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Extensions of Saeidi’s Propositions for Finding a Unique

Solution of a Variational Inequality for (u, v)-cocoercive

Mappings in Banach Spaces

Ebrahim Soori

Abstract. Let C be a nonempty closed convex subset of a real
Banach space E, let B : C → E be a nonlinear map, and let u, v
be positive numbers. In this paper, we show that the generalized
variational inequality V I(C,B) is singleton for (u, v)-cocoercive
mappings under appropriate assumptions on Banach spaces. The
main results are extensions of the Saeidi’s Propositions for finding
a unique solution of the variational inequality for (u, v)-cocoercive
mappings in Banach spaces.

1. Introduction

Let C be a nonempty closed convex subset of a real normed linear
space E and E∗ be the dual space of E. Suppose that ⟨., .⟩ denotes the
pairing between E and E∗. The normalized duality mapping J : E → E∗

is defined by

J(x) =
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2

}
for each x ∈ E. Suppose that U = {x ∈ E : ∥x∥ = 1}. A Banach space
E is called smooth if for all x ∈ U , there exists a unique functional
jx ∈ E∗ such that ⟨x, jx⟩ = ∥x∥ and ∥jx∥ = 1 (see [1]).

Recall the following definitions and exampels:

(i) Let C be a nonempty closed convex subset of a real normed
linear space E. A mapping T of C into itself is said to be
nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥, for all x, y ∈ C and a
mapping f is an α-contraction on E if
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∥f(x)− f(y)∥ ≤ α∥x− y∥, x, y ∈ E and 0 ≤ α < 1.

(ii) Let C be a nonempty closed convex subset of a real Hilbert
space H. Suppose that B : C → H is a nonlinear map and
PC is the projection of H onto C. The classical variational
inequality problem V I(C,B) is to find u ∈ C such that

(1.1) ⟨Bu, v − u⟩ ≥ 0,

for all v ∈ C (see [6]). For a given z ∈ H, u ∈ C satisfies the
inequality

⟨u− z, v − u⟩ ≥ 0, (v ∈ C),

if and only if u = PCz. Therefore

u ∈ V I(C,B) ⇔ u = PC(u− λBu),

where λ > 0 is a constant (see [6]). It is known that the pro-
jection operator PC is nonexpansive. It is also known that PC

satisfies

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2,
for x, y ∈ H.

(iii) Let C be a nonempty closed convex subset of a real Hilbert
space H. Suppose that B : C → H is a nonlinear map. B is
called v-strongly monotone if

⟨Bx−By, x− y⟩ ≥ v∥x− y∥2 for all x, y ∈ C,

for a constant v > 0.
(iv) Let C be a nonempty closed convex subset of a real Hilbert

space H. Suppose that B : C → H is a nonlinear map. B is
said to be relaxed (u, v)-cocoercive, if there exist two constants
u, v > 0 such that

⟨Bx−By, x− y⟩ ≥ (−u)∥Bx−By∥2 + v∥x− y∥2,
for all x, y ∈ C. For u = 0, B is v-strongly monotone. Clearly,
every v-strongly monotone map is a relaxed (u, v)-cocoercive
map.

(v) Let E be a real Banach space with the dual space E∗. A Banach
space E is said to be strictly convex if

∥x∥ = ∥y∥ = 1, x ̸= y ⇒
∥∥x+y

2

∥∥ < 1.

(vi) Suppose that C is a nonempty subset of a normed space E and
let x ∈ E. An element y0 ∈ C is said to be a best approximation
to x if ∥x− y0∥ = d(x,C), where

d(x,C) = inf
y∈C

∥x− y∥.

The number d(x,C) is called the distance from x to C.
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The set of all best approximations from x to C is denoted by
PC(x) = {y ∈ C : ∥x − y∥ = d(x,C)}. This defines a mapping
PC from E into 2C and is called the metric projection onto C.
C is Chebyshev if PC(x) is singleton for each x ∈ E and C is
proximinal if PC(x) ̸= ∅, for all x ∈ E. Every closed convex
subset C of a reflexive Banach space is proximinal and every
closed convex subset C of a reflexive strictly convex Banach
space is a Chebyshev set. Let C be a proximinal subset of a
Banach space E, by [1, Proposition 2.10.1], C is closed, hence
Chebyshev subsets of a Banach space E are closed too (for more
details see [1, page 115]).

