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Bicomplex Frames

Aiad Elgourari1∗, Allal Ghanmi2 and Mohammed Souid El Ainin3

Abstract. We define in a natural way the bicomplex analog of
the frames (bc-frames) in the setting of bicomplex infinite Hilbert
spaces, and we characterize them in terms of their idempotent com-
ponents. We also extend some classical results from frames theory
to bc-frames and show that some of them do not remain valid for
bc-frames in general. The construction of bc-frame operators and
Weyl–Heisenberg bc-frames are also discussed.

1. Introduction

Frames are generalizations of orthonormal bases and can be defined as
“sets” of vectors (not necessary independent) giving the explicit expan-
sion of any arbitrary vector in the space as a linear combination of the
elements in the frame. They were considered by Duffin and Schaeffer, in
early fifties, in the framework of nonharmonic Fourier series (see [14]). It
is only in 1986 that a landmark development was given by Daubechies,
Grossmann and Meyer [11]. Since then, they have been extensively
studied in different branches of mathematics and engineering sciences.
Frames possess several interesting properties which make them very use-
ful in applications like in signal analysis, especially in connection with
sampling theorems [3], image processing, quantum information, filter
bank theory, as well as in robust transmission, coding and communica-
tions [2, 4, 9, 13, 15, 29]. For further details and tools on frames one can
refer to the very nicely written surveys and research tutorials [5, 7, 8, 28].
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This frames theory (for separable Hilbert spaces) had been rapidly
generalized to different contexts and has attracted the interest of many
authors in the last decades. Notice for instance that a general frame
theory for C∗-algebras, Hilbert C∗-modules and countably generated
Hilbert C∗-modules was proposed in [22] by Frank and Larson (see also
[19–21]). They were able to extend the entire classical frame theory
to this generalization undergoing only slight changes but requiring fur-
ther investigations. See also [6, 22, 23, 27, 30–33, 36, 40] for further
generalizations.

In the present paper, we aim to introduce and study bicomplex (bc)
frames for infinite bicomplex Hilbert spaces incorporating classical ones
for complex Hilbert spaces. The idea of investigating bicomplex frames
comes from our recent working on hypercomplex analysis which appears
to be consistent and promoter for a number of mathematical problems,
especially in signal and image processing. In fact, given an infinite di-
mensional bicomplex Hilbert space, which was introduced in [24] making
use of the idempotent representation, it becomes immediately interest-
ing to extend the notion of frame to this new context and discuss its
basic properties. The consideration of the bicomplex setting lies also in
the fact that this model can serve to represent color image encoding in
image processing [1, 17, 18, 34, 42]. In fact, color image in RGB color is
represented using bicomplex numbers by according the red, green and
blue components of RGB value as pure bicomplex number

f(x, y) = ir(x, y) + jg(x, y) + kb(x, y).

The corresponding bicomplex eignaxis represented color and phase, while
the modulus is represented by the grayscale image [17, 18]. Another
motivation lies in possible interesting extension of almost classical re-
sults from signal processing and time-frequency analysis using tools from
frame theory to the bicomplex setting. This is reinforced by the exis-
tence of many types of modulation and translation operators leading
to the consideration and the construction of specific bicomplex analogs
of short Fourier (Fourier-Wigner) transform as done in [16]. Example
3.10 and the results we establish in Section 3 will illustrate further the
motivation of considering bc-frames. The main feature of bc-frames is
Theorem 3.8 concerning the problem of characterizing these bc-frames in
terms of the standard ones for appropriate Hilbert spaces. Namely, this
result shows that a bicomplex frame is intimately related with a pair of
frames arising from idempotent representation. Accordingly, important
basic and elementary properties for bc-frames are described forthwith
thanks to this special characterization. We establish the mutual rela-
tion between bicomplex frames and its components. Several properties
from the classical frame theory survive in this generalization. Although
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this extension is natural, it will be shown that many basic properties for
the classical frames fail for bicomplex frames, unless we restrict ourself
to complex-valued Hilbert space on bicomplex numbers. Notice for in-
stance that, one of the main surprise results is that an exact bicomplex
frame does not follows its components are exact, also, we give a neces-
sary and sufficient condition such that it holds. Special attention will
also be given to the problem of defining bicomplex frame operators and
bicomplex Weyl–Heisenberg frames.

It should be mentioned here that bicomplex frames for infinite dimen-
sional bicomplex Hilbert spaces are structurally different from frames
for Hilbert A-modules, since the positivity is not imposed in the defini-
tion of bicomplex scalar product. Moreover, there are many facts mak-
ing these two generalizations different. One of these facts lies on the
classical characterization of standard Riesz bases that are normalized
tight frames (i.e., with frame bounds equal to one) as an orthogonormal
Hilbert basis, which remains valid for certain Hilbert C∗-modules (see
[19, Proposition 2.2] or [22, Corollary 4.2]), fails in the bicomplex exten-
sion (see Remark 3.14). However, a rigorous and complete comparison
needs further investigations.

This paper is organized as follows. We begin by reviewing the struc-
ture of the infinite bicomplex Hilbert space including the Gaussian bi-
complex Hilbert space H2,σ(T) (see Section 2). Section 3 is devoted to
introducing some basic concepts, the statement and the proof of our
main results related to bc-frames. In Section 4, we discuss the associ-
ated bicomplex frame operator and Weyl–Heisenberg bc-frames. Final
remarks, that can serve as motivations, complete our investigations.

