
Sahand Communications in Mathematical Analysis (SCMA) Vol. 13 No. 1 (2019), 31-50

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2018.30018

Common Fixed Point Theory in Modified Intuitionistic

Probabilistic Metric Spaces with Common Property (E.A.)

Hamid Shayanpour1 and Asiyeh Nematizadeh2∗

Abstract. In this paper, we define the concepts of modified
intuitionistic probabilistic metric spaces, the property (E.A.) and
the common property (E.A.) in modified intuitionistic probabilistic
metric spaces.

Then, by the common property (E.A.), we prove some common
fixed point theorems in modified intuitionistic Menger probabilistic
metric spaces satisfying an implicit relation.

1. Introduction and Preliminaries

Probabilistic metric spaces (abbreviated, PM spaces) have been intro-
duced and studied in 1942 by Karl Menger in [19]. The idea of Menger
was to use distribution functions instead of nonnegative real numbers
as values of the metric. The notion of a PM space corresponds to the
situation when we do not know exactly the distance between two points,
and we know only probabilities of possible values of this distance. In fact
the study of such spaces received an impetus with the pioneering works
of Schweizer and Sklar ([23] and [24]). The study of fixed point theo-
rems in PM spaces is also a topic of recent interest and forms an active
direction of research. Sehgal et al. [25] made the first ever effort in this
direction. Since then, several authors have already studied fixed point
and common fixed point theorems in PM spaces ([10, 11, 16, 20, 28]).
Kutukcu et. al [15] introduced the notion of intuitionistic Menger spaces
with the help of t-norms and t-conorms as a generalization of Menger
space due to Menger [19]. Further, they introduced the notion of Cauchy
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sequences and found a necessary and sufficient condition for an intuition-
istic Menger space to be complete. Sharma et. al [26] introduced the
new concepts of subcompatibility and subsequential continuity which
are respectively weaker than occasionally weak compatibility and re-
ciprocal continuity in intuitionistic Menger space to prove a common
fixed point theorem. Goudarzi [8] introduced a definition of the con-
traction which is a the generalization of some old definitions and he
proved a result in generalized fixed point theory on intuitionistic Menger
spaces. Many authors have studied intuitionistic Menger spaces (see
[2, 9, 12, 17, 18, 27, 30]).
In 1986, Jungck [13] introduced the notion of the compatible maps for
a pair of self-maps in a metric space. In 1991, Mishra [21] introduced
the notion of compatible mappings in probabilistic metric spaces. It
is seen that most of the common fixed point theorems for contraction
mappings invariably require a compatibility condition besides assuming
continuity of at least one of the mappings. Later on, Singh et. al [28]
introduced the notion of weakly compatible mappings and proved some
fixed point theorems in Menger spaces. In 2002, Aamri et. al [1] defined
a property (E.A) for self-maps which contained the class of noncompat-
ible maps. Recently, Kubiaczyk et. al [14] proved some common fixed
point theorems under some strict contractive conditions for weakly com-
patible mappings satisfying the property (E.A) due to Aamri et. al [1].
Subsequently, there are a number of results which contained the notions
of property (E.A) and common property (E.A) in Menger spaces (see
[3, 6, 7, 29]).

In this paper, we first define the concept of modified intuitionistic
probabilistic metric spaces (abbreviated, IPM space), then we utilize the
notation of the property (E.A.) and common property (E.A) to prove
some common fixed point theorems in modified intuitionistic Menger
PM spaces (abbreviated, IMPM space). We show that if A,B, S and T
be four self-mappings of an IMPM space (X,µ, T ) such that the pairs
(A,S) and (B, T ) share the common property (E.A.) and the subsets
S(X) and T (X) of X are closed, then under certain conditions A,B, S
and T have a unique common fixed point in X. Also, we show that
if A,B, S and T be four self-mappings of an IMPM space (X,µ, T )
such that the pair (A,S) (or (B, T )) satisfies the property (E.A.) and
A(X) ⊂ T (X) (or B(X) ⊂ S(X)), then under certain conditions A,B, S
and T have a unique common fixed point in X.