(vii) Let C be a nonempty closed subset of a Banach space E. Then
a mapping Q : E → C is said to be sunny if

Q(Qx+ t(x−Qx)) = Qx, ∀x ∈ E, ∀t ≥ 0.

A mapping Q : E → C is said to be a retraction or a projection
if Qx = x, ∀x ∈ C. If E is smooth then the sunny nonexpansive
retraction of E onto C is uniquely decided (see [7]). Then, if E
is a smooth Banach space, the sunny nonexpansive retraction
of E onto C is denoted by QC . Let C be a nonempty closed
subset of a Banach space E. Then the subset C is said to be
a nonexpansive retract (resp. sunny nonexpansive retract) if
there exists a nonexpansive retraction (resp. sunny nonexpan-
sive retraction) of E onto C (see [3, 4]). Let C be a nonempty
closed convex subset of a smooth, reflexive, and strictly convex
Banach space E. Let QC be the sunny nonexpansive retraction
of E onto C. Then we have

x0 = QCx ⇔ ⟨x− x0 , J(x0 − y)⟩ ≥ 0,(1.2)

for each y ∈ C. We have PC = QC in a Hilbert space (see [5]).
(viii) Let E be a real normed linear space. Let C be a nonempty

closed convex subset of E and B : C → E be a nonlinear
map. B is said to be relaxed (u, v)-cocoercive, if there exist
two constants u, v > 0 such that

⟨Bx−By, j(x− y)⟩ ≥ (−u)∥Bx−By∥2 + v∥x− y∥2,

for all x, y ∈ C and j(x− y) ∈ J(x− y).

Example 1.1. Let C be a nonempty closed convex subset of a real
Hilbert space H. The mapping B : C → H is said to be a relaxed
(u, v)-cocoercive, if there exist two constants u, v > 0 such that

⟨Bx−By, x− y⟩ ≥ (−u)∥Bx−By∥2 + v∥x− y∥2,
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for all x, y ∈ C. By [1, Example 2.4.2], in a Hilbert space H, the normal-
ized duality mapping is the identity. Then J(x− y) = {x− y}. There-
fore, the above definition extends the definition of the relaxed (u, v)-
cocoercive mappings, from the real Hilbert spaces to the real normed
linear spaces.

(ix) Let C be a nonempty closed convex subset of a real normed
linear space E and B : C → E be a nonlinear map. B is called
v-strongly monotone if there exists a constant v > 0 such that

⟨Bx−By, j(x− y)⟩ ≥ v∥x− y∥2,
for all x, y ∈ C and j(x− y) ∈ J(x− y).

Example 1.2. Let C be a nonempty closed convex subset of a real
Hilbert space H.The mapping B : C → H is said to be v-strongly
monotone, if there exists a constant v > 0 such that

⟨Bx−By, x− y⟩ ≥ v∥x− y∥2,
for all x, y ∈ C. Since H is a Hilbert space, J(x− y) = {x− y}. There-
fore, the above definition extends the definition of v-strongly monotone
mappings, from the real Hilbert spaces to the real normed linear spaces.

Example 1.3. Let C be a nonempty closed convex subset of a real
Banach space E. Let T be an α-contraction of C into itself. Putting
B = I − T , we have

⟨Bx−By, j(x− y)⟩ = ⟨(I − T )x− (I − T )y, j(x− y)⟩
= ⟨(x− y)− (Tx− Ty), j(x− y)⟩
= ⟨x− y, j(x− y)⟩ − ⟨Tx− Ty, j(x− y)⟩
≥ ⟨x− y, j(x− y)⟩ − ∥Tx− Ty∥∥j(x− y)∥
≥ ∥x− y∥2 − ∥Tx− Ty∥∥x− y∥
≥ ∥x− y∥2 − α∥x− y∥2 = (1− α)∥x− y∥2,

for all x, y ∈ C and j(x − y) ∈ J(x − y). Hence B : C → E is a
(1−α)-strongly monotone mapping. Therefore B is a relaxed (u, (1−α))-
cocoercive mapping on E for each u > 0;

