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New Integral Inequalities Relating to a General Integral
Operators Through Monotone Functions

Bouharket Benaissa'* and Abdelkader Senouci?

ABSTRACT. Weighted integral inequalities for general integral op-
erators on monotone positive functions with parameters p and g are
established in [4]. The aim of this work is to extend the results to
different cases of these parameters, in particular for negative p and
q. We give some new lemmas which will be frequently used in the
proofs of the main theorems.

1. INTRODUCTION

In 1993 Shanzhong Lai [4] considered weighted norm inequalities for
general integral operators of the form

Sof(x) = / T o) fW)dy, () > 0, dlz,.) € Li(0,00), 7 € (0,00)

on monotone functions f: Ry — R,. The Hardy operator

the Laplace transform

Liw) = [ e

0
and the operator

S5 = [~ ot (e
are special cases of Sy f.
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42 B. BENAISSA AND A. SENOUCI

We adopt the usual following conventions.

0
(i) We put 0 x oo =0, g:()and6:0.

00
(ii) We shall write h is AC if h is locally absolutely continuous
function on (0,00) (that is h is absolutely continuous on any

finite interval (a,b) C (0, 00)).

(iii) we shall use the notation f 1 (f |) to indicate that f is positive

and strictly non-increasing (non-decreasing) on (0, o).

In [4] weight functions w,v were characterized for which the inequality

HS¢f||Lp,w(0,oo) < CHfHLq,v(O,oo)

holds for monotone functions f, where C > 0 is independent of f. Here
and almost everywhere in the sequel w, v are positive Lebesgue measur-
able functions on (0,00). Namely the following statements were proved

there.
Let

L) ) = /0 Coley)dy,  ®i(zr) = / " b, v)dy,

where ¢ : R+ X R+ — R+.

Theorem 1.1. Let 1 < g < p < oo and C > 0, then the inequality

(1.2 ( s f%)’l’ <c [ / OO(S¢f)qu

holds for all f |, if and only if

1.9 ( /OzU)i <c| /jw,m%ﬁ, >0,

Inequality ) holds for oll f 1, if and only if

(1.4) [/T""w];gc</o°°q>1(x,r>qv>é, vr > 0.

Theorem 1.2. If 0 < q¢<p<1andC >0, then the inequality

(15) ( / Oo(quf)Pw); <c [ I fqvf

holds for all f |, if and only if

L6 ( /j@@,ﬂpw)i <o /Oz]i,
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Inequality ) holds for all f 1, if and only if
) . © 711
(1.7) </ <I>1(:U,r)pw> <C {/ v] , Vr>0.
0 T
Lemma 1.3. (i) For 0 < p <1, the inequality
00 1 00 p
(1.8) / fP(x)aP e > - (/ f) . Y,
0 P \Jo
holds.
(ii) For p > 1, the inequality
e’} 1 [e’¢) p
(1.9 [ r@ea< ([T v
0 P \Jo
holds.
Lemma 1.4. 1. Let C7 >0 g: Ry — Ry, be Lebesgue measur-

able function on Ry, h be AC and h' < 0 almost everywhere on

(0,00), h(+00) =0, then
(i) For p > 1, the inequality

(1.10) /Ooofpg§01 {—/Ooofh’r, Vi,
holds if and only if
(1.11) /Oogg Cih(r)P, Vr>0.
(ii) For0 <p TS 1, the inequality
(1.12) /OOO fPg > C4 [— /OOO fh’r, VfT,
holds if and only if

(1.13) / g > C1h(r)P, ¥r>0.

2. Let Co > 0 g : Ry — Ry, be Lebesque measurable func-
tion on Ry, h be AC and h' > 0 almost everywhere on

(0,00), h(4+0) =0, then
(iii) For p > 1, the inequality

[e'e] ] p
(1.14) /0 fPg < Cy [/O fh/], v,

holds if and only if

/ g < Cah(r)P, Vr>0.
0
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(iv) For 0 < p < 1,the inequality

e’} [ee} p
1.15 Pg > C: o, Vf,
(1.15) [Traze|[Tm] v
holds if and only if

(1.16) / g > Caoh(r)P, Vr>D0.
0

In [2] the following theorem was proved.

Theorem 1.5. (i) Let 0 <p<1l, —o0 <a < b< +oo and —o0o <
¢ < d < +o0. Suppose that f is measurable non-negative (non-
positive) on (a,b) x (¢,d) and f(.,y) € Ly(a,b) for almost all

€ (¢,d). Then

d d
/ F(a,y)dy > / 17 ) ey
¢ LP(avb) ¢

if the left-hand side is finite.