In next sections Z, R, C and T will respectively denote the integers,
the real, the complex and the bicomplex numbers.

2. Preliminaries: Infinite Bicomplex Hilbert Spaces

This section is a brief review of needed notions and results from the
theory of infinite bicomplex Hilbert spaces. For a lot of the material and
background we refer the reader to [35, 37–39]. To start, recall first that
bicomplex numbers are special generalization of complex numbers. In
fact, they are complex numbers Z = z1 + jz2 with complex coefficients
z1, z2 ∈ C = Ci, where j is a pure imaginary unit independent of i
such that ij = ji. This defines a commutative (non division) algebra
over C, where addition and multiplication operations are defined in a
natural way. Conjugates of given Z = z1 + jz2 ∈ T, with respect to

i, j and ij, are defined by Z̃ = z1 + jz2, Z
† = z1 − jz2 and Z∗ =

z1 − jz2, respectively. It should be mentioned here that the nullity of
ZZ† = z21 + z22 , which is equivalent to Z = λ(1± ij) for certain complex
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number λ ∈ C, characterizes those that are zero divisors in T, while
ZZ† ̸= 0 characterizes those that are invertible. Thus by considering
the idempotent elements

e+ =
1 + ij

2
, e− =

1− ij

2
,

we have the identities e+
2 = e+, e−

2 = e−, e+ + e− = 1, e+ − e− = ij
and e+e− = 0. Moreover, for any Z = z1 + jz2 ∈ T there exist unique
complex numbers α, β, such that

Z = (z1 − iz2)e+ + (z1 + iz2)e−(2.1)

= αe+ + βe−.

Here α = z1−iz2, β = z1+iz2 ∈ C. The idempotent representation (2.1)
is crucial and simplifies considerably the computation with bicomplex

numbers. In particular, the different Z†-, Z̃- and Z∗-conjugates read

simply Z† = βe+ + αe−, Z̃ = βe+ + αe− and Z∗ = αe+ + βe−.
Infinite bicomplex Hilbert space is defined by means of a special ex-

tension of the notions of inner product and norm to the T-modules.
More generally, if M is a T-module, we consider the C-vector spaces
V + = Me+ and V − = Me−, so that one can see M as the C-vector
space M ′ = V + ⊕ V −. In general, V + and V − bear no structural
similarities. Accordingly, an inner product on M is a given functional
⟨·, ·⟩ :M ×M −→ T satisfying

(i) ⟨ϕ, τψ + φ⟩ = τ∗ ⟨ϕ, ψ⟩ + ⟨ϕ, φ⟩ for every τ ∈ T and; ϕ, ψ, φ ∈
M , and

(ii) ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩∗ as well as;
(iii) ⟨ϕ, ϕ⟩ = 0 if and only if ϕ = 0.

Therefore, the projection ⟨·, ·⟩V ± of ⟨·, ·⟩ to V ± is a standard scalar
product on V ±. Indeed,

⟨ϕ, φ⟩ =
⟨
ϕ+, φ+

⟩
V + e+ +

⟨
ϕ−, φ−⟩

V − e−,

where ϕ, φ belong to M identified to M ′ = V + ⊕ V − and φ± := φe± ∈
V ± and ψ± := ψe± ∈ V ±. It should be noted here that any T-scalar
product on M is completely determined as described above (see [24,
Theorem 2.6]).

A bicomplex norm on a T-moduleM is a map ∥·∥ :M −→ R satisfying

(i) ∥·∥ is a norm on the vector space V + ⊕ V −, and;
(ii) ∥λϕ∥ ≤

√
2|λ| ∥ϕ∥ for all λ ∈ T and all ϕ ∈M .

In this case (M, ∥·∥) is called a normed bicomplex-module. As for
normed C-vector spaces, a bicomplex norm can always be induced from
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a T-scalar product by considering

∥ϕ∥2 = 1

2

(⟨
ϕ+, ϕ+

⟩
V + +

⟨
ϕ−, ϕ−

⟩
V −

)
(2.2)

= |⟨ϕ, ϕ⟩| ,

where ϕ = ϕ+ + ϕ− thanks to the identification of M to V + ⊕ V −. The
modulus | · | denotes the usual Euclidean norm in R4. The norm in (2.2)
obeys a generalized Schwarz inequality ([24, Theorem 3.7])

|⟨ϕ, φ⟩| ≤
√
2 ∥ϕ∥ ∥φ∥ .

Accordingly, one defines an infinite bicomplex Hilbert space to be a
T-inner product space (M, ⟨·, ·⟩). This is complete with respect to the
induced T-norm (2.2) which is equivalent to (V ±, ⟨·, ·⟩V ±) be C-Hilbert
spaces. This characterization is contained in Theorems 3.4, 3.5 and
Corollary 3.6 of [24]. As an example of infinite bicomplex Hilbert space,
one consider the one associated to the trivial bicomplex inner product

⟨Z,W ⟩bc = ZW ∗(2.3)

= αα′e+ + ββ′e−,

for Z = αe+ + βe− and W = α′e+ + β′e− in T, so that the induced
bicomplex norm coincides with the usual Euclidean norm in R4 given by
the modulus

|Z|2bc = |z1|2 + |z2|2(2.4)

