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Observational Modeling of the Kolmogorov-Sinai Entropy

Uosef Mohammadi

Abstract. In this paper, Kolmogorov-Sinai entropy is studied us-
ing mathematical modeling of an observer Θ. The relative entropy
of a sub-σΘ-algebra having finite atoms is defined and then the
ergodic properties of relative semi-dynamical systems are inves-
tigated. Also, a relative version of Kolmogorov-Sinai theorem is
given. Finally, it is proved that the relative entropy of a relative
Θ-measure preserving transformations with respect to a relative
sub-σΘ-algebra having finite atoms is affine.

1. Introduction

In 1948, Shannon introduced the concept of entropy to information
theory. The Shannon entropy is taken to indicate the degree of uncer-
tainty ascribed to a random variable. Examining a random phenomenon
as a member of a σ-algebra, Kolmogorov introduced the concept of en-
tropy to ergodic theory in 1958. Kolmogorov’s entropy was improved by
Sinai in [11]. Kolmogorov-Sinai entropy measures the rate of the loss of
information for the iteration of finite partitions in a measure preserving
transformation. Entropy as a mathematical device plays an important
role in physical systems. On the other hand, one of the main objects
in physical phenomena is the “observer”. So, a method is needed to
measure the entropy of a system from the point of view of an observer.
A modeling for an observer of a set X is a fuzzy set Θ : X → [0, 1] [6].
In fact these kinds of fuzzy sets are called one dimensional observers. In
this paper, the Kolmogorov-Sinai entropy is studied using mathemati-
cal modeling of an observer. Any mathematical model according to the
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view point of an observer Θ is called a relative model [6, 7]. The notion
of a relative semi-dynamical system as a generalization of a fuzzy dy-
namical system has been defined in [6]. Also, the concept of the entropy
of a relative semi-dynamical system has been introduced in [5, 10, 9].
This article is an attempt to present a new relative approach to the
Kolmogorov-Sinai entropy. The first step in the evolution of relative
entropy theory is to define the relative entropy of a sub-σΘ-algebra hav-
ing finite atoms. Moreover, the definition of the relative entropy of a
Θ-measure preserving transformations is based on the relative entropy
of a sub-σΘ-algebra with finite atoms. Finally, the relative entropy of a
relative semi-dynamical system is introduced and its ergodic properties
are investigated.

2. Basic Notions

This section is devoted to provide the prerequisites that are necessary
for the next section. Let (X,β) denotes a σ−finite measure space, i.e. a
set equiped with a σ−algebra β of subsets of X. Further, let p denotes
a probability measure on (X,β). Then (X,β, p) is called a probability
space. Let φ : X → X be a measure preserving the invertible transfor-
mation of the probability space (X,β, p). In particular φ(β) = β and
p(φ−1(A)) = p(A) for all A ∈ β. Then (X,β, p, φ) is called a dynamical
system. The entropy of the partition ξ = {A1, . . . , An} of the probability
space (X,β, p) is defined by

H(ξ, p) = −
n∑

i=1

p(Ai) log p(Ai),

and the entropy of the dynamical system (X,β, p, φ) with respect to the
finite partition ξ is given by

h(φ, ξ, p) = lim
n→∞

1

n
H

(
ξ ∨ φ−1(ξ) ∨ · · · ∨ φ−n(ξ), p

)
,

where φ−1(ξ) =
{
φ−1A1, . . . , φ

−1An

}
. Then the Kolmogrov- Sinai en-

tropy of the automorphism φ is defined by

h(φ, p) = sup
ξ
h(φ, ξ, p),

where the supremum is taken over all finite partitions. In the following,
we recall some known concepts of the relative structures.
Let Θ be an observer on X. Then we say λ ⊆ Θ if λ(x) ≤ Θ(x) for all
x ∈ X. Moreover, if λ1, λ2 ⊆ Θ then λ1 ∨ λ2 and λ1 ∧ λ2 are subsets of
Θ, and defined by

(λ1 ∨ λ2)(x) = sup {λ1(x), λ2(x)} ,
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and

(λ1 ∧ λ2)(x) = inf {λ1(x), λ2(x)} ,
where x ∈ X.