(x) The following definitions generalize the classical variational in-
equality problem 1.1,
(a) Let E be a real normed linear space and C be a nonempty

closed convex subset of E. Let B : C → E be a non-
linear map. The classical variational inequality problem
V I(C,B) is to find u ∈ C such that

(1.3) ⟨j(Bu), v − u⟩ ≥ 0,

for all v ∈ C and j(Bu) ∈ J(Bu).
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(b) Let E be a real normed linear space. Let C be a nonempty
closed convex subset of E. Let B : C → E be a non-
linear map. The classical variational inequality problem
V I(C,B) is to find u ∈ C such that

(1.4) ⟨Bu, j(v − u)⟩ ≥ 0,

for all v ∈ C and j(v − u) ∈ J(v − u).
(xi) Let C be a nonempty Chebyshev subset of a normed linear space

E such that PC be a metric projection from E into C. Let B be
a mapping from C into E. B is said to be a PC-nonexpansive,
if

∥PCBx− PCBy∥ ≤ ∥Bx−By∥.

Example 1.4. Let C be a nonempty closed convex subset of a Hilbert
space H and PC , the metric projection from H onto C and B a map-
ping from C into H. By [1, Proposition 2.10.15], PC is a nonexpansive
projection. Thus we have

∥PCBx− PCBy∥ ≤ ∥Bx−By∥,
therefore, B is PC-nonexpansive.

Example 1.5. Let C be a nonempty closed convex subset of a strictly
convex and reflexive Banach space E. By [1, Corollary 2.10.11], there
exists a metric projection mapping PC : X → C such that PC(x) = x
for all x ∈ C. Let B is a mapping from C into C, therefore, we have

∥PCBx− PCBy∥ = ∥Bx−By∥,
hence B is PC-nonexpansive.

In this paper, we prove that V I(C,B) is singleton where C is a
nonempty closed convex subset of a Banach spaces E and B is a (u, v)-
cocoercive mappings from C into E, under appropriate assumptions on
E.

2. preliminaries

A continuous strictly increasing function µ : R+ → R+ is said to be
gauge function if µ(0) = 0 and limt→∞ µ(t) = ∞.
Let E be a normed space and E∗ be its dual space. Let µ be a gauge
function. Then the mapping Jµ : E → E∗ defined by

Jµ(x) = {j ∈ X∗ : ⟨x, j⟩ = ∥x∥∥j∥∗ , ∥j∥∗ = µ(∥x∥)} ,

for all x ∈ E, Jµ is called the duality mapping with gauge function
µ. In the particular case µ(t) = t, the duality mapping Jµ = J is the
normalized duality mapping [1].
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Theorem 2.1 ([1]). Let C be a nonempty convex subset of a smooth
Banach space E and let x ∈ E and y ∈ C. Then the following statements
are equivalent:

(a) y is a best approximation to x: ∥x− y∥ = d(x,C).
(b) y is a solution of the variational inequality:

⟨y − z, Jµ(x − y)⟩ ≥ 0, for all z ∈ C, where Jµ is a duality
mapping with gauge function µ.

Remark 2.2. Let C be a nonempty convex Chebyshev subset of a real
smooth Banach space E. Putting µ(t) = t, from Theorem 2.1, we have

u ∈ V I(C,B) ⇔ u = PC(u− λBu).(2.1)

Remark 2.3. In a Banach space, a metric projection mapping is not
nonexpansive, in general. However, the existence of nonexpansive pro-
jections from a Banach space even into a nonconvex subset Ω, is dis-
cussed in [2]. Let C is a Chebyshev subset of a Banach space E and B a
mapping from C into E. If a metric projection PC from a Banach space
into C is nonexpansive, then we have ∥PCBx − PCBy∥ ≤ ∥Bx − By∥,
therefore, B is PC-nonexpansive.

