Sahand Communications in Mathematical Analysis (SCMA) Vol. 13 No. 1 (2019), 101-114 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.29983

Observational Modeling of the Kolmogorov-Sinai Entropy

Uosef Mohammadi

ABSTRACT. In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer Θ . The relative entropy of a sub- σ_{Θ} -algebra having finite atoms is defined and then the ergodic properties of relative semi-dynamical systems are investigated. Also, a relative version of Kolmogorov-Sinai theorem is given. Finally, it is proved that the relative entropy of a relative Θ -measure preserving transformations with respect to a relative sub- σ_{Θ} -algebra having finite atoms is affine.

1. INTRODUCTION

In 1948, Shannon introduced the concept of entropy to information theory. The Shannon entropy is taken to indicate the degree of uncertainty ascribed to a random variable. Examining a random phenomenon as a member of a σ -algebra, Kolmogorov introduced the concept of entropy to ergodic theory in 1958. Kolmogorov's entropy was improved by Sinai in [11]. Kolmogorov-Sinai entropy measures the rate of the loss of information for the iteration of finite partitions in a measure preserving transformation. Entropy as a mathematical device plays an important role in physical systems. On the other hand, one of the main objects in physical phenomena is the "observer". So, a method is needed to measure the entropy of a system from the point of view of an observer. A modeling for an observer of a set X is a fuzzy set $\Theta : X \to [0, 1]$ [6]. In fact these kinds of fuzzy sets are called one dimensional observers. In this paper, the Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer. Any mathematical model according to the

²⁰¹⁰ Mathematics Subject Classification. 37A35, 37B40.

Key words and phrases. Relative entropy, Relative semi-dynamical system, m_{Θ} -equivalence, m_{Θ} -generator, (Θ_1, Θ_2) -isomorphism.

Received: 20 January 2017, Accepted: 23 March 2017.

view point of an observer Θ is called a relative model [6, 7]. The notion of a relative semi-dynamical system as a generalization of a fuzzy dynamical system has been defined in [6]. Also, the concept of the entropy of a relative semi-dynamical system has been introduced in [5, 10, 9]. This article is an attempt to present a new relative approach to the Kolmogorov-Sinai entropy. The first step in the evolution of relative entropy theory is to define the relative entropy of a sub- σ_{Θ} -algebra having finite atoms. Moreover, the definition of the relative entropy of a Θ -measure preserving transformations is based on the relative entropy of a sub- σ_{Θ} -algebra with finite atoms. Finally, the relative entropy of a relative semi-dynamical system is introduced and its ergodic properties are investigated.

2. Basic Notions

This section is devoted to provide the prerequisites that are necessary for the next section. Let (X, β) denotes a σ -finite measure space, i.e. a set equiped with a σ -algebra β of subsets of X. Further, let p denotes a probability measure on (X, β) . Then (X, β, p) is called a probability space. Let $\varphi : X \to X$ be a measure preserving the invertible transformation of the probability space (X, β, p) . In particular $\varphi(\beta) = \beta$ and $p(\varphi^{-1}(A)) = p(A)$ for all $A \in \beta$. Then (X, β, p, φ) is called a dynamical system. The entropy of the partition $\xi = \{A_1, \ldots, A_n\}$ of the probability space (X, β, p) is defined by

$$H(\xi, p) = -\sum_{i=1}^{n} p(A_i) \log p(A_i),$$

and the entropy of the dynamical system (X, β, p, φ) with respect to the finite partition ξ is given by

$$h(\varphi,\xi,p) = \lim_{n \to \infty} \frac{1}{n} H\left(\xi \lor \varphi^{-1}(\xi) \lor \cdots \lor \varphi^{-n}(\xi), p\right)$$

where $\varphi^{-1}(\xi) = \{\varphi^{-1}A_1, \dots, \varphi^{-1}A_n\}$. Then the Kolmogrov- Sinai entropy of the automorphism φ is defined by

$$h(\varphi, p) = \sup_{\xi} h(\varphi, \xi, p),$$

where the supremum is taken over all finite partitions. In the following, we recall some known concepts of the relative structures.

Let Θ be an observer on X. Then we say $\lambda \subseteq \Theta$ if $\lambda(x) \leq \Theta(x)$ for all $x \in X$. Moreover, if $\lambda_1, \lambda_2 \subseteq \Theta$ then $\lambda_1 \vee \lambda_2$ and $\lambda_1 \wedge \lambda_2$ are subsets of Θ , and defined by

$$(\lambda_1 \lor \lambda_2)(x) = \sup \left\{ \lambda_1(x), \lambda_2(x) \right\},\$$

and

$$(\lambda_1 \wedge \lambda_2)(x) = \inf \{\lambda_1(x), \lambda_2(x)\},\$$

where $x \in X$.

Definition 2.1. A collection F_{Θ} of subsets of Θ is said to be a σ_{Θ} algebra in Θ if F_{Θ} satisfies the following conditions [10],

- (i) $\Theta \in F_{\Theta}$,
- (ii) if $\lambda \in F_{\Theta}$ then $\lambda' = \Theta \lambda \in F_{\Theta}$. λ' is called the complement of λ with respect to Θ ,
- (iii) if $\{\lambda_i\}_{i=1}^{\infty}$ is a sequence in F_{Θ} then $\forall_{i=1}^{\infty}\lambda_i = \sup_i \lambda_i \in F_{\Theta}$,
- (iv) $\frac{\Theta}{2}$ doesn't belong to F_{Θ} .

If P_1 and P_2 are two σ_{Θ} -algebras on X then $P_1 \vee P_2$ is the smallest σ_{Θ} -algebra that contains $P_1 \cup P_2$, denoted by $[P_1 \cup P_2]$.