Next we shall recall some well-known definitions and results in the
theory of probabilistic metric spaces which are used later in this paper.
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Definition 1.1. A distance distribution function is a function F :
R → [0.1], that is nondecreasing and left continuous on R, moreover,
inft∈R F (t) = 0 and supt∈R F (t) = 1.

The set of all the distance distribution functions (d.d.f.) such that
F (0) = 0, is denoted by ∆+. In particular for every a ∈ R, ϵa is the
(d.d.f.) defined by

ϵa(x) =

{
1 x > a,

0 x ≤ a.

The space ∆+ is partially ordered by the usual pointwise ordering of
functions and the maximal element for ∆+ in this order is ϵ0.

Definition 1.2. A nondistance distribution function is a function L :
R → [0, 1], that is nonincreasing and left continuous on R, moreover,
inft∈R L(t) = 0 and supt∈R L(t) = 1.

The family of all nondistance distribution functions (n.d.f.) such that
L(0) = 1, is denoted by Γ+. In particular for every a ∈ R, ζa is the
(n.d.f.) defined by

ζa(x) =

{
0 x > a,

1 x ≤ a.

Unfortunately in many papers, the nondistance distribution function is
defined as inft∈R L(t) = 1 and supt∈R L(t) = 0, which contradicts by
the definitions of supremum and infimum of a function. The space Γ+

is partially ordered by the usual pointwise ordering of functions and the
minimal element for Γ+ in this order is ζ0.

The functions Fp,q(t) and Lp,q(t) denote the degree of nearness and the
degree of non-nearness between p and q with respect to t, respectively.

The collection of all pairs (s1, s2) ∈ ∆+×Γ+ such that s1(t)+s2(t) ≤ 1
for all t ∈ R, will be denoted by Λ. That is,

Λ = {(s1, s2) : s1 ∈ ∆+, s2 ∈ Γ+ and s1(t) + s2(t) ≤ 1, for all t ∈ R}.
We denote its unit by 1Λ = (ε0, ζ0). We endow the product space ∆+ ×
Γ+ with the following partial order:

(x, y) ≤ (u, v) ⇔ x(t) ≤ u(t), y(t) ≥ v(t),

for all (x, y), (u, v) ∈ ∆+ × Γ+ and for all t ∈ R.

Definition 1.3. Amodified intuitionistic probabilistic metric space (ab-
breviated, IPM space) is an ordered pair (X,µ), where X is a nonempty
set and µ : X×X → Λ (µ(p, q) is denoted by µp,q), satisfies the following
conditions:

(i) µp,q(t) = 1Λ(t) iff p = q,
(ii) µp,q(t) = µq,p(t),
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(iii) µp,q(t) = 1Λ(t) and µq,r(s) = 1Λ(s), then µp,r(s+ t) = 1Λ(s+ t),

for every p, q, r ∈ X and t, s ≥ 0. In this case, µp,q is called a modified
intuitionistic probabilistic metric on X.

Lemma 1.4 ([5]). Consider the set L∗ and the operation ≤L∗ defined
by

L∗ = {(a1, a2) : a1, a2 ∈ [0, 1] and a1 + a2 ≤ 1},
(a1, a2) ≤L∗ (b1, b2) iff a1 ≤ b1 and b2 ≤ a2, for every (a1, a2), (b1, b2) ∈
L∗. Then (L∗,≤L∗) is a complete lattice.

We denote its units by 0L∗ = (0, 0) and 1L∗ = (1, 0). For zi =
(xi, yi) ∈ L∗, i = 1, . . . , n, if ci ∈ [0, 1] such that

n∑
i=1

ci = 1,

then it is easy to see that

c1(x1, y1) + · · ·+ cn(xn, yn) =
n∑

i=1

ci(xi, yi)

=

(
n∑

i=1

cixi,

n∑
i=1

ciyi

)
∈ L∗.

