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Second Module Cohomology Group of Induced Semigroup

Algebras

Mohammad Reza Miri1∗, Ebrahim Nasrabadi2 and Kianoush Kazemi3

Abstract. For a discrete semigroup S and a left multiplier opera-
tor T on S, there is a new induced semigroup ST , related to S and
T . In this paper, we show that if T is multiplier and bijective, then
the second module cohomology groups H2

ℓ1(E)(ℓ
1(S), ℓ∞(S)) and

H2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )) are equal, where E and ET are subsemi-

groups of idempotent elements in S and ST , respectively. Finally,
we show thet, for every odd n ∈ N, H2

ℓ1(ET )(ℓ
1(ST ), ℓ

1(ST )
(n)) is a

Banach space, when S is a commutative inverse semigroup.

1. Introduction

Amini in [1], introduced the concept of module amenability for a class
of Banach algebras. He showed that, inverse semigroup S with subsemi-
group E of idempotent elements is amenable if and only if semigroup
algebra ℓ1(S) is ℓ1(E)-module amenable, when ℓ1(E) acts on ℓ1(S) by
multiplication from right and trivially from left. Indeed, module actions
ℓ1(E) on ℓ1(S) are

δe · δs = δs, δs · δe = δse, (e ∈ E, s ∈ S),(1.1)

where δs and δe are the point masses at s ∈ S and e ∈ E, respectively.
After that, Amini and Bagha in [2], introduced the concept of weak

module amenability and showed that, for every commutative inverse
semigroup S with idempodent set E, semigroup algebra ℓ1(S) is always
weakly ℓ1(E)-module amenable, where module actions ℓ1(E) on ℓ1(S) is

δe · δs = δs · δe = δes, (e ∈ E, s ∈ S).(1.2)
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Indeed, they studied the first ℓ1(E)-module cohomology group of
semigroup algebra ℓ1(S) with coefficients in the dual space (ℓ1(S))∗ =
ℓ∞(S). Then this sentence has been expanded by second author of the
current paper along with Pourabbas. They in [7] and [8], after intro-
ducing the concept of module cohomology group for Banach algebras
extended this result and showed that the first and second ℓ1(E)-module

cohomology groups of ℓ1(S) with coefficients in ℓ1(S)(2n−1) (n ∈ N),
are zero and Banach space, respectively, when ℓ1(S) is a Banach ℓ1(E)-
bimodule with actions (1.2). Also, the second author of the current pa-
per in [6], studied the first and second ℓ1(E)-module cohomology group
of Clifford semigroup algebra ℓ1(S) with coefficients in it’s dual.

Let S be a semigroup and ST be induced semigroup dependent on left
multiplier T : S → S, where E and ET are sets of idempotent elements
in S and ST , respectively.

In this paper, we will show that if T is multiplier and bijective, then
the second ℓ1(E)-module cohomology group ℓ1(S) with coefficents in
ℓ∞(S) is eqvalence with the second ℓ1(ET )-module cohomology group
ℓ1(ST ) with coefficents in ℓ∞(ST ), when ℓ1(S) and ℓ1(ST ) are Banach
ℓ1(E)-bimodule and Banach ℓ1(ET )-bimodule, respectively, with convo-
lution module actions. Indeed, we prove

H2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) ≃ H2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )).

2. Preliminary

Let A and A be Banach algebras such that A is a A-bimodule with
compatible actions (for more details see, [1, 2, 7, 8] and especially Defi-
nition 2.4. of [10]).

Let X be a Banach A-A-module with compatible actions. If X is a
(commutative) Banach A-A-module, then so is X∗ (for more details see,
[1, 2, 7, 8]).

In particular, if A is a commutative Banach A-module, then it is a
commutative Banach A-A-module. In this case, the dual space A∗ is
also a commutative Banach A-A-module.