Definition 2.1. A collection FΘ of subsets of Θ is said to be a σΘ-
algebra in Θ if FΘ satisfies the following conditions [10],

(i) Θ ∈ FΘ,

(ii) if λ ∈ FΘ then λ
′
= Θ−λ ∈ FΘ. λ

′
is called the complement of

λ with respect to Θ,
(iii) if {λi}∞i=1 is a sequence in FΘ then ∨∞

i=1λi = supi λi ∈ FΘ,

(iv)
Θ

2
doesn’t belong to FΘ.

If P1 and P2 are two σΘ-algebras on X then P1 ∨ P2 is the smallest
σΘ-algebra that contains P1 ∪ P2, denoted by [P1 ∪ P2].

Definition 2.2. A positive Θ−measure mΘ over FΘ is a function mΘ :
FΘ → I which is countably additive. This means that if {λi} is a disjoint

countable collection of members of FΘ, (i.e. λi ⊆ λ
′
j = Θ− λj whenever

i ̸= j) then

mΘ (∨∞
i=1λi) =

∞∑
i=1

mΘ(λi).

The Θ−measure mΘ has the following properties [10],

(i) mΘ(χ∅) = 0,

(ii) mΘ

(
λ

′ ∨ λ
)
= mΘ(Θ) and mΘ(λ

′
) = mΘ(Θ) −mΘ(λ) for all

λ ∈ FΘ,
(iii) mΘ (λ ∨ µ) +mΘ (λ ∧ µ) = mΘ(λ) +mΘ(µ) for each λ, µ ∈ FΘ,
(iv) mΘ is a nondecreasing function i.e. if λ, η ∈ FΘ and λ ⊆ Θ,

then mΘ(λ) ≤ mΘ(η).

The triple (X,FΘ,mΘ) is called a Θ− measure space and the elements of
FΘ are called relative measurable sets. The Θ−measure space (X,FΘ,mΘ)
is called a relative probability Θ−measure space if mΘ(Θ) = 1 [10].

3. Θ-relations and Atoms

Definition 3.1. Let (X,FΘ,m) be a Θ−measure space. The elements
µ,λ of FΘ are called mΘ-disjoint if mΘ(λ ∧ µ) = 0.

A Θ−relation ‘=(mod mΘ)’ on FΘ is defined as bellow

λ = µ(modmΘ) iff mΘ(λ) = mΘ(µ) = mΘ(λ ∧ µ), λ, µ ∈ FΘ.

The Θ−relation ‘=(mod mΘ)’ is an equivalence relation. F̃Θ denotes
the set of all equivalence classes induced by this relation, and µ̃ is the
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equivalence class determined by µ. For λ, µ ∈ FΘ, λ ∧ µ = 0 (mod mΘ)
iff λ, µ are mΘ-disjoint. We shall identify µ̃ with µ.

Definition 3.2. Let (X,FΘ,mΘ) be a Θ−measure space, and P be a

sub-σΘ-algebra of FΘ. Then an element λ̃ ∈ P̃ is an atom of P if

(i) mΘ(λ) > 0,

(ii) for each µ̃ ∈ P̃ such that mΘ(λ ∧ µ) = mΘ(µ) ̸= mΘ(λ) then
mΘ(µ) = 0.

Theorem 3.3. Let (X,FΘ,m) be a Θ−measure space, and P be a sub-

σΘ-algebra of FΘ. If λ̃1,λ̃2 are disjoint atoms of P then they are mΘ-
disjoint.

