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Boundary Value Problems in Thermo Viscoplasticity

Ilyas Boukaroura', Seddik Djabi** and Samia Khelladi®

ABSTRACT. In this work, we study two uncoupled quasistatic prob-
lems for thermo viscoplastic materials. In the model of the equation
of generalised thermo viscoplasticity, both the elastic and the plas-
tic rate of deformation depend on a parameter § which may be
interpreted as the absolute temperature. The boundary conditions
considered here as displacement-traction conditions as well as uni-
lateral contact conditions. We establish a variational formulation
for the model and we prove the existence of a unique weak solu-
tion to the problem, reducing the isotherm problem to an ordinary
differential equation in a Hilbert space.

1. INTRODUCTION

In this work, we analyze two models for thermo viscoplastic materi-
als. The thermo viscoplasticity effect is characterized by the coupling
between the mechanical, and the thermal properties of material. The
thermo viscoplasticity laws have been studied by mathematians, physi-
cists and engineers in order to model the effect of temperature in the
behavior of some real bodies like metals, magmas, polymers and so on.
For more details see [, 2] and [IZ]. The constitutive laws with internal
state variables has been used in various publications, see for example
[6, 7] and [, I1]. We are study some thermomechanical problems in
[@, 5]. Examples and mechanical interpretation of thermo viscoplasticity
can be found in [T0]. In order to describe the behavior of real problems
for materials, we consider a rate type constitutive equation of the form
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(1.1) o =&e(i) + G(o,e,0).

In (D) u, o represent, respectively, the displacement field and the
stress field, e(u) = (g45(u)) is the linearised strain tensor

1
gij(u) = i(Vu + V7T,

0 the absolute temperature, £ the fourth order elastic tensor and G is
a nonlinear constitutive function, which describes the thermo-plastic
behavior of the material. Situations of such problem are very common
in industry, and geology. We consider for the heat flux ¢ a constitutive
classical Fourier law given by

(1.2) q=KVo.

Existence and uniqueness results for problems (IC0)- (I"2) were obtained
by many authers using different functional methods (fixed point, monotony
and other methods), see for example [I2] in the case of classical displace-
ment traction boundary conditions. In many researches, investigation
are formulated on the basis of the generalized thermo viscoplastic theo-
ries whith temperature independent mechanical properties. The aim of
this paper is to study the effects of temperature dependence of £ on the
behavior of the solution in generalized thermoviscoplastic. For this, we
consider a rate type constitutive equations of the form

(1.3) & = £(0)e(a) + G(o, <, 0).

In the future research, we are interested in the properties of the solu-
tion (dependence of the solution on the parameter 6, and the stability
of the solution).

The paper is organized as follows. In Section B we describe the math-
ematical model for the problem. Also, we introduce some notations,
list the assumptions on the problem’s data, and derive the variational
formulation of the model. In Section B we state our main existence and
uniqueness result which is based on a Cauchy Lipschitz technique.

2. PROBLEM STATEMENT

Let Q be a bounded domain in R%(d = 1,2, 3) with a smooth boundary
I' which partitioned into three disjoint measurable parts I'y, I'y and I's,
such that measI'; > 0. Let 7" > 0 and let [0, 7] denote the time interval
of interest.

We consider the following mixed problem:
Problem P



BOUNDARY VALUE PROBLEMS IN THERMO VISCOPLASTICITY 21

Find a displacement field u : Q x (0,7) — R? a stress field o :
Q x (0,T) — Sy, a temperature 6 : Q x (0,7) — R, and the heat flux
function ¢ : Q x (0,T) — R? such that

2.1) o =¢&0)e(d) +G(o,e,0), inx(0,T),
Divo + fo =0, inQx(0,7),

divg+r =0, inQx(0,7),

g=KV0, inQx(0,7T),

u=0 onT; x(0,7),

o-v=fa, onTsx(0,7T),

0=a onlyx (0,7),

qg-v=p3 onTyx(0,7),

u(0) = ug,0(0) = g9, in .

Here S is the set of second order symmetric tensors on R, v = (;)
is the unit outward vector field normal to € and ug, g are the initial
data .

We consider the following boundary conditions

(2.10) u, <0, o, <0, o, =0, oy, =0, onI'3x(0,7),

In this way, we obtain two initial and boundary value problems (P;),
defined as follows:

Problem P; Find the unknowns (u, 0,6, q) such that (EXI)-(29) are
satisfied. This problem represents a displacement traction problem, in
this case I's = ¢.

Problem P; Find the unknowns (u,o,6,q) such that (ECT)-(E10)
hold. This problem models the frictionless contact between the thermo
viscoplastic body and the rigid foundation, (EI0) represents the Sig-
norini’s boundary conditions.