Let A and A be Banach algebras such that A is a Banach A-module
and let X be a Banach A-A-module with compatible actions. An n-A-
module map is a mapping ϕ : An −→ X with the following properties;

ϕ(a1, a2, . . . , ai−1, b± c, ai+1, . . . , an)(2.1)

= ϕ(a1, a2, . . . , ai−1, b, ai+1, . . . , an)

± ϕ(a1, a2, . . . , ai−1, c, ai+1, . . . , an),

ϕ(α · a1, a2, . . . , an) = α · ϕ(a1, a2, . . . , an),(2.2)

ϕ(a1, a2, . . . , an · α) = ϕ(a1, a2, . . . , an) · α,(2.3)
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and

ϕ(a1, a2, . . . , ai−1, ai · α, ai+1, . . . , an)(2.4)

= ϕ(a1, a2, . . . , ai−1, ai, α · ai+1, . . . , an),

where a1, . . . , an, b, c ∈ A and α ∈ A. Note that, ϕ is not necessarily
n-linear.

The A-module complex is

0 −→ X
δ0−→ C1

A(A,X)
δ1−→ C2

A(A,X)
δ2−→ · · · ,

where the map δ0 : X −→ C1
A(A,X) is given by δ0(x)(a) = a · x − x · a

and for n ∈ Z+, δn : Cn
A(A,X) −→ Cn+1

A (A,X) is given by

[δnT ](a1, . . . , an+1) = a1 · T (a2, . . . , an+1)(2.5)

+
n∑

i=1

(−1)nT (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an) · an+1,

where T ∈ Cn
A(A,X) and a1, . . . , an+1 ∈ A. It is easy to show that

δn+1 ◦ δn = 0 for every n ∈ Z+. The space ker δn of all bounded n-
A-module cocycles is denoted by Zn

A(A,X) and the space Im δn−1 of
all bounded n-A-module coboundaries is denoted by Bn

A(A,X). We also
recall that Bn

A(A,X) is included in Zn
A(A,X) and that the n-th A-module

cohomology group Hn
A(A,X) is defined by the quotient

Hn
A(A,X) = Zn

A(A,X)/Bn
A(A,X).

The space Zn
A(A,X) is a Banach space, but in general Bn

A(A,X) is not
closed, we regard Hn

A(A,X) as a complete seminormed space with re-
spect to the quotient seminorm. This seminorm is norm if and only if
Bn
A(A,X) is a closed subspace of Zn

A(A,X), which means that Hn
A(A,X)

is a Banach space.

3. Induced Semigroup ST with the Left Multiplier Map T

Let S be a semigroup, the set of all idempotent elements of S is
denoted by E(S) = E = {e ∈ S : ee = e}. A map T : S −→ S is called
a left (right) multiplier operators on S if T (st) = T (s)t (T (st) = sT (t)),
for all s, t ∈ S. The class of left (right) multiplier operators on S is
denoted by Mull(S) (Mulr(S)). The map T is called multiplier operator
on S if T ∈ Mull(S) ∩Mulr(S). The space of all multiplier operator on
S is denoted by Mul(S). Let T ∈ Mull(S), we define a new operation
“◦” on S by s ◦ t := sT (t) for every s and t in S. The semigroup S
equipped with the new oparation ◦, is denoted by ST . It’s easy to check
that ST is a semigroup which is called induced semigroup dependent on
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left multiplier T . Let E and ET are sets of idempotent elements in S
and ST , respectively.

It is worth mentioning that, this idea has started by Birtel in [3] and
continued by Larsen in [5]. Also the relation between weak amenability
(not weak module amenability) Banach algebra A and induced Banach
algebra AT studied by Laali indicated in [4], where T is a left multiplier
on Banach algebra A. This notion developed by some authors, for more
details see, [3–5, 9].

Throughout this paper, unless otherwise indicated, we will assume
that S is a discrete semigroup, T ∈ Mul(S) and T is bijective. We
know that the set of point masses {δs; s ∈ S} is dense in ℓ1(S). So,
since module actions and module derivations are continuous, we consider
points masses as representing elements of semigroup algebras (ℓ1(S), ∗)
and (ℓ1(ST ),⊛), where ∗ is convolution on ℓ1(S), as follow

(3.1) δs ∗ δt = δst, (s, t ∈ S),

and ⊛ is different convolution on ℓ1(ST ), as follow

δs ⊛ δt = δs◦t(3.2)

= δs ∗ δT (t)

= δsT (t), (s, t ∈ S).

Lemma 3.1. Let S be a semigroup and T : S → S be a bijective map,
then

(i) T ∈ Mull(S) if and only if T−1 ∈ Mull(S).
(ii) If T ∈ Mull(S), then T (ET ) = E and T−1(E) = ET .
(iii) If T ∈ Mul(S), then s◦T (t) = T (s)◦t and s◦T−1(t) = T−1(s)◦t

for every s, t ∈ S.