Proof. Since λ1 ∧ λ2 ⊆ λ1, λ1 ∧ λ2 ⊆ λ2, and λ1 ̸= λ2(mod mΘ), we
get λ1 ∧ λ2 ̸= λi(modmΘ) for at least one i = 1, 2. Suppose λ1 ∧ λ2 ̸=
λ2(modmΘ). Beacuse λ2 is an atom, λ1 ∧ λ2 = 0(modmΘ). □

Now, we introduce R∗(FΘ) as bellow,

R∗(FΘ) = {P : P is a sub− σΘ − algebra of FΘwith finite atoms}.
Assume that FΘ is a σΘ-algebra, P1, P2 ∈ R∗(FΘ), and {λi; i = 1, 2, . . . , n}
and {µj ; j = 1, . . . ,m} denote the atoms of P1 and P2, respectively,
then the atoms of P1 ∨ P2 are λi ∧ µj which mΘ(λi ∧ µj) > 0 for each
1 ≤ i ≤ n, 1 ≤ j ≤ m.

Definition 3.4. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space and P1, P2 ∈ R∗(FΘ). We say that P2 is an mΘ-refinement of P1,
denoted by P1 ≤mΘ P2, if for each µ ∈ P̄2 there exists λ ∈ P̄1 such that,

mΘ(λ ∧ µ) = mΘ(µ).

Theorem 3.5. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space and P1, P2, P3 ∈ R∗(FΘ). If P1 ≤mΘ P2 then,

P1 ∨ P3 ≤mΘ P2 ∨ P3.

Proof. Let µ ∈ P2 ∨ P3. Then µ = λ ∧ γ for some λ ∈ P̄2 and γ ∈ P̄3.
Since P1 ≤mΘ P2, there exists η ∈ P̄1 such that mΘ(η ∧ λ) = mΘ(λ).
Now,

mΘ(µ) ≥ mΘ(η ∧ γ ∧ µ)
= mΘ(η ∧ γ ∧ λ)
= mΘ(η ∧ λ) +mΘ(γ)−mΘ((η ∧ λ) ∨ γ)
= mΘ(λ) +mΘ(γ)−mΘ((η ∨ λ) ∧ (λ ∨ γ)
= mΘ(λ) +mΘ(γ)−mΘ(η ∨ λ)−mΘ(λ ∨ γ) +mΘ(η ∨ γ ∨ λ)
≥ mΘ(λ ∧ γ)
= mΘ(µ).
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Hence,
mΘ(η ∧ γ ∧ µ) = mΘ(µ),

and the result follows. □

4. Relative Entropy of a sub-σΘ-algebra with Finite Atoms

Definition 4.1. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space, and P be a sub σΘ-algebra of FΘ which P ∈ R∗(FΘ). The relative
entropy of P is defined as

HΘ (P,mΘ) = −
∑
µ∈P̄

mΘ(µ)logmΘ(µ).

Example 4.2. Let (X,β, p) be a classical probability measure space
and Θ = χX . Then FΘ = {χA : A ∈ β} is a σΘ-algebra on X. Define
mΘ(χA) = p(A), A ∈ β. Then (X,FΘ,mΘ) is a relative probability Θ−
measure space. Let α be a finite sub-σ−algebra of β and G = {χA : A ∈
α}. So, G ∈ R∗(FΘ) and the relative entropy of G is given by

HΘ(G,mΘ) = −
∑
A∈Ḡ

mΘ(χA)logmΘ(χA)

= −
∑
A∈Ḡ

p(A) log p(A),

which is the Kolmogorov-Sinai entropy of the finite classical measurable
sub-σ-algebra α of the space (X,β, p).

Thus, the concept of the relative entropy of a σΘ-algebra with finite
atoms is a generalization of the Kolmogorov-Sinai entropy of a finite
measurable σ-algebra.

Theorem 4.3. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space, and P1, P2 ∈ R∗(FΘ) which P̄1 = {λi; 1 ≤ i ≤ n} and P̄2 =
{µj ; 1 ≤ j ≤ m}. If P1 ≈mΘ P2 and P1 ≤mΘ P2 then,

HΘ(P1,mΘ) ≤ HΘ(P2,mΘ).

Proof. Suppose that P1 ≤mΘ P2. Then for each µj ∈ P̄2 there exists
λk ∈ P̄1 such that, mΘ(µj ∧ λk) = mΘ(µj). Since P1 ≈mΘ P2 and λi’s
are pairwise mΘ-disjoint, then

mΘ(µj) = mΘ(µj ∧ (∨λi))

=
∑
i

mΘ(µj ∧ λi).