Definition 2.2. A positive Θ -measure m_{Θ} over F_{Θ} is a function m_{Θ} : $F_{\Theta} \to I$ which is countably additive. This means that if $\{\lambda_i\}$ is a disjoint countable collection of members of F_{Θ} , (i.e. $\lambda_i \subseteq \lambda'_j = \Theta - \lambda_j$ whenever $i \neq j$) then

$$m_{\Theta}(\vee_{i=1}^{\infty}\lambda_i) = \sum_{i=1}^{\infty} m_{\Theta}(\lambda_i).$$

The Θ -measure m_{Θ} has the following properties [10],

- (i) $m_{\Theta}(\chi_{\emptyset}) = 0$,
- (ii) $m_{\Theta}\left(\lambda' \lor \lambda\right) = m_{\Theta}(\Theta)$ and $m_{\Theta}(\lambda') = m_{\Theta}(\Theta) m_{\Theta}(\lambda)$ for all $\lambda \in F_{\Theta}$,
- (iii) $m_{\Theta}(\lambda \vee \mu) + m_{\Theta}(\lambda \wedge \mu) = m_{\Theta}(\lambda) + m_{\Theta}(\mu)$ for each $\lambda, \mu \in F_{\Theta}$,
- (iv) m_{Θ} is a nondecreasing function i.e. if $\lambda, \eta \in F_{\Theta}$ and $\lambda \subseteq \Theta$, then $m_{\Theta}(\lambda) \leq m_{\Theta}(\eta)$.

The triple $(X, F_{\Theta}, m_{\Theta})$ is called a Θ - measure space and the elements of F_{Θ} are called relative measurable sets. The Θ - measure space $(X, F_{\Theta}, m_{\Theta})$ is called a relative probability Θ -measure space if $m_{\Theta}(\Theta) = 1$ [10].

3. Θ -relations and Atoms

Definition 3.1. Let (X, F_{Θ}, m) be a Θ -measure space. The elements μ, λ of F_{Θ} are called m_{Θ} -disjoint if $m_{\Theta}(\lambda \wedge \mu) = 0$.

A Θ -relation '=(mod m_{Θ})' on F_{Θ} is defined as below

$$\lambda = \mu \pmod{m_{\Theta}}$$
 iff $m_{\Theta}(\lambda) = m_{\Theta}(\mu) = m_{\Theta}(\lambda \wedge \mu), \quad \lambda, \mu \in F_{\Theta}.$

The Θ -relation '=(mod m_{Θ})' is an equivalence relation. F_{Θ} denotes the set of all equivalence classes induced by this relation, and $\tilde{\mu}$ is the equivalence class determined by μ . For $\lambda, \mu \in F_{\Theta}, \lambda \wedge \mu = 0 \pmod{m_{\Theta}}$ iff λ, μ are m_{Θ} -disjoint. We shall identify $\tilde{\mu}$ with μ .

Definition 3.2. Let $(X, F_{\Theta}, m_{\Theta})$ be a Θ -measure space, and P be a sub- σ_{Θ} -algebra of F_{Θ} . Then an element $\tilde{\lambda} \in \tilde{P}$ is an atom of P if

- (i) $m_{\Theta}(\lambda) > 0$,
- (ii) for each $\tilde{\mu} \in \tilde{P}$ such that $m_{\Theta}(\lambda \wedge \mu) = m_{\Theta}(\mu) \neq m_{\Theta}(\lambda)$ then $m_{\Theta}(\mu) = 0$.

Theorem 3.3. Let (X, F_{Θ}, m) be a Θ -measure space, and P be a sub- σ_{Θ} -algebra of F_{Θ} . If $\tilde{\lambda_1}, \tilde{\lambda_2}$ are disjoint atoms of P then they are m_{Θ} disjoint.

Proof. Since $\lambda_1 \wedge \lambda_2 \subseteq \lambda_1, \lambda_1 \wedge \lambda_2 \subseteq \lambda_2$, and $\lambda_1 \neq \lambda_2 \pmod{m_{\Theta}}$, we get $\lambda_1 \wedge \lambda_2 \neq \lambda_i \pmod{m_{\Theta}}$ for at least one i = 1, 2. Suppose $\lambda_1 \wedge \lambda_2 \neq \lambda_2 \pmod{m_{\Theta}}$. \Box

Now, we introduce $R_*(F_{\Theta})$ as bellow,

 $R_*(F_{\Theta}) = \{P : P \text{ is a sub} - \sigma_{\Theta} - \text{algebra of } F_{\Theta} \text{ with finite atoms} \}.$

Assume that F_{Θ} is a σ_{Θ} -algebra, $P_1, P_2 \in R_*(F_{\Theta})$, and $\{\lambda_i; i = 1, 2, ..., n\}$ and $\{\mu_j; j = 1, ..., m\}$ denote the atoms of P_1 and P_2 , respectively, then the atoms of $P_1 \vee P_2$ are $\lambda_i \wedge \mu_j$ which $m_{\Theta}(\lambda_i \wedge \mu_j) > 0$ for each $1 \leq i \leq n, 1 \leq j \leq m$.