(if) Let p < 0, —o0 < a < b< o0 and —c0 < ¢ < d < oo. Suppose
that f is measumble non-negative (non-positive) on (a,b) x (¢, d)
and f(.,y) € Ly(a,b) for almost all y € (c,d). Then

> (15l
Ly(a,b)
if the left-hand side is finite.

ffcydy

2. PRELIMINARIES

In this section, we prove some lemmas which will be frequently used
in the proofs of the main theorems.

Lemma 2.1. (i) If0 < p <1, then

ey o " e tde > ( / N ;zf(x)dm)p, vt
(ii) If p > 1, then

(2.2) /0°° (@)L < ; (/OOO ;f( )d )p, Vit

Proof. This is a particular case of Lemma @, which can be derived by
taking
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0, ze€(0,t)
1, ze€(t,00)
1
obtain equality in (@) and (@) Consequently, p and — are sharp
p
constants in (@), (@) respectively.

Lemma 2.3. Let p < 0. If f is non-negative and non-increasing on
(0, +00), then

(2.3) / FP(x)2Pdz > 2~ p( p1>p1 </Ooof>p.

If f is non-negative and non-decreasing on (0,+00), then

Oofp(x)fﬂ_p_lde?_p % " Oo%f(:v)dx p.
0 p—1 0o T

Proof. 1) Let f be non-increasing.
From Lemma [1.3 (i), with 0 < ¢’ <1, we have

( /O N f) "<y /0 " (@),

Let p' = ¢’ — 1, then for —1 < p’ < 0, we get

Remark 2.2. If, for t € (0,00), we put f(z) = {

p+1 1
l

(/jf) T )Y (/ P xpd:z>

Ifweputp/p—fl:p:1+1%,then

()= G2 ([ e

Let
*  » 1
Rz/ fr1(z)xr—1dx,
0
by Holder’s inequality with r = % >1landr =1—p, we
obtain

R = / fP I( o (a:fQ(:/c))ﬁ dz

consequently

Rl > (/OOO xp_lfp(x)dm> - </O°O :UfZ(a:)dx>p
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and
(2.5)
o] -p o] —-p
(5965 ( ) ([ o)
0 0
By using Lemma ( , for p = 2, we have
0o 2 )
2
(/0 f> 22/0 2 f2(z)da
then

([ )=+ ([ o) ([ )"

for p <0

o ([ (o) ()

By (2.3) and (2.6) we get (2.3).

2) Let f be non decreasing. By applying Lemma @ for p = 2)
the proof of (@) is similar that of (@)
O

Lemma 2.4. Suppose that w € L1(0,00) is weight function and ¢ :
(0,00) — (0, oo) is continues and strictly increasing function such that

©(0,00) = (0,0), ¢ € CH0,4+00). Then for all p < 0 and y € (0, +0c0)
o0 B oo 1

(2.7) /0 L x)dxdy = /0 ¢ (z)w(x)dx

28 [ e = [ 0) s

(2.9) /0 ;2/; ! w(z)dxdy :/0 (go_l(:c))_l w(x)dx

@10) [T = [ (7 0) P ot

Proof. From (EI) it follows that for almost all » > 0, ®] = ¢(x,r) and

(®1) = —(z,7). We set W(t) = / w(z)dz, Wi(t) = / " (@),

0 t
then W/(t) = w(t) and (W1)'(t) = —w(t). If we put ¢(y) = t and
integrating by parts, we obtain

/ /@ | wla)ddy = / / )dzdp= (1)
=Atmmw—w
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T

—  lim [Wl(t)@l(t)}

T—00,5—01

+ /OOO e H(tw(t)dt

— [
0
and we get equality (@)
The proof of equality (%is similar.
(

Next we prove equality ):

/Oooylz/;(y)w(:v)dm‘dy:/ooll(t))?</ot ()dx> do(¢)
= /W < <>>

1 T
= 1l — |W(t
T—>o<1gl—>0+ [ ( )go—l(t)] s
>~ 1
+ / w(t)dt
o ¢ () ©
>~ 1
= ———w(t)dt.
/0 EEIOR
The proof of equality () is similar to that of (@) O

Lemma 2.5. Suppose that w € L1(0,00) is a weight function, and
Y i (0,00) — (0,00) is is continues and strictly decreasing function
such that 1((0,00)) = (0,00), ¥ € C*(0,4+00). Then for all p > 0 and
y € (0, +00)

0o r(y) 00
(2.11) /0 /0 ’ w(z)dxdy = @) w(x)dz.