Proof. It is easy to prove and is left to the reader. □
The next examples show that, when T is not bijective or not multi-

plier, the previous lemma is not necessarily true, therefore, bijective and
multiplier conditions are neccessary for T .

Example 3.2. Let S =

{[
x 0
y 0

]
, x, y ∈ R

}
. S with matrix product is

a semigroup and one can verify that, its idempotent set is

E =

{[
0 0
0 0

]
,

[
1 0
y 0

]
, y ∈ R

}
.

Now let T : S −→ S be a left multiplier La, where a =

[
1 0
0 0

]
. Indeed,

T

([
x 0
y 0

])
=

[
1 0
0 0

] [
x 0
y 0

]
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=

[
x 0
0 0

]
.

Clearly T is not right multiplier and bijective. It easy to show that

T (ET ) =

{[
0 0
0 0

]
,

[
1 0
0 0

]}
̸= E.

Now for every s =

[
x 0
y 0

]
, t =

[
z 0
p 0

]
∈ S, where y, z ̸= 0, a simple

computation shows that s ◦ T (t) ̸= T (s) ◦ t.

Example 3.3. Let S =

{[
x y
0 z

]
, x, y, z ∈ R

}
. S with matrix product

is a semigroup which its idempotent set is

E =

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 y
0 0

]
,

[
0 y
0 1

]
y ∈ R

}
.

Now let T : S −→ S be a left multiplier La, where a =

[
1 1
0 1

]
. Indeed,

T

([
x y
0 z

])
=

[
1 1
0 1

] [
x y
0 z

]
=

[
x y + z
0 z

]
.

We know that T is bijective but not right multiplier. It is easy to show
that

ET =

{[
0 0
0 0

]
,

[
1 −1
0 1

]
,

[
1 y
0 0

]
,

[
0 y
0 1

]
y ∈ R

}
,

and T (ET ) = E, also T−1 : S −→ S is a left multiplier T−1 = Lb,

where b =

[
1 −1
0 1

]
and T−1(E) = ET . Now for every s =

[
x y
0 z

]
, t =[

m n
0 q

]
∈ S, where x ̸= z, a simple computation shows that s ◦ T (t) ̸=

T (s) ◦ t. Similarly can be shown s ◦ T−1(t) ̸= T−1(s) ◦ t.
In the following, we show the relationship between S and ST by giving

a simple example.

Example 3.4. The unit disk in C, that is, S = {z ∈ C : |z| ≤ 1} is
a compact topological semigroup, under complex multiplication with
idempotent elements E = {0, 1}, Put T = Li where Li(x) = ix, (i =√
−1). It is clear that T ∈ Mull(S) and ST = (S, ◦) is a compact topo-

logical semigroup with idempotent elements ET = {0,−i} so ℓ1(E) ̸=
ℓ1(ET ).
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4. Second Module Cohomology Group of Induced Semigroup
Algebras

In this section, we will show that if T is a multiplier and bijective,
then the second ℓ1(E)-module cohomology group ℓ1(S) with coefficents
in ℓ∞(S) is equivalent to the second ℓ1(ET )-module cohomology group
ℓ1(ST ) with coefficents in ℓ∞(ST ).

According to (2.5), for ψ ∈ Z2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = ker δ2, we have the

following relationship

δx ∗ ψ(δy, δz)− ψ(δx, δy) ∗ δz = ψ(δx ∗ δy, δz)− ψ(δx, δy ∗ δz).(4.1)

Similarly, since B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = Im δ1, if ψ ∈ B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)),

then there exists ϕ ∈ C1
ℓ1(E)(ℓ

1(S), ℓ∞(S)), such that

δx ∗ ϕ(δy)− ϕ(δx ∗ δy) + ϕ(δx) ∗ δy = ψ(δx ∗ δy).(4.2)

Theorem 4.1. Let S be a semigroup and T : S → S be a multiplier and
bijective map. Then

H2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) ≃ H2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )).

