + · · ·
+ d (xn+v−2, xn+v−1) + d (xn+v−1, z)] .

By taking limit from both side, we obtain that y = z. So, the sequence
{xn} has a unique limit. Now, we show that the mapping T which
satisfies the condition (2.9) is a continuous mapping in the sense that
yn → y implies that Tyn → Ty. Let yn → y as n → ∞. We get from
(2.9) that

d (Tyn, Ty) ≤ β (d (yn, y)) d (yn, y)

<
1

s
d (yn, y) .

Obviously, since yn → y, we have Tyn → Ty. This means that T is a
continuous mapping. So, it is clear that Tz = z, that is, z is a unique
fixed point of T . □
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Corollary 2.5. Let (X, d) be a complete bv (s)-metric space with param-
eter s ≥ 1 and let T : X → X be a mapping. Assume that there exists
β ∈ Fs such that

d (Tx, Ty) ≤ β (d (x, y)) d (x, y) ,

for all x, y ∈ X. Then T has a unique fixed point z ∈ X and for each
x ∈ X the Picard sequence {Tnx} converges to z in (X, d).

Remark 2.6. (i) In Corollary 2.5, if v = s = 1, then we derive
Theorem 1.3 of [15] in metric spaces

(ii) In Corollary 2.5, if we take the constant v = 1, then we derive
Theorem 3.8 of [11] in metric type spaces.

(iii) In Corollary 2.5, if v = 2, then we obtain Corollary 3.6 of [13]
in Branciari b metric spaces.

(iv) In Theorem 2.4, if v = s = 1, then we derive Theorem 3.1 of
[11] in partial metric spaces.

Now, we give an example which satisfies the conditions of Theorem
2.1.

Example 2.7. Let X = {1, 2, 3, 4, 5} and d : X ×X → [0,∞) be a
mapping defined by,

d (x, y) =


0, if x = y = 3,
9
10 , if x or y ∈ {1, 2} , x ̸= y,
1
10 , otherwise,

for all x, y ∈ X. Then (X, d) is a complete partial bv (s)-metric space
with v = 3 and s = 3

2 . Let T : X ×X → [0,∞) be a mapping defined by

T (x) =

{
4, if x = 1,
3, if x ̸= 1,

for all x, y ∈ X and β (t) = 2
3e

−t . Then it is easy to see that T is a
generalized Geraghty type contraction on X. So, T has a unique fixed
point u = 3 and d (3, 3) = 0.

The below theorem is an enlargement of [[14], Theorem 4] from the no-
tion b-metric spaces to the case of partial bv (s)-metric spaces. Although
there exists a continuity condition in Theorem 4 of [14], we prove the
next theorem without this condition.

Theorem 2.8. Let (X, d) be a complete partial bv (s)-metric space with
a constant s > 1. If T, S are mappings on X satisfying,

(2.10) sd (Tx, Sy) ≤ β (M (x, y))M (x, y) , x, y ∈ X,

where
M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Sy)} ,
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and β ∈ Fs, then T and S have a unique common fixed point x∗ and
d (x∗, x∗) = 0.

Proof. Let x0 ∈ X be an arbitrary initial point. Define a sequence {xn}
in X by x2n+1 = Tx2n and x2n+2 = Sx2n+1 for all n ∈ N. Then we have

sd (x2n+1, x2n+2) = sd (Tx2n, Sx2n+1)(2.11)

≤ β (M (x2n, x2n+1))M (x2n, x2n+1) ,

where

M (x2n, x2n+1) = max {d (x2n, x2n+1) , d (x2n, Tx2n) , d (x2n+1, Sx2n+1)}
= max {d (x2n, x2n+1) , d (x2n, x2n+1) , d (x2n+1, x2n+2)}
= max {d (x2n, x2n+1) , d (x2n+1, x2n+2)} .

If d (x2n, x2n+1) ≤ d (x2n+1, x2n+2) , then we getM (x2n, x2n+1) = d (x2n+1, x2n+2) .
So, we obtain

sd (x2n+1, x2n+2) ≤ β (M (x2n, x2n+1))M (x2n, x2n+1)

<
1

s
d (x2n+1, x2n+2) ,

which is a contradiction. Hence, we haveM (x2n, x2n+1) = d (x2n, x2n+1).
From (2.11), we get

sd (x2n+1, x2n+2) ≤ β (M (x2n, x2n+1))M (x2n, x2n+1)(2.12)

<
1

s
d (x2n, x2n+1) .

Then, we obtain d (x2n+1, x2n+2) ≤ 1
sd (x2n, x2n+1). In a similar way, we

can easily show that d (x2n+3, x2n+2) ≤ 1
sd (x2n+2, x2n+1). So, we have

(2.13) d (xn, xn+1) ≤
1

s
d (xn−1, xn) .