00 %71 _ 00 . % .
212) [T =y [ 070)? ot

(2.13) /OOO yl /1:)) w(z)dzdy = /OOO (dfl(;c))_l w(z)dx
Y
(2.14) /0 By, b))y Ny = p /0 T ) oles )t

Proof. Let ¥(y) =t and integrating by parts, we get

/Ooo /Ow( Y x)dzxdy = / / x)dadi ™ (t)
[T
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The proof of equality () is similar,

| v = - [T o (7 0) T )
0 0

h
8
@M‘ —_
@\
< ¢
&
&
Q
8
QU
<
Il
|
N
8
<
—
=
5
N\
r\
8
&
&
QL
8
N~
QU
<
L
=

1 T * 1
= li Wit t)dt
0] e
* 1
= ——w(t)dt.
SRTEOR
The proof of equality () is similar to that of () O

3. MAINS RESULTS

In this section we prove theorems similar to Theorems 1 and 2 but
for a different range of the parameters p and q.

Theorem 3.1. Let 1 < p < 00, 0 < ¢ < 1, and C3 > 0, then the
inequality

(3.1) ( s f%)’lj < s [ / °°<S¢f>qu‘

holds for all f | if and only if

5. (/ w)i <[ [ wter] VI

Inequality @) holds for all f 1 if and only if

(3.3) (/:ow>’1’gcg :/Oooq)l(x,r)qv];, >0,

Proof. (B1) — (B2). It suffices to take f = 1(,, (B2) — (B).
First, let f € C(0, 00) and be positive and strictly decreasing on (0, co).
Y(t) = (fp)l(t)@en Y(t) satisfies the assumptions of Lemma 6. Now,

let » =9 (y) in (B.9) and integrate in y over (0,00), then
(3.4)

oo »(y) s . oo 00 3 X
/ (/ w(x)dx) pra s [T [ et vy a
0 0 0 0
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¥(y) 1
Next let g(y) = / w(z)dz, since w(z) >0a.e.,theng |, 0< - <1
p

0
and by (@) we obtain

/OOO g (y)y» 'y > p </OOO g(y)dy> :

If we denote by Lhs and Rhs respectively the left-hand side, right-hand
side of inequality (@), using (‘)we get

s> </Ooo </0¢(y) w(a;)dx> dy) v

P

o ([ v @)

and
_ i q ‘ o1
Rhs = Cg/o _/0 O(x,1(y)) v(x)da:} yr dy

o[ I @(x,w<y>>qu<i—%<x>dx] "y

203/000: m(@(:ﬁ, (y))yzlﬁ_lvq(l'))qd$:| dy
e /0 T e b))y b @) |, dy

and by the reverse integral Minkowsky inequality (see[2])and by (),
we get

o0 1.4 1
Rhs < Cs | /0 B, d(y))y? vt (@)dy |1, .

| [T ([T @(x,wy))yildy)q is] %
— [/Ooov(x) <p /OOO (= L(1))7 gb(x,t)dt)qu];
—cw| [Too) ([T 0)

By setting f(t) = (1/1_1(15))% we get inequality (@)

q

S =

o(x, t)dt) ' dx}
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(BD) — (B33), let f = 1(;,00)- (B33) — (B). Let r = ¢(y) and by
integrating (B.3), we conclude that
(3.5)

/OOO (/1/:/) w(m)dx> ’ 5 ldy < Cy /OOO [/Om ‘I’l(xﬂb(y))%(g;)dx} ; i

o 1
Let g(y) = / w(x)dz, g1,0< 5 <1 and by (@) we get

Rl _1_4 > 1 v
/ gr(y)y » dy>p / —9(y)dy | -
0 0o Y

By inequality (@) and () we have

Lhs > p (/000 <y12 /w:) w(m)d:z:) dy) '
—p ( / °°<¢—1<w>>—1w<x>d:c)‘l’

Rhs = C /O h [ /0 h <1>1<m,w<y>>%<x>dm} "y

—a [T [T (eatevty @) as "y
—af T e )y v (@) Dn, dy

-

and

by the reverse integral Minkowski inequality and (), we obtain

Rhs < C /0 By (z, b(y)y Lot (2)dy

Lq,ﬂ?

| [Tua ([ <1>1<x,w<y>>y—i—1dy)qu]‘l’
| [Tu@ (o [T @) ¢<w7t>dt)q ta] %
— Cyp [/Ooov(x) </0°° (wl(1) " gb(:c,t)dt)qu] d

To complete the proof it suffices to take f(t) = (w_l(t))fé. O
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Theorem 3.2. Let p > 1, ¢ <0 and Cy > 0, then the inequality

(3.6) ( . f%)‘l“ <c [ / °°<S¢f>%} %

holds for all f | if and only if

) (/ w)i <o [ aw ] VIR

Inequality (@) holds for all f 1 if and only if

oy ([ wy <o [T VI

Proof. Since the reverse integral Minkowski inequality for ¢ < 0 is similar
to the case (0 < ¢ < 1, proof of Theorem is similar to the proof of
Theorem B.1]. Il

