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FIXED AND COMMON FIXED POINTS FOR

(ψ,φ)-WEAKLY CONTRACTIVE MAPPINGS IN

b-METRIC SPACES

HAMID FARAJI1 AND KOUROSH NOUROUZI2∗

Abstract. In this paper, we give a fixed point theorem for (ψ,φ)-
weakly contractive mappings in complete b-metric spaces. We also
give a common fixed point theorem for such mappings in complete
b-metric spaces via altering functions. The given results generalize
two known results in the setting of metric spaces. Two examples
are given to verify the given results.

1. Introduction

The notion of a b-metric which is, in essence, a relaxation of the
triangle inequality, first introduced by Bakhtin [2] and then followed
by Czerwik [7] to obtain a generalization of the Banach contraction
principle. Such a relaxation for a distance is also discussed in [10] under
the name nonlinear elastic matching distance. In particular, this kind
of distances are used in [6, 16, 22] for trade mark shapes, to measure
ice floes, and to study the optimal transport path between probability
measures, respectively. Later, Khamsi and Hussain [13] reintroduced
the notion of a b-metric under the name metric-type. For some recent
works in b-metric spaces the reader is referred to [3, 8, 11, 18, 19, 21].
In order to present our main results, we start with the following two
definitions.

Definition 1.1. Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function d : X ×X → [0,∞) is called a b-metric on X if the
following conditions hold for all x, y, z ∈ X:
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(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)] (b-triangular inequality).

Then, the pair (X, d) is called a b-metric space with parameter s.

Definition 1.2 ([14]). (Altering Distance Function) A function ψ :
[0,∞) → [0,∞) is called an altering distance function if the following
properties are satisfied:

(i) ψ is continuous and strictly increasing,
(ii) ψ(t) = 0 if and only if t = 0.

Alber et al., [1] introduced weakly contractive mappings and gave
some fixed point results for such mappings in Hilbert spaces. Dutta and
Choudhury [9] gave the following result which is a generalization of the
main result given by Rhoades [20].

Theorem 1.3. Let (X,d) be a complete metric space and T : X → X
satisfies

ψ (d(Tx, Ty)) ≤ ψ (d(x, y))− φ (d(x, y)) ,

where ψ and φ are altering distance functions and x, y ∈ X. Then T
has a unique fixed point.

Chandok [4] proved the following common fixed point theorem for the
generalized (ψ,φ)-weakly contractive mappings.

Theorem 1.4. Let (X,d) be a complete metric space and T, f : X → X
satisfies

ψ (d(Tx, fy)) ≤ ψ

(
d(x, fy) + d(y, Tx)

2

)
− φ (d(x, fy), d(y, Tx)) ,

for all x, y ∈ X, where ψ is an altering distance function and φ : [0,∞)×
[0,∞) → [0,∞) is a lower semi-continuous mapping such that φ(x, y) =
0 if and only if x = y = 0. Then T and f have a unique common fixed
point.

In this paper, we restate Theorems 1.3 and 1.4 in the complete b-
metric spaces and obtain a generalization of them.

2. Main Results

Throughout this section, we assume that (X, d) is a complete b-metric
space. We first use two notations

Ψ = {ψ : [0,∞) → [0,∞)|ψ is an altering distance function} ,
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and

Φ1 =

{
φ : [0,∞) → [0,∞)|φ is continuous, φ(t) = 0 ⇔ t = 0, and

φ(lim inf
n→∞

an) ≤ lim inf
n→∞

φ(an)

}
.

(see e.g., [17]).

Theorem 2.1. Let (X, d) be a complete b-metric space with parame-
ter s ≥ 1, T : X → X be a self-mapping satisfying the (ψ,φ)-weakly
contractive condition

ψ (sd(Tx, Ty)) ≤ ψ

(
d(x, y)

s2

)
− φ (d(x, y)) ,(2.1)

for all x, y ∈ X, where ψ ∈ Ψ, φ ∈ Φ1. Then T has a fixed point.

Proof. Let x0 ∈ X be arbitrary. Consider the iterated sequence {xn},
where xn+1 = Txn for n = 0, 1, 2, .... We will prove that d(xn, xn+1) →
0. Using (2.1), we have

ψ (sd(xn, xn+1)) ≤ ψ

(
d(xn−1, xn)

s2

)
(2.2)

− φ (d(xn−1, xn)) , n = 1, 2, 3, . . . .

Therefore,

ψ (sd(xn, xn+1)) ≤ ψ

(
d(xn−1, xn)

s2

)
, n = 1, 2, 3, . . . .