=
1

2

(
|α|2 + |β|2

)
= |⟨Z,Z⟩bc|

for given Z = z1 + z2j = αe+ + βe−; z1, z2, α, β ∈ C =: Ci. We next
perform the space H2,σ(T) of all T–valued measurable functions f on T
subject to ∥f∥bc,σ < +∞. Here ∥f∥bc,σ is the bicomplex norm associated

by means of (2.2) to the bicomplex inner product depending in a given
fixed given real number σ ≥ 0 and defined through

⟨f, g⟩bc,σ :=

∫
T
⟨f(Z), g(Z)⟩bc e

−σ|Z|2bcdλ(Z),

dλ(Z) = dλ(z1)dλ(z2) being the Lebesgue measure on R4. More explic-
itly, if L2,σ(C2) denotes the classical Hilbert space of complex-valued
square integrable functions in C2 with respect to the gaussian density

e−σ(|ξ|2+|ζ|2)dλ(ξ)dλ(ζ) , then we have

(2.5) ⟨f, g⟩bc,σ = ⟨f1, g1⟩L2,σ(C2) e+ + ⟨f2, g2⟩L2,σ(C2) e−,

for every f = f1e+ + f2e−, g = g1e+ + g2e−, where the functions fk and
gk, for k = 1, 2, are seen as C–valued functions on C2 in the variables
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(z1, z2); Z = z1 + jz2. Indeed, this follows using |Z|2bc = |z1|2 + |z2|2 in
(2.4) as well as

⟨f(Z), g(Z)⟩bc = f1(z1, z2)g1(z1, z2)e+ + f2(z1, z2)g2(z1, z2)e−,

which is immediate from the definition of ⟨, ⟩bc. Thus, the following
decomposition

H2,σ(T) = L2,σ(C2)e+ + L2,σ(C2)e−,

holds true thanks to

(2.6) ∥f∥2bc,σ =
1

2

(
∥f1∥2L2,σ(C2) + ∥f2∥2L2,σ(C2)

)
.

Another interesting decomposition of the infinite bicomplex Hilbert space
H2,σ(T) with respect to the idempotent representation states that ([25])

H2,σ(T) = L2,σ
2 (C2)e+ + L2,σ

2 (C2)e−.

Succinctly, for every f ∈ H2,σ(T), there exist ϕ± ∈ L2,σ
2 (C2) such that

f(αe+ + βe−) = ϕ+(α, β)e+ + ϕ−(α, β)e−,

and (2.6) implies

∥f∥2bc,σ =
1

2

(∥∥ϕ+∥∥2
L2, σ2 (C2)

+
∥∥ϕ−∥∥2

L2, σ2 (C2)

)
.

In the sequel, we will denote H2,σ(T) simply by L2(T) when σ = 0.

3. Bicomplex Frames

In the sequel,Hbc will denote an arbitrary separable bicomplex Hilbert
space with bicomplex inner product ⟨·, ⟩bc, linear in the first entry, and

denotes by ∥·∥bc the associated bicomplex norm, ∥·∥2bc = | ⟨·, ·⟩bc |bc. Let
{fn, n = 0, 1, 2, . . .} be a countable family in Hbc. The different notions
from the classical frame theory can be extended, in a natural way, to
the bicomplex setting.

Definition 3.1. The sequence (fn)n is said to be a bicomplex basis for
Hbc if for every f ∈ Hbc there exists a unique sequence of bicomplex
numbers (cn)n such that

f =

∞∑
n=0

cnfn.

It is said to be a bicomplex orthonormal basis if in addition (fn)n is an
orthonormal set,

⟨fm, fn⟩bc = δm,n,

where δm,n = δm,ne+ + δm,ne− denotes the Kronecker symbol.
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Definition 3.2. A basis (fn)n is said to be a bicomplex bounded basis
if it satisfies the condition

0 < inf | ⟨fn, fn⟩bc |bc
≤ sup | ⟨fn, fn⟩bc |bc
< +∞.

It is unconditional if for every f ∈ Hbc, the corresponding series f =∑
n

cnfn; cn ∈ T, converges for every rearrangement of its terms.

Proposition 3.3. If (fn)n; fn = f+n e+ + f−n e−, is a bicomplex bounded
unconditional basis for L2(T), then (f+n )n or (f−n )n is a bounded uncon-
ditional basis for L2(C2).

Proof. Using the idempotent decomposition, the bc-basis property, and
the bc-unconditionality of (fn)n in L2(T) are clearly equivalent to that
(f+n )n and (f−n )n being unconditional bases for L2(C2). We need only to
prove the boundedness property. Indeed, starting from (2.6), we obtain

sup | ⟨fn, fn⟩bc |bc ≤
1√
2

(
sup

∥∥f+n ∥∥+ sup
∥∥f−n ∥∥) .

Therefore, sup | ⟨fn, fn⟩bc |bc is finite if and only if sup ∥f+n ∥ and sup ∥f−n ∥
are finite. In a similar way, we can prove the following

1√
2
sup

(
inf

∥∥f+n ∥∥ , inf ∥∥f−n ∥∥) ≤ inf | ⟨fn, fn⟩bc |bc.