Remark 2.4. Let C be a nonempty closed convex subset of a smooth,
reflexive, and strictly convex Banach space E. Let QC be a sunny non-
expansive retraction. By (1.2), we have

u ∈ V I(C,B) ⇔ u = QC(u− λBu).(2.2)

3. main results

In this section, we deal with some results to prove that V I(C,B)
is singleton when, B : C → E is a relaxed (u, v)-cocoercive and 0 <
µ-Lipschitzian mapping and C is a nonempty convex subset of a real
smooth Banach space E.

We will make use of the following Theorem.

Theorem 3.1. Let E be a Banach space. Then for all x, y ∈ E, we
have

⟨x− y, j(x− y)⟩ ≤ ⟨x− y, x∗ − y∗⟩+ 4∥x∥∥y∥,
for all x∗ ∈ J(x), y∗ ∈ J(y), j(x− y) ∈ J(x− y).

Proof. For x = y, obviously the inequality holds. Let x∗ ∈ J(x), y∗ ∈
J(y) and x ̸= y. As in the proof of [8, Theorem 4.2.4], we have

⟨x− y, x∗ − y∗⟩ ≥ (∥x∥ − ∥y∥)2 + (∥x∥+ ∥y∥)(∥x∥+ ∥y∥ − ∥x+ y∥).
Hence, we have

⟨x− y, x∗ − y∗⟩ ≥ (∥x∥ − ∥y∥)2 + (∥x∥+ ∥y∥)(∥x∥+ ∥y∥ − ∥x+ y∥)
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= (∥x∥ − ∥y∥)2 + (∥x∥+ ∥y∥)2 − ∥x+ y∥(∥x∥+ ∥y∥)
≥ (∥x∥ − ∥y∥)2 + ∥x− y∥2 − (∥x∥+ ∥y∥)2

= ∥x− y∥2 − 4∥x∥∥y∥
= ⟨x− y, j(x− y)⟩ − 4∥x∥∥y∥,

therefore,

⟨x− y, j(x− y)⟩ ≤ ⟨x− y, x∗ − y∗⟩+ 4∥x∥∥y∥.
□

We now state the following important result:

Theorem 3.2. Let C be a nonempty convex Chebyshev subset of a real
smooth Banach space E. Suppose that µ, v, u be real numbers such that
µ > 0, and v > uµ2 + 5µ. Let B : C → E be a relaxed (u, v)-cocoercive
and µ-Lipschitzian mapping. Let PC be a metric projection mapping
from E into C such that I − λB be a PC-nonexpansive mapping, for all
λ > 0. Then, in the sense of (1.3), V I(C,B) is singleton.

Proof. Let λ be a real number such that

0 < λ <
v − uµ2 − 5µ

µ2
, λµ2

[
v − uµ2 − 5µ

µ2
− λ

]
< 1.

Then, by Theorem 3.1, for every x, y ∈ C, we have

∥PC(I − λB)x− PC(I − λB)y∥2 ≤ ∥(I − λB)x− (I − λB)y∥2

= ∥(x− y)− λ(Bx−By)∥2

= ∥j [(x− y)− λ(Bx−By)] ∥2

= ⟨(x− y)− λ(Bx−By), j
[
(x− y)

− λ(Bx−By)
]
⟩

≤ ⟨x− y − λ(Bx−By), j(x− y)

− λj(Bx−By)⟩
+ 4λ∥x− y∥∥Bx−By∥

= ⟨x− y, j(x− y)⟩
f − λ⟨Bx−By, j(x− y)⟩
+ λ⟨y − x, j(Bx−By)⟩
+ λ2⟨(Bx−By), j(Bx−By)⟩
+ 4λ∥x− y∥∥Bx−By∥

≤ ∥x− y∥2 + λu∥Bx−By∥2 − λv∥x− y∥2

+ λ2∥Bx−By∥2 + 5λ∥x− y∥∥Bx−By∥
≤ ∥x− y∥2 + λuµ2∥x− y∥2 − λv∥x− y∥2
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+ λ2µ2∥x− y∥2 + 5λµ∥x− y∥2

≤
(
1 + λuµ2 − λv + λ2µ2 + 5λµ

)
∥x− y∥2

≤
(
1− λµ2

[
v − uµ2 − 5µ

µ2
− λ

])
∥x− y∥2.