Definition 1.5. A continuous triangular norm (abbreviated, continuous
t-norm) is a binary operation T : [0, 1] × [0, 1] → [0, 1] which is contin-
uous, commutative, associative and nondecreasing with respect to each
variable and has 1 as the unit element i.e., T (1, x) = x, for all x ∈ [0, 1].
Basic examples of continuous t-norms are TM (a, b) = min{a, b} and
TP (a, b) = ab.

Definition 1.6. A binary operation S : [0, 1] × [0, 1] → [0, 1] is a con-
tinuous triangular conorm (abbreviated, continuous t-conorm) if S is
continuous commutative, associative and nondecreasing with respect to
each variable and has 0 as the unit element i.e., S(0, x) = x, for all
x ∈ [0, 1].

Let T be a t-norm. If T ∗ : [0, 1]×[0, 1] → [0, 1] is defined by T ∗(a, b) =
1− T (1− a, 1− b), for all a, b ∈ [0, 1], then T ∗ is a t-conorm (t-conorm
of T). Two typical examples of continuous t-conorms are SM (a, b) =
max{a, b} and SL(a, b) = min{1, a+ b}.

Using the lattice (L∗,≤L∗), these definitions can straightforwardly be
extended.

Definition 1.7. A triangular norm (briefly, t-norm) on L∗ is a mapping
T : L∗×L∗ → L∗ satisfying the following conditions for all a, b, c, d ∈ L∗:
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(i) T (a, 1L∗) = a,
(ii) T (a, b) = T (b, a),
(iii) T (a, T (b, c)) = T (T (a, b), c),
(iv) if a ≤L∗ c and b ≤L∗ d, then T (a, b) ≤L∗ T (c, d).

Definition 1.8. A continuous t-norm T on L∗ is called continuous t-
representable iff there exist a continuous t-norm T and a continuous
t-conorm S on [0, 1] such that, for all a = (a1, a2), b = (b1, b2) ∈ L∗,

T (a, b) = (T (a1, b1) , S (a2, b2)) .

Now, we define a sequence {T n} recursively by T 1 = T and

T n(x1, . . . , xn+1) = T (T n−1(x1, . . . , xn), xn+1),

for n ≥ 2 and xi ∈ L∗.

Definition 1.9. A negator on L∗ is any decreasing mapping N : L∗ →
L∗ satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x, for
all x ∈ L∗, then N is called an involutive negator. A negator on [0, 1]
is a decreasing mapping N : [0, 1] → [0, 1] satisfying N(0) = 1 and
N(1) = 0. The standard negator on [0, 1] defined as (for all x ∈ [0, 1])
Ns(x) = 1− x.

Definition 1.10. A modified intuitionistic Menger PM space (briefly,
IMPM space) is a triplet (X,µ, T ), where (X,µ) is an IPM space and
T is a continuous t-representable on L∗ such that for all x, y, z ∈ X and
t, s > 0:

µx,y (t+ s) ≥L∗ T (µx,z (t) , µz,y (s)) .

Remark 1.11. In an IMPM space (X,µ, T ), if µx,y = (Fx,y, Lx,y) such
that Fx,y ∈ ∆+ and Lx,y ∈ Γ+, since Fx,y(.) is nondecreasing and Lx,y(.)
is nonincreasing for all x, y ∈ X, then by the partial order on Λ, µx,y(.)
is a nondecreasing function on Λ for all x, y ∈ X.