This proves inf | ⟨fn, fn⟩ |bc is positive if and only if inf ∥f+n ∥ or inf ∥f−n ∥
is positive. This completes the proof. □

According to the previous proof, it is evident to see that the con-
verse of Proposition 3.3 holds true if the idempotent components (f+n )n
and (f−n )n are both assumed bounded unconditional bases for L2(C2).
Moreover, this shows that from two collections in L2(C2) such that the
first one is bounded unconditional basis for L2(C2) and the second one
is an unconditional basis which is upper bonded, we can perform a bi-
complex bounded unconditional basis for L2(T ). We reformulate this as
proposition.

Proposition 3.4. If (f+n )n is a bounded unconditional basis for L2(C2)
and the sequence (f−n )n is an unconditional basis for L2(C2) with upper
bounded bc-norm, then (fn)n is a bicomplex bounded unconditional basis
for L2(T).

In analogy with the standard case, we propose the following definitions
for bicomplex Riesz (bc-Riesz) bases and bicomplex frames (bc-frames).
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Definition 3.5. A sequence (fn)n is a bicomplex Riesz basis for Hbc if

span{fn;n} = Hbc and there exist A,B > 0 such that

A
∞∑
n=0

|cn|2bc ≤

∥∥∥∥∥
∞∑
n=0

cnfn

∥∥∥∥∥
2

bc

≤ B
∞∑
n=0

|cn|2bc,

for all f =
∑
n

cnfn ∈ Hbc.

Definition 3.6. The sequence (fn)n is called a bc-frame for Hbc if there
are two constants 0 < A ≤ B (frame bounds) such that for every f ∈ H,
we have

A ∥f∥2bc ≤
∞∑
n=0

| ⟨f, fn⟩bc |
2
bc ≤ B ∥f∥2bc .

A bc-frame is said to be tight if in addition A = B and a Parseval
bc-frame if A = B = 1. It is called exact if it ceases to be a bc-frame
whenever any single element is deleted from it.

The following example is specific for the bc-frames and is generated
by a given orthonormal basis en of L2(C2).

Example 3.7. Let (cn)n be a bicomplex sequence such that cn = ane++
bne−; an, bn ∈ C, and consider the set of bicomplex-valued functions

em,n(z1 + jz2) := anem(z1, z2)e+ + bmen(z1, z2)e−.

If
∞∑
n=0

|an|2 = a and
∞∑
n=0

|bn|2 = b converge, then em,n, for varying m

and n, is a bc-frame for L2(T). Indeed, by means of (2.5), we get
⟨em,n, ej,k⟩bc = anakδm,je++bmbjδn,ke−. This shows that em,n is not or-
thogonal nor necessary normalized. However, direct computation shows
that

∞∑
m,n=0

| ⟨f, em,n⟩bc |
2
bc =

1

2

(
a
∥∥f+∥∥2

L2(C2)
+ b

∥∥f−∥∥2
L2(C2)

)
.

Therefore,

min(a, b) ∥f∥2bc ≤
∞∑

m,n=0

| ⟨f, em,n⟩bc |
2
bc ≤ max(a, b) ∥f∥2bc .

By specifying (an)n and (bn)n, we get tight and Parseval bc-frames.

The next result is a fundamental tool in our expository and charac-
terizes the bc-frames in terms of the classical ones via its idempotent
components.
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Theorem 3.8. The sequence (fn)n is a bc-frame for L2(T) with best
frame bounds A and B if and only if their components (f±n )n; fn =
f+n e+ + f−n e−, are frames for L2(C2) with best frame bounds a+, b+ and
a−, b−. Moreover, we have A = min{a+, a−} and B = max{b+, b−}.

Proof. Let fn, f ∈ L2(T) and assume that (fn)n is a bc-frame. By
writing them as fn = f+n e+ + f−n e− and f = f+e+ + f−e− ∈ L2(T)
with f+, f−, f+n , f

−
n ∈ L2(C2), and making use of (2.6) and (2.3), the

condition

A ∥f∥2bc ≤
∞∑
n=0

| ⟨f, fn⟩bc |
2
bc ≤ B ∥f∥2bc ,

becomes equivalent to

A
(∥∥f+∥∥2

L2(C2)
+
∥∥f−∥∥2

L2(C2)

)
(3.1)

≤
∞∑
n=0

(∣∣∣⟨f+, f+n ⟩
L2(C2)

∣∣∣2 + ∣∣∣⟨f−, f−n ⟩
L2(C2)

∣∣∣2)
≤ B

(∥∥f+∥∥2
L2(C2)

+
∥∥f−∥∥2

L2(C2)

)
,

for every f+, f− ∈ L2(C2). Accordingly, if (fn)n is a bc-frame for
L2(T) with best frame bounds A and B then the component sequence
(f+n )n (resp. (f−n )n) is a frame for L2(C2) by taking f− = 0 (resp.
f+ = 0) in (3.1). Their best frame bounds a+, b+ (resp. a−, b−) sat-
isfy A ≤ min{a+, a−} and B ≥ max{b+, b−}. Conversely, if (f+n )n
and (f−n )n are frames for L2(C2) with best frame bounds a+, b+ and
a−, b−, respectively, then (fn)n is a bc-frame for L2(T) with best frame
bounds A and B satisfying A ≥ min{a+, a−} and B ≤ max{b+, b−}.
This completes the proof of that (fn)n is a bc-frame for L2(T) if and
only (f+n )n and (f−n )n are frames for L2(C2) with A = min{a+, a−} and
B = max{b+, b−}. □
Remark 3.9. The assertion of Proposition 3.3 and Theorem 3.8 remain
valid for bc-frames (fn)n for general bicomplex Hilbert space Hbc =
H+e+ +H−e−, with f = f+e+ + f−e− and f± ∈ H±.