Since ψ is strictly increasing, we have

sd(xn, xn+1) ≤
d(xn−1, xn)

s2
, n = 1, 2, 3, . . . .

Therefore, we get

d(xn, xn+1) ≤ d(xn−1, xn), n = 1, 2, 3, . . . .

Thus {d(xn, xn+1)} is a nonincreasing sequence and hence it is conver-
gent. Let d(xn, xn+1) → r, where r ≥ 0 . Letting n → ∞ in (2.2) and
using the continuity of ψ and φ, we obtain

ψ(sr) ≤ ψ
( r
s2

)
− φ(r).

Therefore

ψ
( r
s2

)
≤ ψ

( r
s2

)
− φ(r).

This implies r = 0, that is,

d(xn, xn+1) → 0.(2.3)
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We claim that {xn} is a Cauchy sequence. Suppose opposite, i.e., {xn}
is not a Cauchy sequence. Then there exists ε > 0 for which we can find
subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) is the smallest
index for which n(k) > m(k) > k and

d(xm(k), xn(k)) ≥ ε,(2.4)

and

d(xm(k), xn(k)−1) ≤ ε.(2.5)

Using (2.4) and (2.5), we obtain

ε ≤ d(xm(k), xn(k))

≤ s
(
d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

)
≤ s

(
ε+ d(xn(k)−1, xn(k))

)
,

for all k ≥ 1. Therefore

ε ≤ lim sup
k→∞

d(xm(k), xn(k)) ≤ sε,(2.6)

Moreover, for all k ≥ 1, we have

ε ≤ d(xm(k), xn(k))

≤ s
(
d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k))

)
≤ sd(xm(k), xm(k)+1) + s2

(
d(xm(k)+1, xn(k)+1) + d(xn(k), xn(k)+1)

)
.

Using (2.3), we obtain

ε

s
≤ lim sup

k→∞
sd(xm(k)+1, xn(k)+1).(2.7)

Also letting k → ∞ and using (2.4) for all k ≥ 1, we get

ε ≤ lim inf
k→∞

d(xm(k), xn(k)).(2.8)

Using (2.1) and (2.7), we have

ψ
(ε
s

)
≤ ψ

(
lim sup
k→∞

sd
(
xm(k)+1, xn(k)+1

))(2.9)

= ψ

(
lim sup
k→∞

sd(Txm(k), Txn(k))

)
≤ lim sup

k→∞

(
ψ

(
d(xm(k), xn(k))

s2

)
− φ

(
d(xm(k), xn(k))

))
= lim sup

k→∞
ψ

(
d(xm(k), xn(k))

s2

)
− lim inf

k→∞
φ
(
d(xm(k), xn(k))

)
.
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Using (2.6) and that φ ∈ Φ1, we obtain

ψ
(ε
s

)
≤ ψ

(ε
s

)
− φ

(
lim inf
k→∞

d(xm(k), xn(k))

)
.

Hence, we have φ
(
lim infk→∞ d(xm(k), xn(k))

)
= 0. Since φ ∈ Φ1, we

get lim infk→∞ d(xm(k), xn(k)) = 0, which contradicts (2.8). Hence {xn}
is a Cauchy sequence . The completeness of X implies that there exists
x∗ ∈ X such that xn → x∗. Using (2.1) we have

ψ (sd(Txn, Tx
∗)) ≤ ψ

(
d(xn, x

∗)

s2

)
− φ (d(xn, x

∗))

≤ ψ

(
d(xn, x

∗)

s2

)
, n = 0, 1, 2, 3, . . . .

Since ψ is strictly increasing, we have

sd(Txn, Tx
∗) ≤ d(xn, x

∗)

s2
, n = 0, 1, 2, . . . .

Passing to limit when n→ ∞, we obtain Txn → Tx∗. We have

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗,(2.10)

i.e., x∗ is a fixed point of T . To see the uniqueness of the fixed point x∗,
assume to the contrary that Ty∗ = y∗ and x∗ ̸= y∗. From (2.1),

ψ (sd(Tx∗, T y∗)) ≤ ψ

(
d(x∗, y∗)

s2

)
− φ (d(x∗, y∗)) .

Then

ψ

(
d(x∗, y∗)

s2

)
≤ ψ

(
d(x∗, y∗)

s2

)
− φ (d(x∗, y∗)) .(2.11)

Hence φ (d(x∗, y∗)) = 0, which implies that x∗ = y∗. □

In Theorem 2.1, if ψ(t) = t and φ(t) =

(
1

s2
− α

)
t, where α ∈ [0,

1

s2
),

we get the following result which is also a generalization of the Banach
contraction principle.