Theorem 3.3. Let 0 <p<1,q>1 and C5 > 0, then the inequality

(3.9 ( s f”w); e [ / °°<S¢f>qv} é

holds for all f | if and only if

s ([ wy [ o) VI

Inequality (@) holds for oll f 1 if and only if

1 - o 1
(3.11) (/ w> ! >Cs / <I>1(:B,r)qv] , Vr>0.
r LJO

Proof. The proof of this Theorem is similar to that of Theorem @ O
Theorem 3.4. Let p <0, ¢ <0 and Cg > 0. If

s ([ wy <[] VI

then

(3.13) ( s f”w>; e [ / °°<S¢f>qv} %

holds for all f 1.
If

s ([ w)% <[ [ ater] VI

then (9.13) holds for all f |.
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Moreover C7 = (1 —p)% (pl) Cs.
D—

Proof. (B12) — (B13). Let r = ¢(y) 1, then
(3.15)

/0°° (/Osa(y) w(x)dx> ’ y v ldy < Cs /Ooo {/OOO oy (, @(y))qv(x)dx} g e

©(y)
Let g(y) = / w(z)dz, g7, 3 <0, by (24) we obtain
0

c\
5
)
=4
o)
QL
=
~
QU
N
~
S =

ez (25) (7 (3
- (%) ([ e w<w>dw); .

R= /0 h [ /0 Ty so(y»%(x)dw} "y

:/OOO {yQ(—é—l) /Ooo <I>1(1:,gp(y))qv(x)d4;dy

1

= /OOO H<I>1(x, o(y)y o ()

By the reverse integral Minkowski inequality and (), we obtain

Let

dy.
L Y

R <

o0 1.4 1
/ By (, o(y))y v (2)dy
0 Lq,z
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Finally by taking f(t) = (cpfl(t))fi and C7 = (1 —p)% (pl> Cs we
p—
obtain () O

The proof of the second implication (814) — (B3) is similar to the
first one.

Theorem 3.5. Letp<0,0< qg<1 and Cy > 0. If

s ([ wy <[ o) VI

then

(3.17) (/Ooo fpw> "< [/Ooo(s(ﬁf)%r

holds for all f .
If

s ([ wy <o [ [ate ] VI

then (9.17%) holds for all f *.

Moreover Cig = (1 —p)» <]31 Cy.
p J—

|

Proof. The proof of Theorem @ is similar to that of Theorem @ O
Theorem 3.6. Let p <0, g > 1 and Cy3 > 0. If

s ([ wy <[ [ o) VIR

then

=

1

(3.20) (/000 fpw) " <O [/()Oo(sqﬁf)qv} '

holds for all f .
If

s ([ wf <] [ aon] VI

then ) holds for all f 1.

1_1 1
Moreover Ci3 = (1 — %) P <_§) “Cs.
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o\
8
RS
T
K
g
N
S
<
SN
S
~___—
1)
NS
1)
L
QU
NS
IN
Q
_Q
[V}
h
8
I~
c\
3
&
&
S
~
N
=
=
[
=
b
S|
S
~_
N
B
L
QL
NS

Lhs > (—L )31 </Ooocp1(x)w(a:)dx>p.

q—p

Rhs = C2 /OO I(z)v(x)dx,
where - "
I@)= [ o etn) 'yt .
If we fix x > 0 with ¢ = p(y) in I(x) and integrating by parts, we have

J@o:—plmw1@ﬁ¢u¢wlwaww.

Now we use Lemma @ (iii).

Let
9(t) = D@, 6(, 1), (1) = B(a. 1)
Ft) =7 ()7, Cr=3
and
T B T . -1 N
/Og(t)dt—/o B(w, 1) 6 (x, 1)t
1 q
:6(I)(LE,T)
<02h(7‘)q
Thus
[e's) [ele} q
f%M@ﬁ<Cb[ f@Hm&}
0 0
and
00—1pmq1x 100—1%36[1
IR ¢<wﬁsq{A @(ﬂ¢(ﬁﬁ]
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Then

Rhs < C{, — g /000 {/000 gol(t);gzﬁ(ac,t)dt} ' v(z)dx,
consequently
(L) ([ ermmn) <on (D) [T orwboe i v
and

1

(f rremtors)” < (1-7) - (_Zf;)é ([ oo

The proof of the second implication (52 I) — (M) is similar to the
first one. O

Remark 3.7. The case 0 < p < 1, ¢ < 0 is similar to the case 0 < p < 1,
0 < ¢ <1 (Theorem E)
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