2.1. Variational Formulation. For a weak formulation, we list the
assumptions on the data and derive variational formulations for the con-
tact problems (P;). To this end, we need to introduce some notations
and preliminary material. For more details, we refer the reader to [3, 4.
We denote by Sy the space of second order symmetric tensors on R?
(d =2,3), while || - | denotes the Euclidean norm.

Let © C R? be a bounded domain with Lipschitz boundary I' and let
v denote the unit outer normal on 9€) = I'. We shall use the notations

H=H = [12@),
dxd
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and
={u=(u;) € H :e(u) € H},
={0 € H:V0cH},

Hi={o € H: Divo € H},
V={o0€Hi:Divo=0in Qov=0 onTi},

ﬂlz{qeﬂ:divqefl},
]}:{qeﬂlzdiquoinﬂ,ql/:O onFl},

where e : H - H, V : H— H, Div : H—H, and div : H—H are the
partial derivative operators of the first order, respectively, defined by

[e(u) = (Eij(u)), Eij(u) = %(ui,j + Ujﬂ')] , [V@ = (V@), V0 = %} ,

Divo = (%4), divg = (52).

Here , the indices ¢ and j run from 1 to d, The spaces H, H1, H, Hi,
H, Hi, H and H, are real Hilbert spaces endowed with the canomcal
inner products given by:

(u,v)g = /Quwidx,
(wv) i, = (w,v)m + (€ (u), € (v))y

(o,7)y = / oij.Tijdz,
Q
(0,7)n, = (0,7)n + (Divo, Divr) g,

/HZapZd:c,,

(Q7p)ﬂ:/Qij-pijdxva
(¢:p)77, = (¢, p)5; + (divg, divp) 5

The associated norms are denoted by || ||z, || || g1, || |2, |- 1205 |1l 75
|- 1l z, I - [l and [| - [[;7,, respectively. Also, for any real normed space
X, we denote by X" its strong dual, by ||-||x, |- || x the norms on X and
X', respectively and by () x+,x the canonical duality pairing between
X and X'. If in addition X is a real Hilbert space and A: X — X is a
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continuous symmetric and positively definite linear operator, we denote
by (;) 4 x and || - [|ax the energetical product and the energetical norm
induced by A on X.

Let

Hr = (H'?(T)?,  Hr = (H"*T))",
and

y:H(D) = Hy,  7:H' (D) - Hr,
be the trace map. We introduce the following closed subspaces of Hy
and H;

V={uecH :yu=0 on I'i},
V:{Heﬁlfyezo on f‘l}
We introduce the following notations for the problems (P;)

L(t,v) = (fo (t),v) + (f2 (t) ,70) pa(ry) -

For the problem P, we have:

Uad = ‘/7
d () ={reM; (r,e(w)) =L(t,w); YweV},
ad
(Z does not depend on V) .
ad

For the problem P», we have:
Uy ={veV; v, <0onTls},

d (o) ={reM; (r,e(w)—e(v)) > L(t,w—v); YweV}.
ad

In the study of the Problem (P;), we consider the following assump-
tions:
The operator & : RY x Sq — Sy satisfies

(a) There exists L¢ > 0 such that
||€(91) (92)” < L5H01 — 92” for all 61,05 € ]R
b) £(6

(b) £(0).0.7 = 0.£(0).T, V@ERd Vo, T € Sy,
(2.11) (c) There exists a > 0 such that £(0).0.0 > al|o||?,
Vo € RY Vo € Sy,
(d) £(0) is Lebesgue measurable on €,

(e) There exists § > 0 such that |[|£(8)] < 5.
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The operator G : Sq x Sq x R? — S satisfies

(2.12)
(a) There exists Lg > 0 such that
1G(01,€1,601) — G(o2,€2,02)|| < Lg (|lor — o2 + [ler — &2 + (|61 — 62])
for all 01,09 €Sy, €1,62 €Sy, 01,02 ERd,
(b) The mapping G(o,¢,0) is Lebesgue measurable on §).

The tensor K : Q x Sgq — Sy satisfies

(a) K(z).qp =q.K(x).p, Vq,p€Sy, a.einf),
(b) There exists A > 0 such that K(z).q.q > \|q||?,
for all g € Sg, a.ein Q,

(C)Kij € L (Q) , foralli,j€1,2,3.

(2.13)

K is a symetric and positively definite bounded tensor.
The tensor K~ A is a symetric and positively definite bounded tensor
ie.