Therefore, mΘ(µj ∧ λi) = 0 for each i ̸= k. Hence,

mΘ(µj) logmΘ(µj) =
∑
i

mΘ(µj ∧ λi) logmΘ(µj ∧ λi).
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Now, set α = {(i, j) : mΘ(λi ∧ µj) > 0}, β = {i : mΘ(λi) > 0}. Then

HΘ(P2,mΘ) = −
∑
j

∑
i

mΘ (λi ∧ µj) logmΘ(λi ∧ µj)

= −
∑

(i,j)∈α

mΘ(λi ∧ µj) logmΘ(λi ∧ µj)

≥ −
∑

(i,j)∈α

mΘ(λi ∧ µj) logmΘ(λi)

≥ −
∑
i∈β

logmΘ(λi)
∑
j

mΘ(λi ∧ µj).

Since µj ’s are pairwise mΘ-disjoint, we have

HΘ(P2,mΘ) ≥ −
∑
i∈β

logmΘ(λi)mΘ(∨j(λi ∧ µj))

= −
∑
i

mΘ(λi) logmΘ(λi)

= HΘ(P1,mΘ).

□
Definition 4.4. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space and P1, P2 ∈ R∗(FΘ). We say that P1 and P2 are mΘ-equivalent,
denoted by P1 ≈mΘ P2, if the following axioms are satisfied:

(i) If λ ∈ P̄1 then mΘ(λ ∧ (∨{µ;µ ∈ P̄2})) = mΘ(λ).
(ii) If µ ∈ P̄2 then mΘ(µ ∧ (∨{λ;λ ∈ P̄1})) = mΘ(µ).

Theorem 4.5. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space, and P1, P2 ∈ R∗(FΘ). If P1 ≈mΘ P2 then,

P1 ≈mΘ P1 ∨ P2.

Proof. Assume that P̄1 = {λi; 1 ≤ i ≤ n} and P̄2 = {µj ; 1 ≤ j ≤ m}.
We know that,

P1 ∨ P2 =
{
λi ∧ µj ;λi ∈ P̄1, µj ∈ P̄2,mΘ(λi ∧ µj) > 0

}
.

If α = {(i, j) : Vij = λi ∧ µj ∈ P1 ∨ P2} then α =
∪

i {(i, j); j ∈ βi} where
βi = {j;mΘ(Vij) > 0} and 1 ≤ i ≤ n. Note that if j /∈ βi then
mΘ(Vij) = 0 and we have

∨i,j∈NVij = ∨i∈N (∨j∈βi
Vij)

= ∨1≤i≤n (λi ∧ (∨j∈βi
µj)) .

Since the collections {λi; 1 ≤ i ≤ n} and {µj ; 1 ≤ j ≤ m} aremΘ-disjoint,
then we have

mΘ(λk ∧ (∨i,jVij)) = mΘ(λk ∧ (∨iλi ∧ (∨j∈βi
µj)))



OBSERVATIONAL MODELING OF THE KOLMOGOROV-SINAI ENTROPY 107

= mΘ(λk ∧ (∨j∈βi
µj))

= mΘ(λk ∧ (∨j∈βk
µj))

= mΘ(∨j∈βk
(λk ∧ µj))

=
∑
j∈βk

mΘ(∨Vkj)

=
∑
j

mΘ(∨Vkj)

= mΘ(λk ∧ (∨jµj))

= mΘ(λk).

□

Theorem 4.6. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space, and P1, P2 ∈ R∗(FΘ). If P1 ≈mΘ P2 then,

HΘ(P1,mΘ) ≤ HΘ(P1 ∨ P2,mΘ).