Definition 3.4. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space and $P_1, P_2 \in R_*(F_{\Theta})$. We say that P_2 is an m_{Θ} -refinement of P_1 , denoted by $P_1 \leq_{m_{\Theta}} P_2$, if for each $\mu \in \overline{P_2}$ there exists $\lambda \in \overline{P_1}$ such that,

$$m_{\Theta}(\lambda \wedge \mu) = m_{\Theta}(\mu).$$

Theorem 3.5. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space and $P_1, P_2, P_3 \in R_*(F_{\Theta})$. If $P_1 \leq_{m_{\Theta}} P_2$ then,

$$P_1 \vee P_3 \leq_{m_\Theta} P_2 \vee P_3.$$

Proof. Let $\mu \in \overline{P_2 \vee P_3}$. Then $\mu = \lambda \wedge \gamma$ for some $\lambda \in \overline{P_2}$ and $\gamma \in \overline{P_3}$. Since $P_1 \leq_{m_{\Theta}} P_2$, there exists $\eta \in \overline{P_1}$ such that $m_{\Theta}(\eta \wedge \lambda) = m_{\Theta}(\lambda)$. Now,

$$\begin{split} m_{\Theta}(\mu) &\geq m_{\Theta}(\eta \wedge \gamma \wedge \mu) \\ &= m_{\Theta}(\eta \wedge \gamma \wedge \lambda) \\ &= m_{\Theta}(\eta \wedge \lambda) + m_{\Theta}(\gamma) - m_{\Theta}((\eta \wedge \lambda) \vee \gamma) \\ &= m_{\Theta}(\lambda) + m_{\Theta}(\gamma) - m_{\Theta}((\eta \vee \lambda) \wedge (\lambda \vee \gamma)) \\ &= m_{\Theta}(\lambda) + m_{\Theta}(\gamma) - m_{\Theta}(\eta \vee \lambda) - m_{\Theta}(\lambda \vee \gamma) + m_{\Theta}(\eta \vee \gamma \vee \lambda) \\ &\geq m_{\Theta}(\lambda \wedge \gamma) \\ &= m_{\Theta}(\mu). \end{split}$$

Hence,

$$m_{\Theta}(\eta \wedge \gamma \wedge \mu) = m_{\Theta}(\mu),$$

and the result follows.

4. Relative Entropy of a sub- σ_{Θ} -algebra with Finite Atoms

Definition 4.1. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space, and P be a sub σ_{Θ} -algebra of F_{Θ} which $P \in R_*(F_{\Theta})$. The relative entropy of P is defined as

$$H_{\Theta}(P, m_{\Theta}) = -\sum_{\mu \in \bar{P}} m_{\Theta}(\mu) \log m_{\Theta}(\mu).$$

Example 4.2. Let (X, β, p) be a classical probability measure space and $\Theta = \chi_X$. Then $F_{\Theta} = \{\chi_A : A \in \beta\}$ is a σ_{Θ} -algebra on X. Define $m_{\Theta}(\chi_A) = p(A), A \in \beta$. Then $(X, F_{\Theta}, m_{\Theta})$ is a relative probability Θ measure space. Let α be a finite sub- σ -algebra of β and $G = \{\chi_A : A \in \alpha\}$. So, $G \in R_*(F_{\Theta})$ and the relative entropy of G is given by

$$H_{\Theta}(G, m_{\Theta}) = -\sum_{A \in \bar{G}} m_{\Theta}(\chi_A) \log m_{\Theta}(\chi_A)$$
$$= -\sum_{A \in \bar{G}} p(A) \log p(A),$$

which is the Kolmogorov-Sinai entropy of the finite classical measurable sub- σ -algebra α of the space (X, β, p) .

Thus, the concept of the relative entropy of a σ_{Θ} -algebra with finite atoms is a generalization of the Kolmogorov-Sinai entropy of a finite measurable σ -algebra.

Theorem 4.3. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space, and $P_1, P_2 \in R_*(F_{\Theta})$ which $\bar{P}_1 = \{\lambda_i; 1 \leq i \leq n\}$ and $\bar{P}_2 = \{\mu_j; 1 \leq j \leq m\}$. If $P_1 \approx_{m_{\Theta}} P_2$ and $P_1 \leq_{m_{\Theta}} P_2$ then,

 $H_{\Theta}(P_1, m_{\Theta}) \le H_{\Theta}(P_2, m_{\Theta}).$

Proof. Suppose that $P_1 \leq_{m_{\Theta}} P_2$. Then for each $\mu_j \in \bar{P}_2$ there exists $\lambda_k \in \bar{P}_1$ such that, $m_{\Theta}(\mu_j \wedge \lambda_k) = m_{\Theta}(\mu_j)$. Since $P_1 \approx_{m_{\Theta}} P_2$ and λ_i 's are pairwise m_{Θ} -disjoint, then

$$m_{\Theta}(\mu_j) = m_{\Theta}(\mu_j \wedge (\lor \lambda_i))$$
$$= \sum_i m_{\Theta}(\mu_j \wedge \lambda_i).$$

Therefore, $m_{\Theta}(\mu_i \wedge \lambda_i) = 0$ for each $i \neq k$. Hence,

$$m_{\Theta}(\mu_j)\log m_{\Theta}(\mu_j) = \sum_i m_{\Theta}(\mu_j \wedge \lambda_i)\log m_{\Theta}(\mu_j \wedge \lambda_i).$$

Now, set $\alpha = \{(i, j) : m_{\Theta}(\lambda_i \wedge \mu_j) > 0\}, \beta = \{i : m_{\Theta}(\lambda_i) > 0\}$. Then

$$H_{\Theta}(P_{2}, m_{\Theta}) = -\sum_{j} \sum_{i} m_{\Theta} (\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\lambda_{i} \wedge \mu_{j})$$
$$= -\sum_{(i,j)\in\alpha} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\lambda_{i} \wedge \mu_{j})$$
$$\geq -\sum_{(i,j)\in\alpha} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\lambda_{i})$$
$$\geq -\sum_{i\in\beta} \log m_{\Theta}(\lambda_{i}) \sum_{j} m_{\Theta}(\lambda_{i} \wedge \mu_{j}).$$

Since μ_j 's are pairwise m_{Θ} -disjoint, we have

$$H_{\Theta}(P_2, m_{\Theta}) \ge -\sum_{i \in \beta} \log m_{\Theta}(\lambda_i) m_{\Theta}(\forall_j (\lambda_i \land \mu_j))$$
$$= -\sum_i m_{\Theta}(\lambda_i) \log m_{\Theta}(\lambda_i)$$
$$= H_{\Theta}(P_1, m_{\Theta}).$$

Definition 4.4. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space and $P_1, P_2 \in R_*(F_{\Theta})$. We say that P_1 and P_2 are m_{Θ} -equivalent, denoted by $P_1 \approx_{m_{\Theta}} P_2$, if the following axioms are satisfied:

(i) If $\lambda \in \bar{P}_1$ then $m_{\Theta}(\lambda \wedge (\vee \{\mu; \mu \in \bar{P}_2\})) = m_{\Theta}(\lambda)$. (ii) If $\mu \in \bar{P}_2$ then $m_{\Theta}(\mu \wedge (\vee \{\lambda; \lambda \in \bar{P}_1\})) = m_{\Theta}(\mu)$.