Corollary 2.2. Let (X, d) be a complete b-metric space with the pa-

rameter s ≥ 1, α ∈ [0,
1

s2
) and T be a self-mapping on X satisfying

d(Tx, Ty) ≤ α

s
d(x, y), for all x, y ∈ X. Then T has a unique fixed

point.

Example 2.3. Let X = [0, 1] and d be defined by d(x, y) = (x−y)2, for
all x, y ∈ [0, 1]. It is easy to check that (X, d) is a b-metric space with

parameter s = 2. We set Tx =
x

8
for all x ∈ X. Define ψ : [0,∞) →
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[0,∞) and φ : [0,∞) → [0,∞) by ψ(t) = 2t and φ(t) = t
4 . Then for

x, y ∈ X, we have

ψ (2d(Tx, Ty)) = ψ

(
2
(x
8
− y

8

)2
)

=
4

64
(x− y)2,

and

ψ

(
d(x, y)

s2

)
− φ (d(x, y)) =

(x− y)2

4
>

4(x− y)2

64
.

Hence

ψ (2d(Tx, Ty)) ≤ ψ

(
d(x, y)

s2

)
− φ (d(x, y)) ,

for all x, y ∈ [0, 1].

3. A common fixed point theorem

In the section, we give a common fixed point theorem in the b-metric
spaces. In fact, motivated by the results given in [4], we give a com-
mon fixed point theorem for self-mappings satisfying a (ψ,φ)-generalized
Chatterjea-type contractive condition in b-metric spaces. The following
notation will be needed, (see e.g., [17]):

Φ2 =

{
φ : [0,∞)× [0,∞) → [0,∞)|φ(x, y) = 0 ⇔ x = y = 0,

φ
(
lim inf
n→∞

an, lim inf
n→∞

bn

)
≤ lim inf

n→∞
φ(an, bn)

}
.

Theorem 3.1. Let (X, d) be a complete b-metric space with parameter
s ≥ 1 and T, f : X → X satisfy the (ψ,φ)-generalized Chatterjea-type
contractive condition

ψ (sd(Tx, fy)) ≤ ψ

d(x, fy) +
d(y, Tx)

s3

s+ 1

(3.1)

− φ (d(x, fy), d(y, Tx)) ,

for all x, y ∈ X and for some ψ ∈ Ψ, φ ∈ Φ2. If T or f are continuous,
then T and f have a unique common fixed point.

Proof. Let x0 ∈ X,x1 = Tx0 and x2 = fx1. Consider the sequence {xn}
in which x2n+1 = Tx2n and x2n+2 = fx2n+1 for every n ≥ 0. We will
show that limn→∞ d(xn, xn+1) = 0. Using Condition (3.1), for n ≥ 0 we
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obtain

ψ (sd(x2n+1, x2n+2)) = ψ (sd(Tx2n, fx2n+1))(3.2)

≤ ψ

d(x2n, fx2n+1) +
d(x2n+1, Tx2n)

s3

s+ 1


− φ (d(x2n, fx2n+1), d(x2n+1, Tx2n))

= ψ

(
d(x2n, x2n+2)

s+ 1

)
− φ (d(x2n, x2n+2), 0) .

Since φ is nonnegative, we have

ψ (sd(x2n+1, x2n+2)) ≤ ψ

(
d(x2n, x2n+2)

s+ 1

)
.

This implies that

sd(x2n+1, x2n+2) ≤
d(x2n, x2n+2)

s+ 1
(3.3)

≤ s

s+ 1
(d(x2n, x2n+1) + d(x2n+1, x2n+2)) ,

for n ≥ 0. So we obtain

d(x2n+1, x2n+2) ≤ d(x2n, x2n+1), n = 0, 1, 2, . . . .(3.4)

Similarly, we have

d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2), n = 0, 1, 2, . . . .(3.5)

Using (3.4) and (3.5), by induction we get

d(xn, xn+1) ≤ d(xn−1, xn), n = 1, 2, 3, . . . .(3.6)

Thus {d(xn, xn+1)} is a decreasing sequence of nonnegative real num-
bers. Hence there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. From
(3.3), we have

sd(x2n+1, x2n+2) ≤
d(x2n, x2n+2)

s+ 1

(3.7)

≤ s

2
(d(x2n, x2n+1) + d(x2n+1, x2n+2)) ,

for n = 0, 1, 2, . . .. Passing to the limit as n→ ∞ we have

sr ≤ 1

s+ 1
lim
n→∞

d(x2n, x2n+2) ≤
s

2
(r + r) = sr.
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Therefore

lim
n→∞

d(x2n, x2n+2) = (s+ 1)sr.(3.8)

From (3.2), we get

ψ

(
lim sup
n→∞

sd(x2n+1, x2n+2)

)
≤ lim sup

n→∞
ψ

(
d(x2n, x2n+2)

s+ 1

)
− lim inf

n→∞
φ (d(x2n, x2n+2), 0)

≤ ψ

(
lim supn→∞ d(x2n, x2n+2)

s+ 1

)
− φ

(
lim inf
n→∞

d(x2n, x2n+2), 0
)
.