Now, since

1− λµ2
[
v−uµ2−5µ

µ2 − λ
]
< 1,

the mapping PC(I − λB) : C → C is a contraction and the Banach’s
Contraction Mapping Principle guarantees that it has a unique fixed
point u; i.e., PC(I − λB)u = u, which, by 2.1, is the unique solution of
V I(C,B). □

Proposition 2 in [6] can be concluded from Theorem 3.2 for v > uµ2+
5µ as the following Corollary:

Corollary 3.3. Let C be a nonempty closed convex subset of a Hilbert
space H and let B : C → H be a relaxed (u, v)-cocoercive and 0 <
µ-Lipschitzian mapping such that v > uµ2 + 5µ. Then V I(C,B) is
singleton.

Remark 3.4. Since v-strongly monotone mappings are relaxed (u, v)-
cocoercive for any positive number u, Theorem 3.2 holds for v-strongly
monotone mappings as follows: Let C be a nonempty convex Cheby-
shev subset of a real smooth Banach space E. Suppose that µ, v be real
numbers such that µ > 0 and v > 5µ. Let B : C → E be a v-strongly
monotone, µ-Lipschitzian mapping. Let PC be a metric projection map-
ping from E into C such that I − λB be a PC-nonexpansive mapping,
for all λ > 0. Then V I(C,B) is singleton.

Proposition 3 in [6] can be concluded from Remark 3.4 for v > 5µ as
the following Corollary:

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert
space H and let B : C → H be a v-strongly monotone and 0 < µ-
Lipschitzian mapping such that v > 5µ. Then V I(C,B) is singleton.

We now state another important result:

Theorem 3.6. Let C be a nonempty closed convex subset of a smooth,
reflexive, and strictly convex Banach space E. Suppose that µ > 0,
and v > uµ2 + 5µ. Let B : C → E be a relaxed (u, v)-cocoercive, µ-
Lipschitzian mapping. Let QC be a sunny nonexpansive retraction from
E onto C. Then, in the sense of (1.4), V I(C,B) is singleton.
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Proof. Let λ be a real number such that

0 < λ <
v − uµ2 − 5µ

µ2
, λµ2

[
v − uµ2 − 5µ

µ2
− λ

]
< 1.

Then, as in the proof of theorem 3.2, for every x, y ∈ C, we have

∥QC(I − λB)x−QC(I − λB)y∥2

≤
(
1− λµ2

[
v − uµ2 − 5µ

µ2
− λ

])
∥x− y∥2,

and, since

1− λµ2
[
v−uµ2−5µ

µ2 − λ
]
< 1,

the mapping QC(I − λB) : C → C is a contraction and the Banach’s
Contraction Mapping Principle guarantees that it has a unique fixed
point u; i.e., QC(I − λB)u = u, which, by 2.2, is the unique solution of
V I(C,B). □

Remark 3.7. Since v-strongly monotone mappings are relaxed (u, v)-
cocoercive for any positive number u, Theorem 3.6 holds for v-strongly
monotone mappings as follows: Let C be a nonempty closed convex
subset of a smooth, reflexive, and strictly convex Banach space E. Let
QC be a sunny nonexpansive retraction. Suppose that µ > 0, and
v > uµ2 +5µ. Let B : C → E be a v-strongly monotone, µ-Lipschitzian
mapping. Then V I(C,B) is singleton.

Remark 3.8. Proposition 2 in [6] for v > uµ2 + 5µ and Proposition 3
in [6] for v > 5µ, follow from Theorem 3.6 and Remark 3.7, too.

Remark 3.9. S. Saeidi, in the proof of Proposition 2 in [6], proves that

∥PC(I − sA)x− PC(I − sA)y∥2 ≤
(
1− sµ2

[
2(r − γµ2)

µ2
− s

])
∥x− y∥2,

when

0 < s < 2(r−γµ2)
µ2 ,

and r > γµ2. Putting r = γ = s = 1 and µ = 1
10 , we have(

1− sµ2
[
2(r−γµ2)

µ2 − s
])

< 0,

which is a contradiction. We have modified this contradiction in the
proof of the Theorems 3.2 and 3.6.
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