Theorem 4.5. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space, and $P_1, P_2 \in R_*(F_{\Theta})$. If $P_1 \approx_{m_{\Theta}} P_2$ then,

$$P_1 \approx_{m_{\Theta}} P_1 \lor P_2.$$

Proof. Assume that $\bar{P}_1 = \{\lambda_i; 1 \le i \le n\}$ and $\bar{P}_2 = \{\mu_j; 1 \le j \le m\}$. We know that,

$$\overline{P_1 \vee P_2} = \left\{ \lambda_i \wedge \mu_j; \lambda_i \in \overline{P}_1, \mu_j \in \overline{P}_2, m_\Theta(\lambda_i \wedge \mu_j) > 0 \right\}.$$

If $\alpha = \{(i, j) : V_{ij} = \lambda_i \land \mu_j \in \overline{P_1 \lor P_2}\}$ then $\alpha = \bigcup_i \{(i, j); j \in \beta_i\}$ where $\beta_i = \{j; m_{\Theta}(V_{ij}) > 0\}$ and $1 \leq i \leq n$. Note that if $j \notin \beta_i$ then $m_{\Theta}(V_{ij}) = 0$ and we have

$$\forall_{i,j\in\mathbb{N}} V_{ij} = \forall_{i\in\mathbb{N}} \left(\forall_{j\in\beta_i} V_{ij} \right) \\ = \forall_{1\leq i\leq n} \left(\lambda_i \wedge \left(\forall_{j\in\beta_i} \mu_j \right) \right).$$

Since the collections $\{\lambda_i; 1 \le i \le n\}$ and $\{\mu_j; 1 \le j \le m\}$ are m_{Θ} -disjoint, then we have

$$m_{\Theta}(\lambda_k \land (\lor_{i,j} V_{ij})) = m_{\Theta}(\lambda_k \land (\lor_i \lambda_i \land (\lor_{j \in \beta_i} \mu_j)))$$

$$= m_{\Theta}(\lambda_k \wedge (\vee_{j \in \beta_i} \mu_j))$$

$$= m_{\Theta}(\lambda_k \wedge (\vee_{j \in \beta_k} \mu_j))$$

$$= m_{\Theta}(\vee_{j \in \beta_k} (\lambda_k \wedge \mu_j))$$

$$= \sum_{j \in \beta_k} m_{\Theta}(\vee V_{kj})$$

$$= \sum_j m_{\Theta}(\vee V_{kj})$$

$$= m_{\Theta}(\lambda_k \wedge (\vee_j \mu_j))$$

$$= m_{\Theta}(\lambda_k).$$

Theorem 4.6. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space, and $P_1, P_2 \in R_*(F_{\Theta})$. If $P_1 \approx_{m_{\Theta}} P_2$ then,

$$H_{\Theta}(P_1, m_{\Theta}) \leq H_{\Theta}(P_1 \vee P_2, m_{\Theta}).$$

Proof. Suppose that $P_1 \approx_{m_{\Theta}} P_2$. By Theorem 3.8 we have $P_1 \approx_{m_{\Theta}} P_1 \vee P_2$. Now suppose that $\delta \in \overline{P_1} \vee P_2$. Then $\delta = \lambda_i \wedge \mu_j$ which $\lambda_i \in \overline{P_1}$ and $\mu_j \in \overline{P_2}$. So for $\lambda_i \in \overline{P_1}$, $m_{\Theta}(\delta) = m_{\Theta}(\delta \wedge \lambda_i)$ and therefore we have $P_1 \leq_{m_{\Theta}} P_1 \vee P_2$. Now use Theorem 4.3.

Theorem 4.7. Let $(X, F_{\Theta}, m_{\Theta})$ be a relative probability Θ -measure space, and $P_1, P_2 \in R_*(F_{\Theta})$. If $P_1 \approx_{m_{\Theta}} P_2$ then,

$$H_{\Theta}(P_1 \vee P_2, m_{\Theta}) \le H_{\Theta}(P_1, m_{\Theta}) + H_{\Theta}(P_2, m_{\Theta}).$$

Proof. Suppose that $g: [0,1] \to \mathbb{R}$ be the convex function $g(x) = x \log x$. Assume that $\bar{P}_1 = \{\lambda_i; 1 \le i \le n\}$ and $\bar{P}_2 = \{\mu_j; 1 \le j \le m\}$. Take $\alpha_j = m_{\Theta}(\mu_j), 1 \le j \le m$ and for a fixed $i \ (1 \le i \le n)$ put

$$x_j = \frac{m_{\Theta}(\lambda_i \wedge \mu_j)}{m_{\Theta}(\mu_j)}.$$

We have,

$$\sum_{j=1}^{m} \alpha_j x_j = \sum_{j=1}^{m} m_{\Theta}(\lambda_i \wedge \mu_j)$$
$$= m_{\Theta}(\lambda_i \wedge (\vee_{j=1}^{m} \mu_j))$$
$$= m_{\Theta}(\lambda_i).$$