Then

ψ(sr) ≤ ψ

(
(s+ 1)sr

s+ 1

)
− φ ((s+ 1)sr, 0) ,

and so φ ((s+ 1)sr, 0) = 0. Since φ ∈ Φ2 we get r = 0. Therefore

lim
n→∞

d(xn, xn+1) = 0.(3.9)

Now we show that {xn} is a Cauchy sequence. It suffices to show that
{x2n} is a Cauchy sequence. Suppose that {x2n} is not a Cauchy se-
quence. Then there exists ε > 0 for which we can find subsequences
{x2m(k)} and {x2n(k)} of {x2n} such that n(k) is the smallest index for
which n(k) > m(k) > k, and

d(x2m(k), x2n(k)) ≥ ε,(3.10)

and

d(x2m(k), x2n(k)−2) ≤ ε.(3.11)

From (3.10) and the b-triangular inequality, we have

ε ≤ d(x2m(k), x2n(k))

≤ s
(
d(x2m(k), x2n(k)−2) + d(x2n(k)−2, x2n(k))

)
≤ sε+ s2

(
d(x2n(k)−2, x2n(k)−1) + d(x2n(k)−1, x2n(k))

)
,

for all k ≥ 1. Since limn→∞ d(xn, xn+1) = 0, passing to the limit as
k → ∞ we obtain

ε ≤ lim sup
k→∞

d(x2m(k), x2n(k)) ≤ sε.(3.12)

Moreover from (3.10) and the b-triangular inequality we get

ε ≤ d(x2m(k), x2n(k))

≤ s
(
d(x2m(k), x2m(k)+1) + d(x2m(k)+1, x2n(k))

)
,
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for all k ≥ 1. Letting k → ∞, we have

ε ≤ lim sup
k→∞

sd(x2m(k)+1, x2n(k)).(3.13)

On the other hand,

d(x2n(k)−1, x2m(k)+1) ≤ s
(
d(x2n(k)−1, x2n(k)) + d(x2n(k), x2m(k)+1)

)
≤ sd(x2n(k)−1, x2n(k)) + s2

(
d(x2n(k), x2m(k))

+ d(x2m(k), x2m(k)+1)
)
,

for all k ≥ 1. Letting k → ∞, we have

lim sup
k→∞

d(x2n(k)−1, x2m(k)+1) ≤ s3ε.(3.14)

Also from (3.10) one can show that

ε ≤ lim inf
k→∞

d(x2m(k), x2n(k)).(3.15)

Using (3.1) and (3.12)-(3.14), we have

ψ(ε) ≤ ψ

(
lim sup
k→∞

sd
(
x2m(k)+1, x2n(k)

))
= ψ

(
lim sup
k→∞

sd
(
Tx2m(k), fx2n(k)−1

))

≤ lim sup
k→∞

ψ

d(x2m(k), fx2n(k)−1) +
d
(
x2n(k)−1, Tx2m(k)

)
s3

s+ 1


− lim inf

k→∞
φ
(
d(x2m(k), fx2n(k)−1), d(x2n(k)−1, Tx2m(k))

)

≤ ψ

 lim supk→∞

(
d(x2m(k), x2n(k)) +

d(x2n(k)−1, x2m(k)+1)

s3

)
s+ 1


− φ

(
lim inf
k→∞

d(x2m(k), x2n(k)), lim inf
k→∞

d(x2n(k)−1, x2m(k)+1)

)
≤ ψ

(
sε+ ε

s+ 1

)
− φ

(
lim inf
k→∞

d(x2m(k), x2n(k)), lim inf
k→∞

d(x2n(k)−1, x2m(k)+1)

)
= ψ(ε)− φ

(
lim inf
k→∞

d(x2m(k), x2n(k)), lim inf
k→∞

d(x2n(k)−1, x2m(k)+1)

)
.
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Consequently

φ

(
lim inf
k→∞

d(x2m(k), x2n(k)), lim inf
k→∞

d(x2n(k)−1, x2m(k)+1)

)
= 0.(3.16)