Proof. Suppose that P1 ≈mΘ P2. By Theorem 3.8 we have P1 ≈mΘ

P1∨P2. Now suppose that δ ∈ P1 ∨ P2. Then δ = λi∧µj which λi ∈ P̄1

and µj ∈ P̄2. So for λi ∈ P̄1, mΘ(δ) = mΘ(δ ∧λi) and therefore we have
P1 ≤mΘ P1 ∨ P2. Now use Theorem 4.3. □

Theorem 4.7. Let (X,FΘ,mΘ) be a relative probability Θ−measure
space, and P1, P2 ∈ R∗(FΘ). If P1 ≈mΘ P2 then,

HΘ(P1 ∨ P2,mΘ) ≤ HΘ(P1,mΘ) +HΘ(P2,mΘ).

Proof. Suppose that g : [0, 1] → R be the convex function g(x) = x log x.
Assume that P̄1 = {λi; 1 ≤ i ≤ n} and P̄2 = {µj ; 1 ≤ j ≤ m}. Take
αj = mΘ(µj), 1 ≤ j ≤ m and for a fixed i (1 ≤ i ≤ n) put

xj =
mΘ(λi ∧ µj)
mΘ(µj)

.

We have,

m∑
j=1

αjxj =

m∑
j=1

mΘ(λi ∧ µj)

= mΘ(λi ∧ (∨m
j=1µj))

= mΘ(λi).

Put

η = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m,mΘ(λi ∧ µj) > 0},
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and βi = {j;mΘ(λi ∧ µj) > 0}. Let α =
∑

j αj , then we get

mΘ(λi)g

(
mΘ(λi)

α

)
≤

m∑
j=1

mΘ(µj)g

(
mΘ(λi ∧ µj)
mΘ(µj)

)

=
∑
j∈βi

mΘ(λi ∧ µj) log
mΘ(λi ∧ µj)
mΘ(µj)

,

or

mΘ (λi) log

(
mΘ(λi)

α

)
≤

∑
j∈βi

mΘ (λi ∧ µj) log
(
mΘ(λi ∧ µj)
mΘ(µj)

)
.

Now,

HΘ(P1,mΘ) = −
n∑

i=1

mΘ(λi) logmΘ(λi)

≥ −
∑
i

mΘ(λi) logα−
∑
i

∑
j∈βi

mΘ(λi ∧ µj) logmΘ(λi ∧ µj)

+
∑
i

∑
j∈βi

mΘ(λi ∧ µj) logmΘ(µj)

= −
∑

(i,j)∈η

mΘ(λi ∧ µj) logmΘ(λi ∧ µj)

+
∑
j

logmΘ(µj)
∑
i

mΘ(λi ∧ µj)− logα
∑
i

mΘ(λi)

≥ HΘ(P1 ∨ P2,mΘ) +
∑
j

mΘ(µj ∧ (∨λi)) logmΘ(µj)

= HΘ(P1 ∨ P2,mΘ)−HΘ(P2,mΘ).

Thus, HΘ(P1,mΘ) ≤ HΘ(P1 ∨ P2,mΘ). □

5. Relative Entropy of a Θ−measure Preserving
Transformations

Definition 5.1. Suppose (X,FΘ,mΘ) be an Θ−measure space and Θ
be a constant observer on X. A transformation φ : (X,FΘ,mΘ) →
(X,FΘ, nΘ), is said to be a Θ−measure preserving if mΘ(φ

−1(µ)) =
nΘ(µ) for allµ ∈ F̄Θ.

Theorem 5.2. Suppose that

φ : (X,FΘ,mΘ) → (X,FΘ, nΘ)

be a Θ−measure preserving transformations. Then for each P ∈ R∗(FΘ)
we have,

HΘ(P,mΘ) = HΘ

(
φ−1(P ),mΘ

)
.
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Proof. Since φ is a Θ−measure preserving, we have

mΘ(φ
−1(µ)) = nΘ(µ),

then,

HΘ

(
φ−1(P ),mΘ

)
= −

∑
µ∈P̄

mΘ

(
φ−1(µ)

)
logmΘ

(
φ−1(µ)

)
= −

∑
µ∈P̄

nΘ(µ) log nΘ(µ)

= HΘ(P,mΘ).