Example 3.10. Let (cn)n be a bicomplex sequence as in Example 3.7,
and (fn)n, with fn = f+n e+ + f−n e−, be a bc-frame for L2(T). Then, the
set of bicomplex-valued functions

fm,n(z1 + jz2) := anf
+
m(z1, z2)e+ + bmf

−
n (z1, z2)e−,

defines a new bc-frame for L2(T). This immediately follows from Theo-
rem 3.8 and generalizes Example 3.7.

Remark 3.11. Theorem 3.8 and Example 3.10 show why bc-frames
may be of interest and that they contain the classical ones as particular
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subclasses. In fact, L2(C2) can be embedded in a natural way in L2(T),
since any frame (hn)n for L2(C2) can be seen as a bc-frame for L2(T)
by considering hne+ + hne− = hn.

According to Theorem 3.8, a number of important properties for bc-
frames are described forthwith thanks to the previous characterization.
For example, we have the following characterization of completeness of
bc-frame (fn)n.

Proposition 3.12. The bc-frame (fn)n is complete in L2(T) if and only
if (f+n )n and (f−n )n are both complete in L2(C2). The same observation
holds true for the Parseval bc-frames.

Moreover, it is well known that classical Riesz basis can be charac-
terized as the data of a sequence (fn)n in Hbc which is the image of an
orthonormal basis under a bounded invertible linear operator. We claim
that this remains valid for bicomplex Riesz basis. This readily follows
from the following fact (whose proof is similar to the one provided to
Theorem 3.8).

Proposition 3.13. The sequence (fn)n is a bc-Riesz basis if and only
the idempotent components (f±n )n are Riesz bases.

However, one has to be careful as shown in the sequel.

Remark 3.14. bc-Riesz bases with frame bounds equal to one are not
necessary orthonormal bases. Indeed, given a bc-Riesz basis (fn)n for
L2(T) with frame bounds A = B = 1 is equivalent the idempotent com-
ponents (f+n )n and (f−n )n be Riesz bases for L2(C2) with frame bounds
a+, b+ and a−, b−, respectively, and such that A = min(a+, a−) = 1 and
B = max(b+, b−) = 1, according to the proof of Theorem 3.8 adapted
for Riesz bases. This is clearly not equivalent to (f+n )n and (f−n )n be-
ing Riesz bases with frame bounds a+ = b+ = 1 and a− = b− = 1,
respectively, which characterizes orthonormal bases in L2(T).

Proposition 3.15. If (fn)n is a tight bc-frame for L2(T), then (f+n )n
and (f−n )n are tight frames for L2(C2).

Proof. The proof is straightforward using the direct implication in The-
orem 3.8. □

Remark 3.16. The converse is not in general true unless (f+n )n and
(f−n )n are tight frames with the same best frame bounds.

Proposition 3.17. Let (fn)n be a bc-frame for L2(T) and assume that
(f+n )n (or (f−n )n) is an exact frame for L2(C2). Then (fn)n is an exact
bc-frame for L2(T).



BICOMPLEX FRAMES 79

Proof. The non-exactness of (fn)n is equivalent to the existence of some
u such that (fn)n ̸=u is still a bc-frame. By Theorem 3.8, this is equivalent
to the sets (f+n )n ̸=u and (f−n )n ̸=u be frames for L2(C2). This means that
(f+n )n and (f−n )n are both not exact (at least at u). This completes the
proof. □

From this, there is no reason to have the converse of Proposition
3.17 “(fn)n is exact for L2(T) implies (f+n )n or (f−n )n is an exact frame
for L2(C2)”. This is not true in general as shown by the following
counterexample.

Example 3.18 (Counterexample). Let (φn)n and (ψn)n be two frames
for L2(C2) such that (φn)n ̸=u and (ψn)n ̸=v are exact with u ̸= v. We as-
sume that u (resp. v) is the only value satisfying this property. Example
of such frame exists and one can consider (φn)n = {e0}∪ (en)n≥0, where
(en)n is an orthonormal basis. We next perform fn = φne+ + ψne−
which clearly is a bc-frame for L2(T) (by Theorem 3.8). Moreover, it
is exact, i.e., (fn)n̸=m ceases to be a bc-frame for any arbitrary m. To
this end, notice that we necessary have m ̸= u or m ̸= v. For the first
case for example (m ̸= u), the first component (f+n )n ̸=m = (φn)n ̸=m is
not a frame for L2(C2) by assumption ((φn)n is exact at u only), and
therefore one concludes for (fn)n ̸=m by making again use of Theorem
3.8.

If we denote by NExact((fn)n) the set of indices k for which (fn)n ̸=k

remains a frame,

NExact((fn)n) = {k; (fn)n̸=k is a frame},
then the exactness of (fn)n becomes equivalent to NExact((fn)n) = ∅.
Using this equivalent definition of exactness, Proposition 3.17 appears
as a particular case of the following result.

Theorem 3.19. A bc-frame (fn)n for L2(T) is exact if and only if

NExact

(
(f+n )n

)
∩NExact

(
(f−n )n

)
= ∅.