This means that {d (xn, xn+1)} is a decreasing sequence. Therefore,
there exists e ≥ 0 such that d (xn−1, xn) → e as n→ ∞. We assert that
e = 0. Suppose on the contrary that e > 0. By taking limitsup in (2.12)
as n tends to infinity, we obtain

e ≤ lim sup
n→∞

β (M (x2n, x2n+1)) e.

Then it is clear that
1

s
≤ 1

≤ lim sup
n→∞

β (M (x2n, x2n+1))

≤ 1

s
.
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Since β ∈ Fs, we conclude that

lim
n→∞

M (x2n, x2n+1) = 0.

Thus, it follows that

lim
n→∞

d (x2n, x2n+1) = 0,

which is a contradiction. This means that e = 0. On the other hand,
we observe that repeated application of (2.13) leads to

d (xn, xn+1) ≤
1

s
d (xn−1, xn)(2.14)

≤ 1

s2
d (xn−3, xn−2)

...

≤ 1

sn
d (x0, x1) .

So, we have that limn→∞d (xn, xn+1) = 0. Now, we show that {x2n} is
a Cauchy sequence. Namely, we need to show that lim

n,m→∞
d (x2n, x2m)

exists and is finite. Particularly, we will show that lim
n,m→∞

d (x2n, x2m) =

0. For m > n by using inequality (2.14), we obtain

d (x2n, x2m) ≤ s [d (x2n, x2n+1) + d (x2n+1, x2n+2) + · · ·
+ d (x2n+v−3, x2n+v−2) + d (x2n+v−2, x2n+n0)

+d (x2n+n0 , x2m+n0) + d (x2m+n0 , x2m)]

−
v−2∑
k=1

d (x2n+k, x2n+k)− d (x2n+n0 , x2m+n0)

− d (x2n+n0 , x2m+n0)

≤ s [d (x2n, x2n+1) + d (x2n+1, x2n+2) + · · ·
+ d (x2n+v−3, x2n+v−2) + d (x2n+v−2, x2n+n0)

+d (x2n+n0 , x2m+n0) + d (x2m+n0 , x2m)]

≤ s

[
1

s2n
d (x0, x1) +

1

s2n+1
d (x0, x1) + · · ·

+
1

s2n+v−3
d (x0, x1) +

1

s2n
d (xv−2, xn0)

+
1

sn0
d (x2n, x2m) +

1

s2m
d (xn0 , x0)

]
.
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So, we get(
1− 1

sn0−1

)
d (x2n, x2m) ≤ s

(
1

s2n
+

1

s2n+1
+ · · ·+ 1

s2n+v−3

)
d (x0, x1)

+ s
1

s2n
d (xv−2, xn0) +

1

s2m
d (xn0 , x0) .

By taking limit from both side

lim
n→∞

d (x2n, x2m) = 0.

This implies that {x2n} is a Cauchy sequence and so is {xn}. Since X
is a complete space, there exists x∗ ∈ X such that

lim
n→∞

d (xn, x
∗) = lim

n,m→∞
d (xn, xm)

= d (x∗, x∗)

= 0.

Now, we will show that x∗ is a fixed point of T . Then, for Tx∗ ̸= x∗, we
would write

d (Tx∗, x∗) ≤ s [d (Tx∗, x2n+2) + d (x2n+2, x2n+3) + · · ·
+d (x2n+v, x2n+v+1) + d (x2n+v+1, x

∗)]

−
v+1∑
i=2

d (x2n+i, x2n+i)

≤ s [d (Tx∗, x2n+2) + d (x2n+2, x2n+3) + · · ·
+d (x2n+v, x2n+v+1) + d (x2n+v+1, x

∗)] .

If we take the limit from the both side in the above last inequality, we
get

d (Tx∗, x∗) ≤ s lim
n→∞

d (Tx∗, x2n+2)

= s lim
n→∞

d (Tx∗, Sx2n+1)

≤ lim
n→∞

β (M (x∗, x2n+1))M (x∗, x2n+1)

<
1

s
lim
n→∞

M (x∗, x2n+1) ,

where

lim
n→∞

M (x∗, x2n+1) = lim
n→∞

max {d (x∗, x∗) , d (x∗, Tx∗) , d (x2n+1, Sx2n+1)}

= lim
n→∞

max {d (x∗, x∗) , d (x∗, Tx∗) , d (x2n+1, x2n+2)}

= d (x∗, Tx∗) .
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So, we can write

d (Tx∗, x∗) ≤ β (M (x∗, x2n+1))M (x∗, x2n+1)

<
1

s
d (x∗, Tx∗) ,

which is a contradiction. Thus, we obtain Tx∗ = x∗. By (2.10), we have

sd (x∗, Sx∗) = sd (Tx∗, Sx∗)

≤ β (M (x∗, x∗))M (x∗, x∗) ,

where

M (x∗, x∗) = max {d (x∗, x∗) , d (x∗, Tx∗) , d (x∗, Sx∗)}
= d (x∗, Sx∗) .