□

Definition 5.3. Suppose φ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure
preserving transformation. If P ∈ R∗(FΘ), we define the relative entropy
of φ with respect to P as

hΘ(φ,P,mΘ) = lim
n→∞

1

n
HΘ

(
∨n−1
i=0 φ

−i(P ),mΘ

)
.

Theorem 5.4. lim
n→∞

1
nHΘ

(
∨n−1
i=0 φ

−i(P ),mΘ

)
exsists.

Proof. Let

an = HΘ

(
∨n−1
i=0 φ

−i(P ),mΘ

)
≥ 0.

Using Theorem 4.7 and Theorem 5.2, we have

an+k = HΘ

(
∨n+k−1
i=0 φ−i(P ),mΘ

)
≤ HΘ

(
∨n−1
i=0 φ

−i(P ),mΘ

)
+HΘ

(
∨n+k−1
i=n φ−i(P ),mΘ

)
= an + ak.

So, for each n, k we have an+k ≤ an + ak. Now, by Theorem 4.9 in [12]

limn→∞
an
n

exists. □

Theorem 5.5. Let φ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure
preserving transformations and P ∈ R∗(FΘ). Then,

(i) hΘ
(
φ,φ−1(P )

)
= hΘ(φ,P ),

(ii) hΘ
(
φ,∨r−1

i=0φ
−i(P )

)
= hΘ(φ,P ) for every r ≥ 1.

Proof. (i) It is obvious.
(ii) We have

hΘ
(
φ,∨∞

i=1φ
−i(P ),mΘ

)
= lim

n→∞

1

n
HΘ

(
∨n−1
j=0φ

−j
(
∨r−1
i=0φ

−i(P )
)
,mΘ

)
= lim

n→∞

1

n
HΘ

(
∨r+n−2
i=0 φ−i(P ),mΘ

)
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= lim
n→∞

(
r + n− 2

n

)(
1

r + n− 2

)
×HΘ

(
∨r+n−2
i=0 φ−i(P ),mΘ

)
= hΘ (φ,φ(P ),mΘ) .

□
Theorem 5.6. Let φ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure
preserving transformations and P1, P2 ∈ R∗(FΘ). If P1 ≈mΘ P2 and
P1 ≤mΘ P2 then hΘ(φ, P1,mΘ) ≤ hΘ(φ,P2,mΘ).

Proof. The result follows from Theorem 4.3. □

6. Relative Entropy and (Θ1,Θ2)-isomorphic Dynamical
Systems

Definition 6.1. A relative semi-dynamical system is denoted by (X,FΘ,mΘ, φ)
which (X,FΘ,mΘ) is a relative probability Θ-measure space and φ is a
Θ−measure preserving transformations.

Definition 6.2. Let (X,FΘ,mΘ, φ) be a relative semi-dynamical sys-
tem and L ∈ R∗(FΘ). Suppose [L]Θ denotes the mΘ-equivalence class
induced by L. Then the relative entropy hΘ(φ, [L]Θ) of φ on L is defined
as

hΘ (φ, [L]Θ,mΘ) = sup
P∈[L]Θ

hΘ (φ,P,mΘ) .

Definition 6.3. Suppose (X1, FΘ1 ,mΘ1) be a Θ1−measure space and
(X2, FΘ2 , nΘ2) be a Θ2−measure space. A transformation

φ : (X1, FΘ1 ,mΘ1) → (X2, FΘ2 , nΘ2),

is said to be a (Θ1,Θ2)−measure preserving if

(i) φ−1(µ) ∈ FΘ1 for every µ ∈ FΘ2 , where φ
−1(µ)(x) = µ(φ(x)), ∀x ∈

X,
(ii) mΘ1(φ

−1(µ)) = nΘ2(µ) for all µ ∈ ¯FΘ2 .

Theorem 6.4. Suppose φ : (X1, FΘ1 ,mΘ1) → (X2, FΘ2 , nΘ2), be a
(Θ1,Θ2)−measure preserving transformations. Then for each P ∈ R∗(FΘ2)
we have,

HΘ2(P,mΘ2) = HΘ1(φ
−1(P ),mΘ1).