Put

$$\eta = \{(i,j) : 1 \le i \le n, 1 \le j \le m, m_{\Theta}(\lambda_i \land \mu_j) > 0\},\$$

and $\beta_i = \{j; m_{\Theta}(\lambda_i \land \mu_j) > 0\}$. Let $\alpha = \sum_j \alpha_j$, then we get $m_{\Theta}(\lambda_i)g\left(\frac{m_{\Theta}(\lambda_i)}{\alpha}\right) \le \sum_{j=1}^m m_{\Theta}(\mu_j)g\left(\frac{m_{\Theta}(\lambda_i \land \mu_j)}{m_{\Theta}(\mu_j)}\right)$ $= \sum_{j \in \beta_i} m_{\Theta}(\lambda_i \land \mu_j) \log \frac{m_{\Theta}(\lambda_i \land \mu_j)}{m_{\Theta}(\mu_j)},$

or

$$m_{\Theta}(\lambda_i) \log\left(\frac{m_{\Theta}(\lambda_i)}{\alpha}\right) \le \sum_{j \in \beta_i} m_{\Theta}(\lambda_i \wedge \mu_j) \log\left(\frac{m_{\Theta}(\lambda_i \wedge \mu_j)}{m_{\Theta}(\mu_j)}\right).$$

Now,

$$\begin{split} H_{\Theta}(P_{1}, m_{\Theta}) &= -\sum_{i=1}^{n} m_{\Theta}(\lambda_{i}) \log m_{\Theta}(\lambda_{i}) \\ &\geq -\sum_{i} m_{\Theta}(\lambda_{i}) \log \alpha - \sum_{i} \sum_{j \in \beta_{i}} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \\ &+ \sum_{i} \sum_{j \in \beta_{i}} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\mu_{j}) \\ &= -\sum_{(i,j) \in \eta} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \log m_{\Theta}(\lambda_{i} \wedge \mu_{j}) \\ &+ \sum_{j} \log m_{\Theta}(\mu_{j}) \sum_{i} m_{\Theta}(\lambda_{i} \wedge \mu_{j}) - \log \alpha \sum_{i} m_{\Theta}(\lambda_{i}) \\ &\geq H_{\Theta}(P_{1} \vee P_{2}, m_{\Theta}) + \sum_{j} m_{\Theta}(\mu_{j} \wedge (\vee \lambda_{i})) \log m_{\Theta}(\mu_{j}) \\ &= H_{\Theta}(P_{1} \vee P_{2}, m_{\Theta}) - H_{\Theta}(P_{2}, m_{\Theta}). \end{split}$$
Thus, $H_{\Theta}(P_{1}, m_{\Theta}) \leq H_{\Theta}(P_{1} \vee P_{2}, m_{\Theta}).$

5. Relative Entropy of a Θ -measure Preserving Transformations

Definition 5.1. Suppose $(X, F_{\Theta}, m_{\Theta})$ be an Θ -measure space and Θ be a constant observer on X. A transformation $\varphi : (X, F_{\Theta}, m_{\Theta}) \rightarrow (X, F_{\Theta}, n_{\Theta})$, is said to be a Θ -measure preserving if $m_{\Theta}(\varphi^{-1}(\mu)) = n_{\Theta}(\mu)$ for all $\mu \in \overline{F}_{\Theta}$.

Theorem 5.2. Suppose that

 $\varphi: (X, F_{\Theta}, m_{\Theta}) \to (X, F_{\Theta}, n_{\Theta})$

be a Θ -measure preserving transformations. Then for each $P \in R_*(F_{\Theta})$ we have,

$$H_{\Theta}(P, m_{\Theta}) = H_{\Theta}\left(\varphi^{-1}(P), m_{\Theta}\right).$$

Proof. Since φ is a Θ -measure preserving, we have

$$m_{\Theta}(\varphi^{-1}(\mu)) = n_{\Theta}(\mu),$$

then,

$$H_{\Theta}\left(\varphi^{-1}(P), m_{\Theta}\right) = -\sum_{\mu \in \bar{P}} m_{\Theta}\left(\varphi^{-1}(\mu)\right) \log m_{\Theta}\left(\varphi^{-1}(\mu)\right)$$
$$= -\sum_{\mu \in \bar{P}} n_{\Theta}(\mu) \log n_{\Theta}(\mu)$$
$$= H_{\Theta}(P, m_{\Theta}).$$

Definition 5.3. Suppose $\varphi : (X, F_{\Theta}, m_{\Theta}) \to (X, F_{\Theta}, n_{\Theta})$, be a Θ -measure preserving transformation. If $P \in R_*(F_{\Theta})$, we define the relative entropy of φ with respect to P as

$$h_{\Theta}(\varphi, P, m_{\Theta}) = \lim_{n \to \infty} \frac{1}{n} H_{\Theta} \left(\bigvee_{i=0}^{n-1} \varphi^{-i}(P), m_{\Theta} \right)$$

Theorem 5.4. $\lim_{n\to\infty} \frac{1}{n} H_{\Theta} \left(\bigvee_{i=0}^{n-1} \varphi^{-i}(P), m_{\Theta} \right)$ exsists.

Proof. Let

$$a_n = H_{\Theta}\left(\vee_{i=0}^{n-1}\varphi^{-i}(P), m_{\Theta}\right) \ge 0.$$

Using Theorem 4.7 and Theorem 5.2, we have

$$a_{n+k} = H_{\Theta} \left(\bigvee_{i=0}^{n+k-1} \varphi^{-i}(P), m_{\Theta} \right)$$

$$\leq H_{\Theta} \left(\bigvee_{i=0}^{n-1} \varphi^{-i}(P), m_{\Theta} \right) + H_{\Theta} \left(\bigvee_{i=n}^{n+k-1} \varphi^{-i}(P), m_{\Theta} \right)$$

$$= a_n + a_k.$$

So, for each n, k we have $a_{n+k} \leq a_n + a_k$. Now, by Theorem 4.9 in [12] $\lim_{n\to\infty} \frac{a_n}{n}$ exists.