Hence, we get

sd (x∗, Sx∗) <
1

s
d (x∗, Sx∗) .

Therefore, we obtain Sx∗ = x∗. So, it is concluded that x∗ is a common
fixed point of T and S. Now, we need to show that x∗ is a unique fixed
point. Let y be another common fixed point of T and S. By (2.10) we
obtain

sd (x∗, y) = sd (Tx∗, Sy)

≤ β (M (x∗, y))M (x∗, y) ,

where

M (x∗, y) = max {d (x∗, y) , d (x∗, Tx∗) , d (y, Sy)}
= d (x∗, y) .

So, we get

sd (x∗, y) <
1

s
d (x∗, y) ,

which is a contradiction. Therefore, it follows that x∗ = y. This com-
pletes the proof. □

Corollary 2.9. Let (X, d) be a complete bv (s)-metric space with a con-
stant s > 1. If T, S are mappings on X satisfying,

sd (Tx, Sy) ≤ β (M (x, y))M (x, y) , x, y ∈ X,

where

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Sy)}
and β ∈ Fs, then T and S have a unique common fixed point x∗ and
d (x∗, x∗) = 0.



58 E. ALTIPARMAK AND I. KARAHAN

3. Applications to Nonlinear Integral Equations

In this section, as an application to the fixed point theorems proved
in the previous section, we consider the existence of the solutions of
nonlinear integral equations.

Let X = C [0, r] with

d (x, y) = max
t∈[0,r]

{|x (t)− y (t)|p} , p > 1, x, y ∈ X.

Clearly, from the convexity of function f (x) = xp for x ≥ 0 and Jensen
inequality, we have

(x1 + x2 + · · ·+ xv)
p ≤ vp−1 (xp1 + xp2 + · · ·+ xpv) ,

for nonnegative real numbers x1, x2, . . . , xv. So, we get that (X, d) is a
complete partial bv (s)-metric space for v ≥ 3 and s = vp−1. Let consider
the integral equation,

(3.1) x (t) = h (t) +

r∫
0

G (t, s) k (t, s, x (s)) ds,

where h : [0, r] → R, G : [0, r]× [0, r] → R and k : [0, r]× [0, r]×R → R
are continuous functions. If the following conditions are satisfied, then
the integral equation (3.1) has a unique solution:

(i) (a) |k (t, s, x (s))− k (t, s, y (s))| ≤
(
e−M(x,y)M(x,y)

vp−1

)1/p
for all

t,s ∈ [0, r] and x, y ∈ X ,

(b) max
r∫
0

G (t, s)q ds ≤ 1
rq/p

for all t,s ∈ [0, r] where 1
p +

1
q = 1.

Indeed, if we define the mapping T : X → X by

Tx (t) = h (t) +

r∫
0

G (t, s) k (t, s, x (s)) ds, x ∈ X, t, s ∈ [0, r] ,

then we can write the following from the conditions (a) and (b) :

d (Tx, Ty) = max
t∈[0,r]

{|Tx (t)− Ty (t)|p}

= max
t∈[0,r]


∣∣∣∣∣∣h (t) +

r∫
0

G (t, s) k (t, s, x (s)) ds

∣∣∣∣∣∣−h (t)−
r∫

0

G (t, s) k (t, s, y (s)) ds

∣∣∣∣∣∣
p∣∣∣∣∣∣

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= max
t∈[0,r]


∣∣∣∣∣∣

r∫
0

G (t, s) (k (t, s, x (s))− k (t, s, y (s))) ds

∣∣∣∣∣∣
p

≤ max
t∈[0,r]


r∫

0

|G (t, s) (k (t, s, x (s))− k (t, s, y (s))) ds|p


≤ max
t∈[0,r]


 r∫

0

|G (t, s)|q ds

1/q

×

 r∫
0

|k (t, s, x (s))− k (t, s, y (s))|p ds

1/p


p

= max
t∈[0,r]


 r∫

0

|G (t, s)|q ds

p/q

×

 r∫
0

|k (t, s, x (s))− k (t, s, y (s))|p ds


≤

(
1

rq/p

)p/q
r∫

0

∣∣∣∣∣e−M(x,y)M (x, y)

vp−1

∣∣∣∣∣ ds
=
e−M(x,y)

vp−1
M (x, y) .

So, we obtain

d (Tx, Ty) ≤ β (M (x, y))M (x, y) .

Then, all conditions in Theorem (2.1) are satisfied for β (t) = e−t

vp−1 , t > 0
and the integral equation (3.1) has a unique solution.
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