Proof. Consider the map

Γ : Z2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) −→ H2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST ))

ψ −→ ψ̃ + B2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )),

where

ψ̃ : ℓ1(ST )× ℓ1(ST ) −→ ℓ∞(ST )

ψ̃(δx, δy) = ψ((δT (x), δT (y)).

In the first, we show that Γ is well define. For this purpose we prove in

the first step, when ψ is a 2-ℓ1(E)-module cocycle then ψ̃ is a 2-ℓ1(ET )-
module cocycle. It is easy to show that (2.1) is confirmed.

Let e ∈ ET and x, y ∈ ST , since T ∈ Mull(S) and T (e) ∈ E, by (3.2)
and Lemma 3.1, we have[

δe ⊛ ψ̃(δx, δy)
]
(δt) = ψ̃(δx, δy)(δt ⊛ δe)

= ψ̃(δx, δy)(δt◦e)

= ψ(δT (x), δT (y))(δtT (e))

= ψ(δT (x), δT (y))(δt ∗ δT (e))

= (δT (e) ∗ ψ(δT (x), δT (y)))(δt)

= ψ(δT (e) ∗ δT (x), δT (y))(δt)

= ψ(δT (e)T (x), δT (y))(δt)
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= ψ(δT (eT (x)), δT (y))(δt)

= ψ̃(δeT (x), δy)(δt)

= ψ̃(δe ⊛ δx, δy)(δt),

which shows

ψ̃(δe ⊛ δx, δy) = δe ⊛ ψ̃(δx, δy).(4.3)

For the other equation, since T ∈ Mulr(S), we have

ψ̃(δx ⊛ δe, δy) = ψ̃(δxT (e), δy)

= ψ(δT (xT (e)), δT (y))

= ψ(δT (x)T (e), δT (y))

= ψ(δT (x) ∗ δT (e), δT (y))

= ψ(δT (x), δT (e) ∗ δT (y))

= ψ(δT (x), δT (e)T (y))

= ψ(δT (x), δT (eT (y)))

= ψ̃(δx, δeT (y))

= ψ̃(δx, δe ⊛ δy),

this shows

ψ̃(δx ⊛ δe, δy) = ψ̃(δx, δe ⊛ δy).(4.4)

Similarly, we can show that

ψ̃(δx, δy ⊛ δe) = ψ̃(δx, δy)⊛ δe.(4.5)

Now let x, y, z, t ∈ S and ∆ =
[
δx ⊛ ψ̃(δy, δz)− ψ̃(δx, δy)⊛ δz

]
, by

(3.2),(4.1) and Lemma 3.1, we have

∆(δt) =
[
δx ⊛ ψ̃(δy, δz)

]
(δt)−

[
ψ̃(δx, δy)⊛ δz

]
(δt)

= ψ̃(δy, δz)(δt ⊛ δx)− ψ̃(δx, δy)(δz ⊛ δt)

= ψ(δT (y), δT (z))(δtT (x))− ψ(δT (x), δT (y))(δT (z)t)

= ψ(δT (y), δT (z))(δt ∗ δT (x))− ψ(δT (x), δT (y))(δT (z) ∗ δt)
=

[
δT (x) ∗ ψ(δT (y), δT (z))

]
(δt)−

[
ψ(δT (x), δT (y)) ∗ δT (z)

]
(δt)

= ψ(δT (x) ∗ δT (y), δT (z))(δt)− ψ(δT (x), δT (y) ∗ δT (z))(δt)

= ψ(δT (x)T (y), δT (z))(δt)− ψ(δT (x), δT (y)T (z))(δt)

= ψ(δT (xT (y)), δT (z))(δt)− ψ(δT (x), δT (yT (z)))(δt)

= ψ̃(δxT (y), δz)(δt)− ψ̃(δx, δyT (z))(δt)
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= ψ̃(δx◦y, δz)(δt)− ψ̃(δx, δy◦z)(δt)

= ψ̃(δx ⊛ δy, δz)(δt)− ψ̃(δx, δy ⊛ δz)(δt)

=
[
ψ̃(δx ⊛ δy, δz)− ψ̃(δx, δy ⊛ δz)

]
(δt).