Proof. By Theorem 5.2, the proof is clear. □
Definition 6.5. A relative semi-dynamical system ϕ1 = (X1, FΘ1 ,mΘ1)
is a (Θ1,Θ2)−factor of the relative semi-dynamical system ϕ2 = (X2, FΘ2 , nΘ2)
if there exists an onto (Θ1,Θ2)−measure preserving transformations
(called homomorphism) ψ : ϕ2 → ϕ1 such that,

ψoφ2 = φ1oψ.
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Theorem 6.6. Let ϕ1 = (X1, FΘ1 ,mΘ1) be a (Θ1,Θ2)−factor of the
relative semi-dynamical system ϕ2 = (X2, FΘ2 , nΘ2). Then for each L ∈
R∗(FΘ),

hΘ1

(
φ1,

[
ψ−1(L)

]
Θ1
,mΘ1

)
≤ hΘ2 (φ2, [L]Θ2 ,mΘ2) ,

Where ψ : ϕ2 → ϕ1 is the corresponding homomorphism.

Proof. Suppose that P ∈ [L]Θ2 . Then by Theorem 6.4,

HΘ2(P,mΘ2) = HΘ1(ψ
−1(P ),mΘ1).

Now,

hΘ2 (φ2, P,mΘ2) = lim
n→∞

1

n
HΘ2

(
∨n−1
i=0 φ

−i
2 (P ),mΘ2

)
= lim

n→∞

1

n
HΘ1

(
ψ−1(∨n−1

i=0 φ
−i
2 (P )),mΘ1

)
= lim

n→∞

1

n
HΘ1

(
∨n−1
i=0 ψ

−1φ−i
2 (P ),mΘ1

)
= lim

n→∞

1

n
HΘ1

(
∨n−1
i=0 φ

−i
1 ψ−1(P ),mΘ1

)
= hΘ1

(
φ1, ψ

−1(P ),mΘ1

)
.

As P ranges over an mΘ2-equivalence class [L]Θ2 in R∗(FΘ2), ψ
−1(P )

ranges over a subset of themΘ1-equivalence class [ψ
−1(L)]Θ1 in R∗(FΘ1).

□

Definition 6.7. Two relative semi-dynamical systems ϕ1 = (X1, FΘ1 ,mΘ1)
and ϕ2 = (X2, FΘ2 ,mΘ2) are said to be (Θ1,Θ2)-isomorphic if there ex-
ists an invertible relative (Θ1,Θ2)−measure preserving transformations
ψ : ϕ1 → ϕ2 (i.e both ψ and ψ−1 are relative measure preserving trans-
formations) such that,

ψoφ1 = φ2oψ.

The mapping ψ is called (Θ1,Θ2)-isomorphism.

Theorem 6.8. Let ϕ1 and ϕ2 be (Θ1,Θ2)-isomorphic semi-dynamical
systems. Then for each L ∈ R∗(FΘ2),

hΘ1

(
φ1,

[
ψ−1(L)

]
Θ1
,mΘ1

)
= hΘ2

(
φ2, [L]Θ2

,mΘ2

)
,

which ψ : ϕ1 → ϕ2 is the corresponding (Θ1,Θ2)-isomorphism.

Proof. The result follows from Theorem 6.6. □
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7. Relative Entropy and mΘ-generators of Relative
Semi-Dynamical Systems

Definition 7.1. The relative entropy of the relative semi-dynamical
system (X,FΘ,mΘ, φ) is the number hΘ (φ,mΘ) defined by,

hΘ (φ,mΘ) = sup
P
hΘ (φ,P,mΘ) ,

where the supremum is taken over all sub-σΘ-algebras of FΘ which P ∈
R∗(FΘ).

Definition 7.2. P ∈ R∗(FΘ) is said to be an mΘ-generator of the
relative semi-dynamical system (X,FΘ,mΘ, φ) if there exists an integer
r > 0 such that,

Q ≤mΘ ∨r
i=0φ

−iP,

for each Q ∈ R∗(FΘ).