(2.14)
(a) K~ 'A(x).qp= ¢ K A(z).p, VYq,p €Sy, a.ein,
(b) There exists § > 0 such that K 1A(x).q.q > §||q|?,
forall g € S; a.ein Q,
(c) (K~'4) SELX(Q), foralld,jel1,2,3.

g

We, also suppose that

(2.15) fo € CY0,T; H),
(2.16) r e L*(Q),
(2.17) fo € CY(0,T; HY),
(2.18) ac LA(T),
(2.19) B € L3 (Ty),
(2.20) ug € Hy, 00 € H,

and we suppose
(2.21) Divog + fo(0) =0, in Q,
(2.22) oo.v = f2(0), onIs.

By using standard arguments, we obtain the following variational for-
mulation of the problem (271)-(210).
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2.2. Problem Py. Find the displacement field u : [0,7] — R? the
stress field o : [0,7] — Sy, the temperature function 6 : [0,7] — R, and
the heat flux ¢ : [0, 7] — R? such that

(2.23) u(t) = Ugg, 0(t) € Y _(t,w(t), Vit € [0,T],
ad

(2.24) o (t) = £(0 (1))-£(a(t) + G(a (), e(u(?)), 0(t)),

(2.25) w(0) =ug,  o(0) = oo,

We notice that the variational formulation PV is formulated in terms
of a displacements field, a stress field, a temperature and heat. The
existence of the unique solution of the problem PV is proved in the next
section.

3. EXISTENCE AND UNIQUENESS OF A SOLUTION

Now, we propose our existence and uniqueness result.

Theorem 3.1. Assume that (Z0)-(2220) hold. Then there exists a
unique weak solution of the problems (2223)-(2228), such that

(3.1) 0 € Hy,

(3.2) q € Hi,

(3.3) u € CY0,T;V),
(3.4) o€ CH0,T;Hy).

The proof of the Theorem B will be carried in several steps. It is
based on parabolic equations and a Cauchy Lipschitz technique.

In the first step, we consider the following variational problem:
Problem PVy
Find a temperature function 6 : [0,7] — R, such that

(3.5) (KNVO0, V) = (r,n) + (a,9n) + (B,9m).

The existence and uniqueness of the functions (6, ¢) satisfying (BI),(BZ2)
can be obtained by using Lax-Miligram lemma. For the problem PVy
we have the following lemma.

Lemma 3.2. PVy has a unique solution satisfying
(3.6) heV,
(3.7) q € Hi.
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Proof. Applying Lax-Miligram lemma for the coercive bilinear and con-
tinuous form

a(0,n) = (KV6,Vn),

and for the continuous linear form

Hz) = (r,n) + (e, 3m) + (B,7m),
we get the existence and uniqueness of 0 : [0,7] — R, such that

(Kvev VU)H = (T’ 77) + (av 5/7’) + (,8, ’3/77)
Il

Now, the existence and uniqueness of the solution (u,o) of the me-
chanical problem with the regularity(B=33), (84) can be proved by con-
sidering 6 as a known function and the existence and uniqueness of the
solution of the mechanical problem can be proved by reducing the stud-
ied problem to an ordinary differential equation in a Hilbert space.

In the second step, we consider the following variationnal problem.

Problem PV,

Find a displacement field u : [0, 7] — R?, and the stress o : [0,7] — Sy
such that

(3.8) u(t) = Uaa,o(t) € Y _(t,w(t), Vte€[0,T],
ad

(3.9) & (t) =0 (1)-e(u(t)) + G(a(t), e(u(t)), 0(t)),

(3.10) u(O) = Uug, U(O) = 09.

The existence and uniqueness of the functions (u, o) satisfying (833),(84)
is given by the following lemma.

Lemma 3.3. PV has a unique solution satisfying
(3.11) u e CY0,T;V),
(3.12) o€ CY(0,T;Hy),

In order to prove Lemma B3, we need some preliminaries given by
the following lemma, whose proof can be easily obtained

Lemma 3.4. Let 6 € V, then for all t € [0,T], we have
1£(0 (2))-0ll; < Bllou,
(€O (1)a,0)y > allol,
_ 1
€6 @0 < ~lolhe

@%mmmwﬂz%w%-
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Using the properties of the trace maps, from (21H) and (214), we
obtain the existence of the function & € C*(0,T;H1), such that
ov(t)=fa(t),  T2x[0,T7,
Div G (t) + fo = 0.
Now, let X =V x V, we consider
a:[0,T] x X x X = R,
F:[0,T) x X — X,
given by
(3.13) a(t,z,y) = (€0 (1) (u) & (V) + (€O ()0, 7)y

(F (t,2),y)x = (€O )G (0 +5 (1), (u),0(),7),
(

(3.14) —(G(o+a(t),e(u)),0(t),c(v)y
— (0 (), e (v)); — (€O M)T (1), )y, 5
for all z = (u,0), y = (v,7) € X and t € [0, T .
Let us set the following natations
(3.15) co=0d+ad, == (u,0),
(3.16) oo=00+(0), z=(up,d0)-.
We have:

Lemma 3.5. The pair (u,0) € CY1(0,T;V x H1) is a solution of the
problem P, if and only if x € C*(0,T;X) is a solution of the problem
(317) a(tai(t)ay) = <F(t7x)7y>X7
(3.18) z(0) = zo,
where X =V xV, x = (u,d).
Proof. Using (BM)-(B13), (B18H), (B4) it is easy to see that (u,0) €
CY(0,T;V x Hj) is a solution of the viscoplastic problem if and only if
r € CY0,T; X) and
(3.19) & =¢£(0).e(i) +G (7 +5,6(u),0) — o,
(3.20) U(O) = ug, 5(0) = 09.