Therefore, δx⊛ ψ̃(δy, δz)− ψ̃(δx, δy)⊛ δz = ψ̃(δx⊛ δy, δz)− ψ̃(δx, δy⊛ δz),
and so ψ̃ ∈ Z2

ℓ1(ET )(ℓ
1(ST ), ℓ

∞(ST )) and Γ is well define. Clearly Γ is

linear.
For the surjectivity of Γ, let P ∈ Z2

ℓ1(ET )(ℓ
1(ST ), ℓ

∞(ST )). Define

ψ : ℓ1(S)× ℓ1(S) −→ ℓ∞(S),

ψ(δx, δy) := P (δT−1(x), δT−1(y)).

It is easy to show that ψ is two admissible. Let e ∈ E and x, y, z, t ∈ S,
since T ∈ Mull(S), by (3.2), (4.3) and lemma 3.1, we have

[δe ∗ ψ(δx, δy)] (δt) = ψ(δx, δy)(δt ∗ δe)
= ψ(δx, δy)(δte)

= P (δT−1(x), δT−1(y))(δt◦T−1(e))

= P (δT−1(x), δT−1(y))(δt ⊛ δT−1(e))

= (δT−1(e) ⊛ P (δT−1(x), δT−1(y))(δt)

= P (δT−1(e) ⊛ δT−1(x), δT−1(y))(δt)

= P (δT−1(e)x, δT−1(y))(δt)

= ψ(δT (T−1(e)x),δy)(δt)

= ψ(δex, δy)(δt)

= ψ(δe ∗ δx, δy)(δt),

which shows

ψ(δe ∗ δx, δy) = δe ∗ ψ(δx, δy).

For the other equation, since T−1 ∈ Mull(S), by (4.4)

ψ(δx ∗ δe, δy) = ψ(δxe, δy)

= P (δT−1(xe), δT−1(y))

= P (δT−1(x)e, δT−1(y))

= P (δT−1(x) ⊛ δT−1(e), δT−1(y))

= P (δT−1(x), δT−1(e) ⊛ δT−1(y))

= P (δT−1(x), δT−1(e)◦T−1(y))

= P (δT−1(x), δT−1(e)y)

= ψ(δx, δey)
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= ψ(δx, δe ∗ δy),
so obtained

ψ(δx ∗ δe, δy) = ψ(δx, δe ∗ δy).

Similarly, by (4.5) we can show that

ψ(δx, δy ⊛ δe) = ψ(δx, δy)⊛ δe.

Let e ∈ E and x, y, z, t ∈ S and Θ = [δx ∗ ψ(δy, δz)− ψ(δx, δy) ∗ δz],
since T−1 ∈ Mull(S), by (3.2), (4.1) and Lemma 3.1 we have

Θ(δt) = [δx ∗ ψ(δy, δz)] (δt)− [ψ(δx, δy) ∗ δz] (δt)
= ψ(δy, δz)(δt ∗ δx)− ψ(δx, δy)(δz ∗ δt)
= ψ(δy, δz)(δtx)− ψ(δx, δy)(δzt)

= P (δT−1(y), δT−1(z))(δt ⊛ δT−1(x))

− P (δT−1(x), δT−1(y))(δT−1(z) ⊛ δt)

= (δT−1(x) ⊛ P (δT−1(y), δT−1(z)))(δt)

− (P (δT−1(x), δT−1(y))⊛ δT−1(z))(δt)

= P (δT−1(x) ⊛ δT−1(y), δT−1(z))(δt)

− P (δT−1(x), δT−1(y) ⊛ δT−1(z))(δt)

= P (δT−1(x)y, δT−1(z))(δt)− P (δT−1(x), δT−1(y)z)(δt)

= ψ(δxy, δz)(δt)− ψ(δx, δyz)(δt)

= [ψ(δx ∗ δy, δz)− ψ(δx, δy ∗ δz)](δt).
This shows that

δx ∗ ψ(δy, δz)− ψ(δx, δy) ∗ δz = ψ(δx ∗ δy, δz)− ψ(δx, δy ∗ δz),

so ψ ∈ Z2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) and Γ(ψ) = P + B2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )).

Finally, we prove that ker Γ = B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)), or equivalently

ψ ∈ B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) if and only if ψ̃ ∈ B2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )).

To prove this, we first assume that ψ ∈ B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) then there

exists ϕ ∈ C1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) such that δ1(ϕ) = ψ, and by (4.2),

ψ(δx, δy) = δx ∗ ϕ(δy)− ϕ(δx ∗ δy)− ϕ(δx) ∗ δy.