Theorem 5.5. Let $\varphi : (X, F_{\Theta}, m_{\Theta}) \to (X, F_{\Theta}, n_{\Theta})$, be a Θ -measure preserving transformations and $P \in R_*(F_{\Theta})$. Then,

 $\begin{array}{ll} \text{(i)} & h_{\Theta}\left(\varphi,\varphi^{-1}(P)\right) = h_{\Theta}(\varphi,P),\\ \text{(ii)} & h_{\Theta}\left(\varphi,\vee_{i=0}^{r-1}\varphi^{-i}(P)\right) = h_{\Theta}(\varphi,P) \text{ for every } r \geq 1. \end{array}$

Proof. (i) It is obvious. (ii) We have

$$h_{\Theta}\left(\varphi, \vee_{i=1}^{\infty}\varphi^{-i}(P), m_{\Theta}\right) = \lim_{n \to \infty} \frac{1}{n} H_{\Theta}\left(\vee_{j=0}^{n-1}\varphi^{-j}\left(\vee_{i=0}^{r-1}\varphi^{-i}(P)\right), m_{\Theta}\right)$$
$$= \lim_{n \to \infty} \frac{1}{n} H_{\Theta}\left(\vee_{i=0}^{r+n-2}\varphi^{-i}(P), m_{\Theta}\right)$$

$$= \lim_{n \to \infty} \left(\frac{r+n-2}{n} \right) \left(\frac{1}{r+n-2} \right)$$
$$\times H_{\Theta} \left(\bigvee_{i=0}^{r+n-2} \varphi^{-i}(P), m_{\Theta} \right)$$
$$= h_{\Theta} \left(\varphi, \varphi(P), m_{\Theta} \right).$$

Theorem 5.6. Let $\varphi : (X, F_{\Theta}, m_{\Theta}) \to (X, F_{\Theta}, n_{\Theta})$, be a Θ -measure preserving transformations and $P_1, P_2 \in R_*(F_{\Theta})$. If $P_1 \approx_{m_{\Theta}} P_2$ and $P_1 \leq_{m_{\Theta}} P_2$ then $h_{\Theta}(\varphi, P_1, m_{\Theta}) \leq h_{\Theta}(\varphi, P_2, m_{\Theta})$.

Proof. The result follows from Theorem 4.3.

6. Relative Entropy and (Θ_1, Θ_2) -isomorphic Dynamical Systems

Definition 6.1. A relative semi-dynamical system is denoted by $(X, F_{\Theta}, m_{\Theta}, \varphi)$ which $(X, F_{\Theta}, m_{\Theta})$ is a relative probability Θ -measure space and φ is a Θ -measure preserving transformations.

Definition 6.2. Let $(X, F_{\Theta}, m_{\Theta}, \varphi)$ be a relative semi-dynamical system and $L \in R_*(F_{\Theta})$. Suppose $[L]_{\Theta}$ denotes the m_{Θ} -equivalence class induced by L. Then the relative entropy $h_{\Theta}(\varphi, [L]_{\Theta})$ of φ on L is defined as

$$h_{\Theta}\left(\varphi, [L]_{\Theta}, m_{\Theta}\right) = \sup_{P \in [L]_{\Theta}} h_{\Theta}\left(\varphi, P, m_{\Theta}\right).$$

Definition 6.3. Suppose $(X_1, F_{\Theta_1}, m_{\Theta_1})$ be a Θ_1 -measure space and $(X_2, F_{\Theta_2}, n_{\Theta_2})$ be a Θ_2 -measure space. A transformation

$$\varphi: (X_1, F_{\Theta_1}, m_{\Theta_1}) \to (X_2, F_{\Theta_2}, n_{\Theta_2}),$$

is said to be a (Θ_1, Θ_2) -measure preserving if

(i)
$$\varphi^{-1}(\mu) \in F_{\Theta_1}$$
 for every $\mu \in F_{\Theta_2}$, where $\varphi^{-1}(\mu)(x) = \mu(\varphi(x)), \forall x \in X$,
(...)

(ii)
$$m_{\Theta_1}(\varphi^{-1}(\mu)) = n_{\Theta_2}(\mu)$$
 for all $\mu \in F_{\Theta_2}$.

Theorem 6.4. Suppose $\varphi : (X_1, F_{\Theta_1}, m_{\Theta_1}) \to (X_2, F_{\Theta_2}, n_{\Theta_2})$, be a (Θ_1, Θ_2) -measure preserving transformations. Then for each $P \in R_*(F_{\Theta_2})$ we have,

$$H_{\Theta_2}(P, m_{\Theta_2}) = H_{\Theta_1}(\varphi^{-1}(P), m_{\Theta_1})$$

Proof. By Theorem 5.2, the proof is clear.

Definition 6.5. A relative semi-dynamical system $\phi_1 = (X_1, F_{\Theta_1}, m_{\Theta_1})$ is a (Θ_1, Θ_2) -factor of the relative semi-dynamical system $\phi_2 = (X_2, F_{\Theta_2}, n_{\Theta_2})$ if there exists an onto (Θ_1, Θ_2) -measure preserving transformations (called homomorphism) $\psi : \phi_2 \to \phi_1$ such that,

$$\psi o\varphi_2 = \varphi_1 o\psi.$$

Theorem 6.6. Let $\phi_1 = (X_1, F_{\Theta_1}, m_{\Theta_1})$ be a (Θ_1, Θ_2) -factor of the relative semi-dynamical system $\phi_2 = (X_2, F_{\Theta_2}, n_{\Theta_2})$. Then for each $L \in R_*(F_{\Theta})$,

$$h_{\Theta_1}\left(\varphi_1, \left[\psi^{-1}(L)\right]_{\Theta_1}, m_{\Theta_1}\right) \le h_{\Theta_2}\left(\varphi_2, [L]_{\Theta_2}, m_{\Theta_2}\right),$$

Where $\psi: \phi_2 \to \phi_1$ is the corresponding homomorphism.