Because φ ∈ Φ2, we have

lim inf
k→∞

d(x2m(k), x2n(k)) = lim inf
k→∞

d(x2n(k)−1, x2m(k)+1) = 0,(3.17)

which contradicts (3.15). This implies that {x2n} is a Cauchy sequence
and so is {xn}. There exists x∗ ∈ X such that limn→∞ xn = x∗. If T is
continuous, we have

Tx∗ = lim
n→∞

Tx2n = lim
n→∞

x2n+1 = x∗,(3.18)

i.e., x∗ is a fixed point of T . Moreover, from (3.1) we have

ψ (sd(x∗, fx∗)) = ψ (sd(Tx∗, fx∗))

≤ ψ

d(x∗, fx∗) +
d(x∗, Tx∗)

s3

s+ 1


− φ (d(x∗, fx∗), d(x∗, Tx∗))

= ψ

(
d(x∗, fx∗)

s+ 1

)
− φ (d(x∗, fx∗), 0)

≤ ψ

(
d(x∗, fx∗)

s+ 1

)
.

Since ψ is a strictly increasing function, we have

sd(x∗, fx∗) ≤ d(x∗, fx∗)

s+ 1
.

Therefore fx∗ = x∗. Hence x∗ is a common fixed point of T and f .
If f is continuous, then by a similar argument to that of above one

can show that T, f have a common fixed point. To see the uniqueness
of the common fixed points of T and f , assume on the contrary that
Tu = fu = u and Tv = fv = v but u ̸= v. Consider

ψ (sd(u, v)) = ψ (sd(Tu, fv))

≤ ψ

d(u, fv) +
d(v, Tu)

s3

s+ 1

− φ (d(u, fv), d(v, Tu)) .

Since s ≥ 1, we have

ψ (sd(u, v)) ≤ ψ

(
d(u, v) + d(v, u)

2

)
− φ (d(u, v), d(v, u)) .
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Then

ψ (d(u, v)) ≤ ψ (d(u, v))− φ (d(u, v), d(v, u)) .

Therefore φ (d(u, v), d(v, u)) = 0. This implies that u = v. □

In Theorem 3.1, if T = f , we have the following corollary.

Corollary 3.2. Let (X, d) be a complete b-metric space with the param-
eter s ≥ 1 and T is a self-mapping on X. Suppose that T is continuous
and satisfies

ψ (sd(Tx, Ty)) ≤ ψ

d(x, Ty) +
d(y, Tx)

s3

s+ 1

(3.19)

− φ (d(x, Ty), d(y, Tx)) ,

for all x, y ∈ X and for some ψ ∈ Ψ, φ ∈ Φ2. Then T has a unique fixed
point.

In Theorem 3.1, if ψ(t) = t and

φ(u, v) =

(
1

s+ 1
− α

)(
u+

v

s3

)
,

where α ∈ [0,
1

s+ 1
), we have the following corollary.

Corollary 3.3. Let (X, d) be a complete b-metric space with the param-
eter s ≥ 1 and T, f be self-mappings on X satisfying

sd(Tx, fy) ≤ α

(
d(x, fy) +

d(y, Tx)

s3

)
,(3.20)

where α ∈ [0,
1

s+ 1
) and x, y ∈ X. If T or f is continuous, then T and

f have a unique common fixed point.

For s = 1 and T = f , Corollary 3.3 is a generalization of the Chat-
terjea theorem [5].

Theorem 3.4. (Chatterjea theorem) Let (X, d) be a complete metric
space and T : X → X satisfies

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
,

where 0 < α <
1

2
and x, y ∈ X. Then T has a unique fixed point.

Example 3.5. Consider the b-metric space given in Example 2.3. Set

Tx = 0 and fx =
x4

8
for all x ∈ X. Define ψ : [0,∞) → [0,∞) and
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φ : [0,∞) × [0,∞) → [0,∞) by ψ(t) = 3
2 t and φ(u, v) =

u+ v
8

64
. Then

for x, y ∈ X, we have

ψ (2d(Tx, fy)) = ψ

(
2d

(
0,
y4

8

))
=

3

2

(
2y8

64

)
=

3y8

64
,

and

ψ

d(x, fy) +
d(y, Tx)

s3

s+ 1

− φ (d(x, fy), d(y, Tx))

= ψ

(
1

3

(
d(x,

y4

8
) +

1

8
d(y, 0)

))
− φ

(
d(x,

y4

8
), d(y, 0)

)

=
3

2

(
1

3

(
(x− y4

8
)2 +

y2

8

))
−

(
(x− y4

8 )
2 + y2

8

)
64

=
31

64

(
(x− y4

8
)2 +

y2

8

)
≥ 3

64
y8

= ψ (sd(Tx, fy)) .

Hence, the conditions of Theorem 3.1 are satisfied.
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