Proof. By means of Theorem 3.8 and the definition of NExact((fn)n), it
is clear that

(3.2) NExact((fn)n) = NExact((f
+
n )n) ∩NExact((f

−
n )n),

holds true, where fn = f+n e+ + f−n e−. Therefore, one concludes for
Theorem 3.19, since exactness of a given collection in L2(T) is equivalent
to the triviality of the set NExact. □
Remark 3.20. The assertion in the counterexample 3.18 can be re-
proved easily making use ofNExact((fn)n). Indeed, sinceNExact((φn)n) =
{u} and NExact((ψn)n) = {v}, we get NExact((φne+ + ψne−)n) = ∅ by
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means of (3.2), and therefore φne+ + ψne− is an exact bc-frame for
L2(T).

Accordingly, one proves that the well-known fact that ”a frame for
L2
C(Rd) is exact if and only if it is a Riesz basis (see e.g. [8, Theorem

7.1.1, p. 166])” is no longer valid for bc-frames. However, we assert the
following

Proposition 3.21. If (fn)n is a bc-Riesz basis for L2(T), then (fn)n is
an exact bc-frame for L2(T).
Proof. This is immediate making use of Proposition 3.13 asserting that
(fn)n is a Riesz basis for L2(T) if and only if the component sequences
(f±n )n are Riesz bases for L2(C2) combined with that the exactness of
ordinary frames for L2(Rd) is equivalent to being Riesz bases [8, Theorem
7.1.1, p. 166] and Theorem 3.8. □

For a complex Hilbert space H, it is a known fact that bounded un-
conditional bases (ψn)n can be characterized as orthonormal bases (en)n
via a bounded invertible operator U : H −→ H such that ψn = Uen for
each n. This result remains valid for bc-frames thanks to Proposition
3.3. The close relation to exact frames is also provided.

Theorem 3.22 ([28, 41]). A frame (fn)n for a complex Hilbert space H
is exact if and only if it is a bounded unconditional basis.

For bc-frames, we assert the following

Proposition 3.23. If (fn)n is a bicomplex bounded unconditional basis
for Hbc, then (fn)n is exact for Hbc.

Proof. This follows from Theorem 3.22 combined with Propositions 3.3
and 3.17. □

4. bc-frame Operator and Weyl-Heisenberg bc-frames

4.1. bc-frame Operator. Let (Hbc, ⟨, ⟩bc) be a functional bc-Hilbert
space on T endowed with the bc-scalar product

⟨f, g⟩bc =
∫
T
f(Z)[g(Z)]∗dλ(Z).

Thus, we decomposeHbc idempotentically asHbc = H+e++H−e− where
H± are C-Hilbert spaces on C. For given bc-bicomplex frame (fn)n for
Hbc, the components (f±n )n are ordinary frames for H±. Therefore, one
may define the analysis operators T± : H± −→ ℓ2C and their adjoint

T adj
± : ℓ2C −→ H± by

T±f
± =

(⟨
f±, f±n

⟩)
n
, T adj

± ((cn)n) =

∞∑
n=0

cnf
±
n .
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We can define the bc-analysis operator T : Hbc −→ ℓ2T for the bicomplex
Hilbert space Hbc by

Tf := (T+e+ + T−e−) f

= T+f
+e+ + T−f

−e−

= (⟨f, fn⟩bc)n,

with f = f+e++f−e− ∈ Hbc. Its adjoint T
adj
bc : ℓT −→ Hbc with respect

to bicomplex hilbertian structure is shown to be given by

T adj
bc ((cn)n) = T adj

+ ((c+n )n)e+ + T adj
− ((c−n )n)e−,

for given cn = c+n e+ + c−n e− ∈ T. Therefore, we define the bc-frame
operator S : Hbc −→ Hbc to be

Sf = (T+e+ + T−e−)
adj
bc (T+e+ + T−e−)

= S+f
+e+ + S−f

−e−,

where S± = T adj
± T± are the classical frame operators associated to (f±n )n

for H±. By construction, the operator S inherits from S± their basic
properties. Notice for instance that we have following

Sf =

∞∑
n=0

⟨f, fn⟩bc fn,

⟨Sf, f⟩bc =
∞∑
n=0

⟨⟨f, fn⟩bc , ⟨fn, f⟩bc⟩bc ,

f =
∞∑
n=0

⟨
f, S−1fn

⟩
bc
fn.

Moreover, S is clearly invertible, self-adjoint ⟨Sf, g⟩bc = ⟨f, Sg⟩bc and
bounded operator. Its norm satisfies the following estimation

∥S∥2op ≤ max
(
∥S+∥2op , ∥S−∥

2
op

)
= max

(
b+

2
opt, b

−
opt

)
.

Moreover, S is hyperbolicpositive in the sense that ⟨Sf, f⟩bc ∈ D+ for
every f ∈ Hbc, where D+ = R+e+ + R+e− denotes the set of positive
hyperbolic numbers D+.

Although, the frame operator is naturally extended to the bicomplex
context, we will be careful when examining their properties. This is
closely connected to materials discussed in the previous section. In fact,
from Proposition 3.15, we know that tightness of a bc-frame (fn)n for
Hbc implies that the frames (f±n )n are tight for H±. Thus, by means of
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[26, Proposition 5.1.1., p. 86], we have S± = a±optIdH± ; a±opt = b±opt ∈ R+,
and therefore

S = a+optIdH+e+ + a−optIdH−e+

=
(
a+opte+ + a−opte+

)
IdHbc

.