Theorem 7.3. If P is an mΘ-generator of the relative semi-dynamical
system (X,FΘ,mΘ, φ) then,

hΘ (φ,Q,mΘ) ≤ hΘ (φ,P,mΘ) ,

for each Q ∈ R∗(FΘ).

Proof. Let Q ∈ R∗(FΘ) be any arbitrary sub-σΘ-algebra of FΘ. Since P
is an mΘ-generator, Q ≤mΘ ∨r

i=0φ
−iP follows from Theorem 5.6,

hΘ (φ,Q,mΘ) ≤ hΘ
(
φ,∨r

i=0φ
−iP,mΘ

)
= hΘ (φ, P,mΘ) .

□

Now we can deduce the following version of the Kolmogorov-Sinai
theorem.

Theorem 7.4. If P is an mΘ-generator of the relative semi-dynamical
system (X,FΘ,mΘ, φ) then,

hΘ(φ,mΘ) = hΘ(φ,P,mΘ).

Proof. It is obvious. □

Theorem 7.5. Let (X,FΘ,mΘ, φ) be a relative semi-dynamical system.
Then, the map mΘ 7→ hΘ(φ,mΘ) is affine, i.e,

hΘ(φ, λmΘ + (1− λ)nΘ) = λhΘ(φ,mΘ) + (1− λ)hΘ(φ, nΘ),

for each pair mΘ and nΘ of the relative probability Θ-measures and
λ ∈ [0, 1].
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Proof. Suppose that P ∈ R∗(FΘ). If mΘ and nΘ are two relative prob-
ability Θ−measures and λ ∈ [0, 1] then,

(7.1) HΘ (P, λmΘ + (1− λ)nΘ) ≥ λHΘ (P,mΘ) + (1− λ)HΘ (P, nΘ).

The ‘concavity’ inequality (7.1) is a direct consequence of the defini-
tion of HΘ(P,mΘ) and the ‘concavity’ of the function x 7→ −xlog x.
Conversely, one has inequalities

− log (λmΘ(µi) + (1− λ)nΘ(µi)) ≤ − log λ− logmΘ(µi),

and

− log(λmΘ(µi) + (1− λ)nΘ(µi)) ≤ − log(1− λ)− log nΘ(µi).

Because x 7→ − log x is decreasing, therfore, one obtains the ’convexity’
bound,

HΘ(P, λmΘ + (1− λ)nΘ) ≤ λH(P,mΘ) + (1− λ)H(P, nΘ)(7.2)

− λ log λ− (1− λ) log (1− λ).

Now replacing P by ∨n−1
i=0 φ

−i(P ) in (7.1), dividing by n and taking the
lim
n→∞

gives

hΘ(φ,P, λmΘ + (1− λ)nΘ) ≥ λhΘ(φ, P,mΘ) + (1− λ)hΘ(φ,P, nΘ).

Similarly from (7.2), since

−(λ log λ+ (1− λ) log (1− λ))

n
→ 0,

as n→ ∞, one deduces the converse inequality

hΘ (φ,P, λmΘ + (1− λ)nΘ) ≤ λhΘ (φ, P,mΘ) + (1− λ)hΘ (φ,P, nΘ).

Hence one concludes that the mapmΘ 7→ hΘ(φ, P,mΘ) is affine. Finally,
it follows from Theorem 7.4 that the relative entropy is affine. □

This is somewhat surprising and is of great significance in the appli-
cation of the relative entropy.

8. Concluding Remarks and Open Problems

In this paper, the notion of the relative entropy for a sub-σΘ-algebra
with finite atoms is presented. The entropy of a relative semi-dynamical
system is defined using the observer notion and its properties are investi-
gated. Also, the notion of anmΘ-generator for a relative semi-dynamical
system is introduced and a relative version of Kolmogorov-Sinai theo-
rem concerning the entropy of a relative semi-dynamical system is given.
Finally, it is proved that the relative entropy of a relative Θ-measure pre-
serving transformations with respect to a relative sub-σΘ-algebra having
finite atoms is affine.
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An interesting open problem is to establish a theorem on existence of
mΘ-generators for relative semi-dynamical systems.
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