Proof. Suppose that $P \in [L]_{\Theta_2}$. Then by Theorem 6.4,

$$H_{\Theta_2}(P, m_{\Theta_2}) = H_{\Theta_1}(\psi^{-1}(P), m_{\Theta_1}).$$

Now,

$$h_{\Theta_{2}}(\varphi_{2}, P, m_{\Theta_{2}}) = \lim_{n \to \infty} \frac{1}{n} H_{\Theta_{2}} \left(\bigvee_{i=0}^{n-1} \varphi_{2}^{-i}(P), m_{\Theta_{2}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} H_{\Theta_{1}} \left(\psi^{-1}(\bigvee_{i=0}^{n-1} \varphi_{2}^{-i}(P)), m_{\Theta_{1}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} H_{\Theta_{1}} \left(\bigvee_{i=0}^{n-1} \psi^{-1} \varphi_{2}^{-i}(P), m_{\Theta_{1}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} H_{\Theta_{1}} \left(\bigvee_{i=0}^{n-1} \varphi_{1}^{-i} \psi^{-1}(P), m_{\Theta_{1}} \right)$$

$$= h_{\Theta_{1}} \left(\varphi_{1}, \psi^{-1}(P), m_{\Theta_{1}} \right).$$

As P ranges over an m_{Θ_2} -equivalence class $[L]_{\Theta_2}$ in $R_*(F_{\Theta_2})$, $\psi^{-1}(P)$ ranges over a subset of the m_{Θ_1} -equivalence class $[\psi^{-1}(L)]_{\Theta_1}$ in $R_*(F_{\Theta_1})$.

Definition 6.7. Two relative semi-dynamical systems $\phi_1 = (X_1, F_{\Theta_1}, m_{\Theta_1})$ and $\phi_2 = (X_2, F_{\Theta_2}, m_{\Theta_2})$ are said to be (Θ_1, Θ_2) -isomorphic if there exists an invertible relative (Θ_1, Θ_2) -measure preserving transformations $\psi : \phi_1 \to \phi_2$ (i.e both ψ and ψ^{-1} are relative measure preserving transformations) such that,

$$\psi o \varphi_1 = \varphi_2 o \psi.$$

The mapping ψ is called (Θ_1, Θ_2) -isomorphism.

Theorem 6.8. Let ϕ_1 and ϕ_2 be (Θ_1, Θ_2) -isomorphic semi-dynamical systems. Then for each $L \in R_*(F_{\Theta_2})$,

$$h_{\Theta_1}\left(\varphi_1, \left[\psi^{-1}(L)\right]_{\Theta_1}, m_{\Theta_1}\right) = h_{\Theta_2}\left(\varphi_2, \left[L\right]_{\Theta_2}, m_{\Theta_2}\right),$$

which $\psi: \phi_1 \to \phi_2$ is the corresponding (Θ_1, Θ_2) -isomorphism.

Proof. The result follows from Theorem 6.6.

7. Relative Entropy and m_{Θ} -generators of Relative Semi-Dynamical Systems

Definition 7.1. The relative entropy of the relative semi-dynamical system $(X, F_{\Theta}, m_{\Theta}, \varphi)$ is the number $h_{\Theta}(\varphi, m_{\Theta})$ defined by,

$$h_{\Theta}(\varphi, m_{\Theta}) = \sup_{P} h_{\Theta}(\varphi, P, m_{\Theta}),$$

where the supremum is taken over all sub- σ_{Θ} -algebras of F_{Θ} which $P \in R_*(F_{\Theta})$.

Definition 7.2. $P \in R_*(F_{\Theta})$ is said to be an m_{Θ} -generator of the relative semi-dynamical system $(X, F_{\Theta}, m_{\Theta}, \varphi)$ if there exists an integer r > 0 such that,

$$Q \leq_{m_{\Theta}} \vee_{i=0}^{r} \varphi^{-i} P,$$

for each $Q \in R_*(F_{\Theta})$.

Theorem 7.3. If P is an m_{Θ} -generator of the relative semi-dynamical system $(X, F_{\Theta}, m_{\Theta}, \varphi)$ then,

$$h_{\Theta}(\varphi, Q, m_{\Theta}) \le h_{\Theta}(\varphi, P, m_{\Theta})$$

for each $Q \in R_*(F_{\Theta})$.

Proof. Let $Q \in R_*(F_{\Theta})$ be any arbitrary sub- σ_{Θ} -algebra of F_{Θ} . Since P is an m_{Θ} -generator, $Q \leq_{m_{\Theta}} \vee_{i=0}^r \varphi^{-i} P$ follows from Theorem 5.6,

$$h_{\Theta}(\varphi, Q, m_{\Theta}) \le h_{\Theta}(\varphi, \vee_{i=0}^{r} \varphi^{-i} P, m_{\Theta})$$
$$= h_{\Theta}(\varphi, P, m_{\Theta}).$$

Now we can deduce the following version of the Kolmogorov-Sinai theorem.

Theorem 7.4. If P is an m_{Θ} -generator of the relative semi-dynamical system $(X, F_{\Theta}, m_{\Theta}, \varphi)$ then,

$$h_{\Theta}(\varphi, m_{\Theta}) = h_{\Theta}(\varphi, P, m_{\Theta}).$$

Proof. It is obvious.