Example 1.12. Let (X, d) be a metric space. For all a = (a1, a2) and
b = (b1, b2) ∈ L∗, denote T (a, b) = (min{a1, b1},max{a2, b2}) and for all
x, y ∈ X, let Fx,y and Lx,y be (d.d.f.) and (n.d.f.) respectively defined
as follows:

µx,y(t) = (Fx,y(t), Lx,y(t))

=

(
ptn

ptn + qd(x, y)
,

qd(x, y)

ptn + qd(x, y)

)
,

for all p, q, n, t ∈ (0,∞). With a simple calculation, we see that (X,µ, T )
is an IMPM space.
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Example 1.13. Let X = N and T (a, b) = (max{0, a1 + b1 − 1}, a2 +
b2 − a2b2) for all a = (a1, a2) and b = (b1, b2) ∈ L∗ and for all x, y ∈ X,
let Fx,y and Lx,y be (d.d.f.) and (n.d.f.), respectively defined as follows:

µx,y(t) = (Fx,y (t) , Lx,y (t))

=


(
x

y
,
y − x

y

)
x ≤ y,(

y

x
,
x− y

x

)
y ≤ x,

for all t > 0. Then it is easy to see that (X,µ, T ) is an IMPM space.

Remark 1.14. Every probabilistic Menger space (X,F, T ) is an IMPM
space of the form (X,µ, T ) such that T = (T, S) and µ = (F,L) where
S is the associated t-conorm, i.e., S(a, b) = 1 − T (1 − a, 1 − b) for any
a, b ∈ [0, 1] and Lx,y = 1− Fx,y for any x, y ∈ X.

Definition 1.15. Let (X,µ, T ) be an IMPM space. For t > 0, define
the open ball B(x, r, t) with center x ∈ X and radius r ∈ (0, 1) is defined
as

B(x, r, t) = {y ∈ X : µx,y(t) >L∗ (Ns(r), r)},
Where Ns is the standard negator.

Similar to the proof of [22], we obtain the following result:

Proposition 1.16. Let (X,µ, T ) be an IMPM space. Define τµ = {A ⊆
X : for each x ∈ A, there exist t > 0 and r ∈ (0, 1) such thatB(x, r, t) ⊆
A}. Then τµ is a Hausdorff topology on X.

Proposition 1.17. Every open ball B(x, r, t) is an open set.

Proof. Similar to the proof of Theorem 3.2 of [22], the desired result can
be archived. □
Remark 1.18. From Proposition 1.17 and Proposition 1.16, every mod-
ified intuitionistic probabilistic metric µ on X generates a topology
τµ on X which has as a bases of the family of open sets of the form
{B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}.
Definition 1.19. A sequence (xn) in an IMPM space (X,µ, T ) is said
to be convergent to x in X, if µxn,x(t) → 1L∗ , whenever n → ∞ for
every t > 0.

Definition 1.20. A sequence (xn) in an IMPM space (X,µ, T ) is called
a Cauchy sequence if for each 0 < ϵ < 1 and t > 0, there exists a positive
integer n0 ∈ N such that

µxn,xm(t) >L∗ (Ns(ϵ), ϵ) ,

for each m,n ≥ n0, Where Ns is the standard negator.
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An IMPM space is said to be complete if and only if every Cauchy
sequence is convergent.

Proposition 1.21. The limit of a convergent sequence in an IMPM
space (X,µ, T ) is unique.

Proof. This is trivial. □

Definition 1.22. Let f and g be two self-mappings from an IMPM
space (X,µ, T ). Then the pair (f, g) is said to be weakly compatible if
they commute at their coincidence points, that is, fx = gx implies that
fgx = gfx.

Definition 1.23. Let f and g be two self-mappings from an IMPM
space (X,µ, T ). Then the pair (f, g) is said to be compatible if

lim
n→∞

µfgxn,gfxn(t) = 1L∗ , ∀ t > 0,

whenever (xn) is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = x ∈ X.

Definition 1.24. Let f and g be two self-mappings from an IMPM
space (X,µ, T ). Then the pair (f, g) is said to be non-compatible if
there exists at least one sequence (xn) in X such that

lim
n→∞

fxn = lim
n→∞

gxn = x ∈ X,

but

lim
n→∞

µfgxn,gfxn(t) ̸= 1L∗ ,

or non-existent for at least one t > 0.