Now let ∆ = ψ̃(δT−1(x), δT−1(y)), by by using the relation between ψ and

ψ̃, we have

∆(δt) = [ψ(δx, δy)] (δt)

= [δx ∗ ϕ(δy)− ϕ(δx ∗ δy)− ϕ(δx) ∗ δy] (δt)
= (δx ∗ ϕ(δy))(δt)− (ϕ(δx ∗ δy))(δt) + (ϕ(δx) ∗ δy)(δt)
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= ϕ(δy)(δt ∗ δx)− (ϕ(δx ∗ δy))(δt) + ϕ(δx)(δy ∗ δt)
= ϕ(δy)(δtx)− (ϕ(δx ∗ δy))(δt) + ϕ(δx)(δyt),

= ϕ̃(δT−1(y))(δt ⊛ δT−1(x))− ϕ̃(δT−1(x) ⊛ δT−1(y))(δt)

+ ϕ̃(δT−1(x))(δT−1(y) ⊛ δt)

= (δT−1(x) ⊛ ϕ̃(δT−1(y))(δt)− ϕ̃(δT−1(x) ⊛ δT−1(y))(δt)

+ (ϕ̃(δT−1(x))⊛ δT−1(y))(δt)

= [(δT−1(x) ⊛ ϕ̃(δT−1(y))− ϕ̃(δT−1(x) ⊛ δT−1(y))

+ (ϕ̃(δT−1(x))⊛ δT−1(y))](δt),

that shows ψ̃ = δ1(ϕ̃) and so ψ̃ ∈ B2
ℓ1(ET )(ℓ

1(ST ), ℓ
∞(ST )). Similarly,

we can show that ψ is a 2-ℓ1(E)-module coboundary if ψ̃ is a 2-ℓ1(ET )-
module coboundary. □

5. Second Module Cohomology Group of Induced Inverse
Semigroup Algebras

A discrete semigroup S is call an inverse semigroup if for each a ∈ S
there is a unique element a∗ ∈ S such that a = a·a∗ ·a and a∗ = a∗ ·a·a∗.
In this section, we show that if S is a commutative inverse semigroup,
then H2

ℓ1(ET )(ℓ
1(ST ), ℓ

1(ST )
(n)) is a Banach space for every odd n ∈ N.

Lemma 5.1. Let S be a semigroup and T ∈ Mull(S) be bijective, then
S is a commutative semigroup if and only if ST is a commutative semi-
group.

Proof. It is easy to prove and is left to the reader. □

Lemma 5.2. Let S be a semigroup and T ∈ Mull(S) be bijective, then
S is an inverse semigroup if and only if ST is an inverse semigroup.

Proof. Let (S, ·) be an inverse semigroup and a ∈ S. Suppose that a∗ ∈ S
is the unique element of S such that a = a · a∗ · a and a∗ = a∗ · a · a∗.
We define a⋆ := T−1(b∗), where b = T (a), we have

a ◦ a⋆ ◦ a = a · T (a⋆) · T (a)
= T−1(b) · b∗ · b
= T−1(b · b∗ · b)
= T−1(b)

= a.
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Similarly we can show that a⋆◦a◦a⋆ = a⋆. Therefore, (ST , ⋆) is an inverse
semigroup. Similarly, we can show that S is an inverse semigroup when
ST is an inverse semigroup. □

Theorem 5.3 ([8, Thorem 2.3]). Let S be a semigroup and T ∈ Mull(S)
be bijective. Then for every n ∈ N, H2

ℓ1(E)(ℓ
1(S), X∗) is a Banach space,

where X = (ℓ1(S))(2n).

Theorem 5.4. Let S be a commutative inverse semigroup. Then for
every odd n ∈ N, H2

ℓ1(ET )

(
ℓ1(ST ), ℓ

1(ST )
(n)

)
is a Banach space.

Proof. Let S be a commutative inverse semigroup, by Lemmas 5.1 and
5.2, ST is a commutative inverse semigroup, now by Theorem 5.3

H2
ℓ1(ET )

(
ℓ1(ST ), ℓ

1(ST )
(n)

)
,

is a Banach space for every odd n ∈ N. □
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