Theorem 7.5. Let $(X, F_{\Theta}, m_{\Theta}, \varphi)$ be a relative semi-dynamical system. Then, the map $m_{\Theta} \mapsto h_{\Theta}(\varphi, m_{\Theta})$ is affine, i.e,

$$h_{\Theta}(\varphi, \lambda m_{\Theta} + (1 - \lambda)n_{\Theta}) = \lambda h_{\Theta}(\varphi, m_{\Theta}) + (1 - \lambda)h_{\Theta}(\varphi, n_{\Theta}),$$

for each pair m_{Θ} and n_{Θ} of the relative probability Θ -measures and $\lambda \in [0, 1]$.

Proof. Suppose that $P \in R_*(F_{\Theta})$. If m_{Θ} and n_{Θ} are two relative probability Θ -measures and $\lambda \in [0, 1]$ then,

(7.1)
$$H_{\Theta}(P, \lambda m_{\Theta} + (1-\lambda)n_{\Theta}) \ge \lambda H_{\Theta}(P, m_{\Theta}) + (1-\lambda)H_{\Theta}(P, n_{\Theta}).$$

The 'concavity' inequality (7.1) is a direct consequence of the definition of $H_{\Theta}(P, m_{\Theta})$ and the 'concavity' of the function $x \mapsto -x \log x$. Conversely, one has inequalities

$$-\log\left(\lambda m_{\Theta}(\mu_i) + (1-\lambda)n_{\Theta}(\mu_i)\right) \le -\log\lambda - \log m_{\Theta}(\mu_i),$$

and

$$-\log(\lambda m_{\Theta}(\mu_i) + (1-\lambda)n_{\Theta}(\mu_i)) \le -\log(1-\lambda) - \log n_{\Theta}(\mu_i).$$

Because $x \mapsto -\log x$ is decreasing, therfore, one obtains the 'convexity' bound,

(7.2)
$$H_{\Theta}(P, \lambda m_{\Theta} + (1-\lambda)n_{\Theta}) \le \lambda H(P, m_{\Theta}) + (1-\lambda)H(P, n_{\Theta}) - \lambda \log \lambda - (1-\lambda)\log(1-\lambda).$$

Now replacing P by $\bigvee_{i=0}^{n-1} \varphi^{-i}(P)$ in (7.1), dividing by n and taking the $\lim_{n\to\infty}$ gives

$$h_{\Theta}(\varphi, P, \lambda m_{\Theta} + (1 - \lambda)n_{\Theta}) \ge \lambda h_{\Theta}(\varphi, P, m_{\Theta}) + (1 - \lambda)h_{\Theta}(\varphi, P, n_{\Theta}).$$

Similarly from (7.2), since

$$\frac{-(\lambda \log \lambda + (1-\lambda) \log (1-\lambda))}{n} \to 0,$$

as $n \to \infty$, one deduces the converse inequality

$$h_{\Theta}(\varphi, P, \lambda m_{\Theta} + (1 - \lambda)n_{\Theta}) \le \lambda h_{\Theta}(\varphi, P, m_{\Theta}) + (1 - \lambda)h_{\Theta}(\varphi, P, n_{\Theta}).$$

Hence one concludes that the map $m_{\Theta} \mapsto h_{\Theta}(\varphi, P, m_{\Theta})$ is affine. Finally, it follows from Theorem 7.4 that the relative entropy is affine. \Box

This is somewhat surprising and is of great significance in the application of the relative entropy.

8. Concluding Remarks and Open Problems

In this paper, the notion of the relative entropy for a sub- σ_{Θ} -algebra with finite atoms is presented. The entropy of a relative semi-dynamical system is defined using the observer notion and its properties are investigated. Also, the notion of an m_{Θ} -generator for a relative semi-dynamical system is introduced and a relative version of Kolmogorov-Sinai theorem concerning the entropy of a relative semi-dynamical system is given. Finally, it is proved that the relative entropy of a relative Θ -measure preserving transformations with respect to a relative sub- σ_{Θ} -algebra having finite atoms is affine.

An interesting open problem is to establish a theorem on existence of m_{Θ} -generators for relative semi-dynamical systems.

References

- M. Ebrahimi and U. Mohammadi, m-Generators of fuzzy dynamical systems, Cankaya. Univ. J. Sci. Eng., 9 (2012), pp. 167-182.
- U. Mohammadi, Relative information functional of relative dynamical systems, J. Mahani. Mat. Res. Cent., 2 (2013), pp. 17-28.
- U. Mohammadi, Weighted information function of dynamical systems, J. Math. Comput. Sci., 10 (2014), pp. 72-77.
- U. Mohammadi, Weighted entropy function as an extension of the Kolmogorov-Sinai entropy, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 4 (2015), pp. 117-122.
- U. Mohammadi, Relative entropy functional of relative dynamical systems, Cankaya. Univ. J. Sci. Eng., 2 (2014), pp. 29-38.
- M.R. Molaei, *Relative semi-dynamical systems*, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 12 (2004), pp. 237-243.
- M.R. Molaei, Mathematical modeling of observer in physical systems, J. Dyn. Syst. Geom. Theor., 4 (2006), pp. 183-186.
- M.R. Molaei, Observational modeling of topological spaces, Chaos Solitons Fractals, 42 (2009), pp. 615-619.
- M.R. Molaei, M.H. Anvari, and T. Haqiri, On relative semi-dynamical systems, Intell. Autom. Soft Comput. Syst., 12 (2004), pp. 237-243.
- M.R. Molaei and B. Ghazanfari, Relative entropy of relative measure preserving maps with constant observers, J. Dyn. Syst. Geom. Theor., 5 (2007), pp. 179-191.
- Ya. Sinai, On the notion of entropy of a dynamical system, Dokl. Akad. Nauk. S.S.S.R, 125 (1959), pp. 768-771.
- 12. P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF JIROFT, JIROFT, IRAN.

E-mail address: u.mohamadi@ujiroft.ac.ir