Proposition 1.25. If self-mappings f and g of an IMPM space (X,µ, T )
are compatible, then they are weakly compatible.

Proof. Let f, g : X → X be compatible mappings and x ∈ X be a
coincidence point of f and g. Let xn = x, then since f and g are
compatible mappings, we have lim

n→∞
fxn = fx = gx = lim

n→∞
gxn and for

all t > 0,

lim
n→∞

µfgx,gfx(t) = lim
n→∞

µfgxn,gfxn(t) = 1L∗ ,

so fgx = gfx, therefore f and g are weakly compatible. □

The converse is not true as seen in the following example.

Example 1.26. Let (X,µ, T ) be an IMPM space, where X = [0, 2] and

µx,y(t) =

(
t

t+ |x− y|
,

|x− y|
t+ |x− y|

)
,
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for all t > 0 and x, y ∈ X. Denote T (a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2) and b = (b1, b2) ∈ L∗. Define self-maps f and g on X
as follows:

f(x) =

{
2 0 ≤ x ≤ 1,
x

2
1 < x ≤ 2,

, g(x) =

2 x = 1,
x+ 3

5
x ̸= 1.

Then we have g1 = f1 = 2 and g2 = f2 = 1. Also gf1 = fg1 = 1
and gf2 = fg2 = 2. Thus the pair (f, g) is weakly compatible. But if(
xn = 2− 1

2n

)
, then fxn = 1 − 1

4n
, gxn = 1 − 1

10n
. Thus fxn → 1,

gxn → 1. Further gfxn =
4

5
− 1

20n
, fgxn = 2. Now

lim
n→∞

µfgxn,gfxn(t) = lim
n→∞

µ
2,
4

5
−

1

20n

(t)

=

 t

t+
6

5

,

6

5

t+
6

5


<L∗ 1L∗ ,

for any t > 0. Hence the pair (f, g) is not compatible.

Definition 1.27. Let f and g be two self-mappings of an IMPM space
(X,µ, T ). Then the pair (f, g) satisfy the property (E.A.) if there exists
a sequence (xn) in X such that

lim
n→∞

µfxn,u(t) = lim
n→∞

µgxn,u(t) = 1L∗ ,

for some u ∈ X and for all t > 0.

Example 1.28. Let (X,µ, T ) be the IMPM space, where X = R, for all
a = (a1, a2) and b = (b1, b2) ∈ L∗, T (a, b) = (min{a1, b1},max{a2, b2})
and

µx,y(t) =

(
t

t+ |x− y|
,

|x− y|
t+ |x− y|

)
,

for every x, y ∈ X and t > 0. Define self-maps f and g on X as follows:

fx = 2x+ 1, gx = x+ 2.

Consider the sequence

(
xn = 1 +

1

n

)
, n = 1, 2, . . . . Thus we have

lim
n→∞

µfxn,3(t) = lim
n→∞

µgxn,3(t) = 1L∗ ,

for every t > 0. Then f and g satisfy the property (E.A.).
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In the next example, we show that there do exist pairs of mappings
which do not share the property (E.A.).

Example 1.29. Let (X,µ, T ) be the IMPM space, where T (a, b) =

(min{a1, b1},max{a2, b2}) for all a = (a1, a2) and b = (b1, b2) ∈ L∗, X = R
and

µx,y(t) =

(
t

t+ |x− y|
,

|x− y|
t+ |x− y|

)
,

for every x, y ∈ X and t > 0. Define self-maps f and g on X as
fx = x+ 1, gx = x+ 2. If there exists a sequence (xn) such that

lim
n→∞

µfxn,u(t) = lim
n→∞

µgxn,u(t) = 1L∗ ,

for some u ∈ X, then

lim
n→∞

µfxn,u(t) = lim
n→∞

µxn+1,u(t) = lim
n→∞

µxn,u−1(t) = 1L∗ ,

and

lim
n→∞

µgxn,u(t) = lim
n→∞

µxn+2,u(t) = lim
n→∞

µxn,u−2(t) = 1L∗ .