Let us suppose (B19)-(B=20) are fullfield. Since (v) is the orthogonal

complement of V in H, we have (B11).
Conversely, let (BI7) hold and let

(3.21) 2(t) = 6(t) — E()e(t) — GG + &, ¢(w), 0) — 6.
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Taking y = (v,0) € X in (BO4) and using the orthogonality of £(v)
and v, we get
(3.22) (z(t),e(v))y = 0.

Now, we take y = (0,7) € X in (BI4) and using the orthogonality of
e(v) and v, we get
(3.23) (€O )z (t), ), =0.

Since €(v) is orthogonal to v in H, from (B=22) we get z (t) € V, thus

we may put 7 = z(¢) in (B23), and from (BR) we deduce z (t) = 0.
Hence, we proved that (BT9) is equivalent to (BIR). O

The following lemma can be easily obtained

Lemma 3.6. For every x € X and t € [0,T] there exists a unique
element z € X, such that

(324) a(t,z,y) = <F(t7x)7y>X7

where X =V xV, z = (u,0).
Proof. Let x € X and t € [0,7]. Using the properties of &, ¢~! and
Korn’s equality, we get that a (¢, ., .) is bilinear, continuous and coercive,

hence the existence and uniqueness of z satisfying (B=24) follows from
Lax Miligram’s lemma. U

The previous lemma allows us to consider the operator A : [0,7] x
X — X defined by : A(t,x) = z, Moreover, we have:

Lemma 3.7. The operator A is continuous and there exists C > 0, such
that:

(3.25) |A(t,l’1) — A(t,l’g)’x < C|{L‘1 — IL‘2|X, Vl’l,l'g e X.

Proof. Let us consider t1,ty € [0,T]; x; = (u;,04) € X and let z; =
(wi, ;) € X defined by z; = A (t;, x;).

Using (B=24), we have
(3.26)
a(tl, 21,21 — 2’2) — a(tg, 29,21 — 22) = <F(t1, Zl) — F(tQ, 22), z1 — 22>X N
and from Lemma B4 and Korn’s inequality, we get

(3.27) a(ty,z1,21-22) — a(ta, 22,21 22)
> C|lz1-z2]% — €0 (1)) = €0 (22))] & (w2) | 7 21— 22 x
—|TE7H O (t)) — €710 (t2))] 2| oy llz1—22]l -
In a similar way, from (Z12) and Lemma B, we get
(3.28)
(F(ti,z1) — F(t2,x2), 21—-22) x
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< C(llzr-m2llx + (|6 (1) — 7 (t2)||
+ o (t1) = (L)l g + 110 (t1) — 0 (t2)ll 2 ()
H[[ETHO (1) = €710 ()] F (0246 (1), (w) 0 (t2))
+IEHO (1) — €710 (t2))] o (t2)]| )- 21— 22l x -
So, from (B20)-(B2R), we have
(3.29)
[z1-22 x < C([[[€(6 (t1)) — £(0 (t2))] € (w2)ll
+ €710 (1) — €710 (t2)] |
+ [w1-m2llx + (|6 (1) — 7 (E2)[|
+ |6 (t1) — & (t2)ll g + 116 (f1) — 0 (t2)[| 2@
+ [N (1) = €O )] ||y F (o2 + 6 (), (u) .6 (2))
+ [ [€710 (1)) — €710 (22))] o (t2) || 1p)- 12122l -

Using the properties of ¢, €71 and the regularity of &, u, from (B=29)
we get 21 — 29 in X when t; — t3 in [0,7], and 7 — x5 in X.
Hence A is a continuous operator, moreover taking t; = to in (B229), we
get (B7Z3). O

Now, we have all the ingredients needed to prove Theorem B

Proof of theorem Bd. Using the hypothesis on ug, o¢g we get that xg €
X, and by Lemma BZ and the classical Cauchy Lipschitz theorem we
get that, there exists a unique solution z € C*(0,7T; X) of the Cauchy
problem

p(t) = A(t,z (1)),

x(0) = xo.
Theorem B follows now from the definition of the operator A, and
Lemma B3 . Il
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