This proves the following assertion

Proposition 4.1. If (fn)n is a tight bc-frame for Hbc, then S = hIdHbc

for certain positive hyperbolic number h ∈ D+.

Remark 4.2. The converse in not valid in general unless we assume
that h ∈ R+ (i.e., a+opt = a−opt). Thus for complex-valued bc-frame, we
recover the classical result characterizing tight frames as the operator
hIdHbc

.

4.2. Weyl-Heisenberg bc-frames. The so-calledWeyl–Heisenberg (or
Gabor) frames are the famous frames for L2(R) that can be generated
from a single element (called mother wavelet). More exactly, they are
frames of functions

G(a, b, g) :=
{
Wna,mb(g)(t) = eimbtg(t− na); m,n ∈ Z

}
,

where a, b > 0 and g ∈ L2(R) are fixed, and Wa,b denotes the Weyl
operator

Wa,b(g)(t) := eibtg(t− a)

=MbTag(t),

where Mb and Ta denote the classical modulation and translation oper-
ators defined by Mbg(t) := eibtg(t) and Tag(t) := g(t − a), respectively.
The frameness of Weyl–Heisenberg systems G(a, b, g) in L2

C(R) has been
extensively discussed in several papers. See for instance [8, 10, 12, 26,
28]. The next result is an example of assertions providing us with suffi-
cient conditions on g and the lattice parameters a and b to G(a, b, g) be
a frame. Namely,

Theorem 4.3 ([28]). Let g be a compactly supported function with sup-
port contained in some interval I of length 1/b and such that

α ≤
∞∑
n=0

|Tna(g)(t)|2 ≤ β,

almost everywhere on R for some constants α, β > 0. Then, the Weyl–
Heisenberg system G(a, b, g) is a frame for L2

C(R) with frame bounds α/b
and β/b.
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The introduction of bicomplex analog of Weyl–Heisenberg (W-H) sys-
tems can be accomplished in different ways. In the sequel, we confine
our attention to the natural ones. By considering two classical W-H
systems G(a, b, g) and G(c, d, h) for L2

C(R), we perform the following

Gν,µ(Γhyp(A,B), f) :=
{
W ν,µ

nA,mBf ;m,n ∈ Z
}
,(4.1)

associated to f = ge+ + he−, the hyperbolic lattice Γhyp(A,B) = ZA+
ZB; A = ae++ce−, B = be++de− ∈ D+ and the modified Weyl operator
[16]

W ν,µ
nA,mBf(t) :=

[
W ν

na,mbg
]
(t)e+ +

[
Wµ

nc,mdh
]
(t)e−,

defined as projective representation of two copies ofW ν
a,bg(t) = eνbtg(t−

a). Here ν2 = µ2 = −1. Clearly W ν,µ
nA,mB belongs to the Hilbert space

L2
T(R) :=

{
φ : R −→ T; ∥φ∥2bc :=

∣∣∣∣∫
R
|φ(t)(φ(t))∗dt

∣∣∣∣
bc

< +∞
}
,

of all bicomplex-valued functions on R with finite norm, where the norm
is the one induced from the bicomplex inner product

⟨φ, ϕ⟩bc :=
∫
R
⟨φ(t), ϕ(t)⟩bc dt,(4.2)

through (2.2). By taking a = b, c = d and g = h we recover the classical
notion of W-H system.

Definition 4.4. The system Gν,µ(Γhyp(A,B), f) in (4.1) is called bi-
complex W-H system for the Hilbert space L2

T(R).

Therefore, by means of Theorems 3.8 and 4.3, we deduce easily the fol-
lowing result for W-H bc-systems in the bicomplex Hilbert space L2

T(R).

Proposition 4.5. Gν,µ(Γhyp(A,B), f) generates a bc-frame for L2
T(R)

under the assumption that f are compactly supported with support con-
tained in some interval I of length min(1/b, 1/d) and

α′ ≤
∞∑
n=0

|(Tnae+ + Tnce−)(f)(t)|2bc ≤ β′,

almost everywhere on R for certain constants α′ and β′.

Thus, the existence of W-H bc-frames for L2
T(R) requires in particular

ab ≤ 1 or cd ≤ 1 by Theorem 3.8 and [26, Corollary 7.5.1., p. 138].
Moreover, the most properties valid for complex W-H frames can be
established easily for the W-H bc-frames. Notice then even the critical
case ab = 1 characterizes the exact W-H frame for L2(R), the exactness
of Gν,µ(Γhyp(A,B), f) is not characterized by AB = 1 in D+, i.e., ab = 1
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and cd = 1. Namely, the following assertion readily follows using [26,
Corollary 7.5.2. p. 139] and Proposition 3.17

Proposition 4.6. If Gν,µ(Γhyp(A,B), f) is a Weyl–Heisenberg bc-frame
for L2

T(R) and ab = 1 or cd = 1, then it is exact.

Remark 4.7. The converse of Proposition 4.6 is not true in general.

The previous formalism for constructing W-H bc-frames for L2
T(R) can

be extended (in a similar way), thanks to Theorem 3.8, to the Hilbert
space L2

T(D) on hyperbolic numbers by considering the family of func-
tions [

W ν
na,mbφ

]
(xe+ + ye−)e+ +

[
Wµ

pc,qdψ
]
(xe+ + ye−),

for varying 4-uplet M = (m,n, p, q) ∈ Z4. Here a, b, c, d > 0 are fixed
reals and φ,ψ are fixed complex-valued functions in L2

C(R). The follow-
ing result shows that it is not true in general that from a given W-H
frames for L2

C(R), one can generate W-H bc-frames for L2
T(D) by means

of Theorem 3.8. In fact, for fixed g, h ∈ L2
C(R), we define

ψν,µ
M (xe+ + ye−) := e−y2/2

[
W ν

na,mbg
]
(x)e+ + e−x2/2

[
Wµ

nc,mdh
]
(y).

(4.3)

Thus, we can prove the following

Proposition 4.8. Assume G(a, b, g) and G(c, d, h) are frames for L2
C(R).

Then, the bicomplex W-H system ψν,µ
M in (4.3) is not a bc-frame for

L2
T(D).

Proof. By means of Theorem 3.8 the frameness of ψν,µ
M , in L2

T(D), is

equivalent to the frameness of their components e−y2/2[W ν
na,mbg](x) and

e−x2/2[Wµ
nc,mdh](y) in L

2
C(D). It should be noticed here that the tensor

product hu⊕hv(x, y) = hu(x)hv(y) of Hermite functions is an orthogonal
basis of

L2
C(D) =

{
ψ : D −→ C;

∫
D
ψ(ξ)ψ(ξ)dλ(ξ) < +∞

}
,

and that direct computation using Fubini’s theorem shows that we have∑
m,n∈Z

∣∣∣⟨hu ⊗ hv,W
ν
na,mbg ⊗ h0

⟩
L2
C(D)

∣∣∣2 = π
∑

m,n∈Z

∣∣∣⟨hu,W ν
na,mbg

⟩
L2
C(R)

∣∣∣2 δv,0.
This shows in particular that the considered sequence W ν

na,mbg ⊗ h0 is

not a frame in L2
C(D). This completes the proof. □

However, we have
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Proposition 4.9. If (a, b, g) and (c, d, h) generate Bessel sequence of
W-H type in L2

C(R), then the family ψν,µ
M in (4.3), for varying M ∈ Z4,

is a Bessel sequence in L2
T(D).

Proof. By similar arguments as in the proof of Theorem 3.8, we need only

to prove the components e−y2/2
[
W ν

na,mbg
]
(x) and e−x2/2

[
Wµ

nc,mdh
]
(y)

are Bessel sequences in L2
C(D). Thus, for arbitrary Φ ∈ L2

C(D), the par-
tial function x 7−→ Φy(x) := Φ(xe++ye−) is clearly in L2

C(R). Moreover,⟨
Φ, e−y2/2W ν

na,mbg
⟩
L2
C(D)

=

∫
D
Φ(xe+ + ye−)

(
e−y2/2W ν

na,mbg(x)
)∗
dxdy

=

∫
R
e−y2/2

⟨
Φy,W

ν
na,mbg

⟩
L2
C(R)

dy.

Now, since g generates a Bessel sequence in L2
C(R), we see that∑

m,n∈Z

∣∣∣∣⟨Φ, e−y2/2W ν
na,mbg

⟩
L2
C(D)

∣∣∣∣2 ≤ ∫
R
e−y2

∑
m,n∈Z

∣∣∣⟨Φy,W
ν
na,mbg

⟩
L2
C(R)

∣∣∣2 dy
≤

∫
R
e−y2 ∥Φy∥2L2

C(R)
dy

≤ c ∥Φy∥2L2
C(D)

,

for some constant c. This shows that e−y2/2W ν
na,mbg is a Bessel sequence

in L2
C(D). □

5. Concluding Remarks

In this note, we have presented a natural extension of some no-
tions from classical frame theory including frame operator and Weyl-
Heisenberg frames to the bicomplex setting. We have briefly discussed
their similarities and the differences to classical ones. The mean feature
of bc-frame is Theorem 3.8. The complete description of bc-frames needs
further investigations. However, the bc-hilbertian structure allows the
consideration of non-trivial extensions for the existence of three com-
plex conjugates and the divisibility by zero. Notice for instance that we
define a †-bc-frame to be a bicomplex sequence (fn)n in a given infinite
bc-Hilbert space Hbc if there exist A,B > 0 such that

A ∥f∥2bc ≤
∞∑
n=0

∣∣∣⟨f, fn⟩†bc ⟨f, fn⟩∗bc∣∣∣ ≤ B ∥f∥2bc ,

holds true for every f ∈ Hbc, so that one recovers the classical definition
if we restrict ourself to complex valued functional Hilbert spaces. We
claim that this class possesses several interesting and surprising results
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that deserve special study. We hope to return back to this in detail in a
forthcoming paper.

We conclude by noticing that other constructions of W-H bc-frames
and bicomplex Wilson bases for bicomplex Bargmann space in [16] can
be considered by benefiting from the rich structure of bicomplex Hilbert
space, including the one the hyperbolic numbers and those arising from
discretization of bicomplex Fourier–Wigner transform in [16] and asso-
ciated to the bicomplex projective representations considered there.

Acknowledgment. The authors are grateful to the anonymous referees
for their valuable remarks, comments and suggestions. The authors are
thankful to S. Kabbaj for his valuable comments on the first draft of
this work.
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