So, xn → u − 1 and xn → u − 2 which is a contradiction by the
Proposition 1.21. Hence f and g do not satisfy the property (E.A.).

Definition 1.30. Two pairs (f, S) and (g, T ) of self-mappings of an
IMPM space (X,µ, T ) are said to satisfy the common property (E.A.)
if there exist two sequences (xn) and (yn) in X such that

lim
n→∞

µfxn,u(t) = lim
n→∞

µSxn,u(t) = lim
n→∞

µgyn,u(t) = lim
n→∞

µTyn,u(t) = 1L∗ ,

for some u ∈ X and for all t > 0.

Definition 1.31. Two finite families of self-mappings (fi)
m
i=1 and (gk)

n
k=1

of a set X are said to be pairwise commuting if:

(i) fifj = fjfi i, j ∈ {1, 2, . . . ,m},
(ii) gkgl = glgk k, l ∈ {1, 2, . . . , n},
(iii) figk = gkfi i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, ..., n}.

Let Ψ be the set of all continuous functions F : L∗6 → L∗, satisfying
the following conditions:

(F1) if F (u, v, u, v, v, u) ≥L∗ 0L∗ or F (u, v, v, u, u, v) ≥L∗ 0L∗ for all
u, v >L∗ (0, 1), then u ≥L∗ v,

(F2) F (u, u, 1L∗ , 1L∗ , u, u) ≥L∗ 0L∗ implies that u ≥L∗ 1L∗ ,

for all u = (u1, u2), v = (v1, v2) ∈ L∗.

Example 1.32. Define

F (t1, t2, t3, t4, t5, t6) = 15t1 − 13t2 + 5t3 − 7t4 + t5 − t6,

then F ∈ Ψ.
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Example 1.33. Define

F (t1, t2, t3, t4, t5, t6) = t1 −
1

2
t2 −

5

6
t3 +

1

3
t4 − t5 + t6,

then F ∈ Ψ.

Example 1.34. Define

F (t1, t2, t3, t4, t5, t6) = 18t1 − 16t2 + 8t3 − 10t4 + t5 − t6,

then F ∈ Ψ.

Proposition 1.35. [4, 2.5.3] If (X,F, T ) is a probabilistic Menger space
and T is continuous, then probabilistic distance function F is a lower
semi continuous function of points, i.e. for every fixed point t > 0, if
xn → x and yn → y, then

lim inf
n→∞

Fxn,yn(t) = Fx,y(t).

2. Main Results

The following lemma is proved to interrelate the property (E.A.) with
common the property (E.A.) in the setting of IMPM spaces.

Lemma 2.1. Let A,B, S and T be four self-mappings of an IMPM space
(X,µ, T ) satisfying the following conditions:

(i) the pair (A,S) (or (B, T )) satisfies the property (E.A.),
(ii) A(X) ⊂ T (X), (or B(X) ⊂ S(X)),
(iii) B(yn) converges for every sequence (yn) in X whenever T (yn)

converges (or A(xn) converges for every sequence (xn) in X
whenever S(xn) converges),

(iv) for all x, y ∈ X, s > 0, F ∈ Ψ,

F (µAx,By(s), µSx,Ty(s), µTy,By(s), µSx,Ax(s),(2.1)

µAx,Ty(s), µSx,By(s)) ≥L∗ 0L∗ .

Then the pairs (A,S) and (B, T ) share the common property (E.A.).

Proof. Since the pair (A,S) enjoys the property (E.A.), there exists a
sequence (xn) in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z, for some z ∈ X.

Let

µx,y(s) = (Fx,y(s), Lx,y(s)),

where F ∈ ∆+ and L ∈ Γ+. Now, by Proposition 1.35, we have

lim inf
n→∞

FAxn,Sxn(s) = 1.
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Since

lim sup
n→∞

FAxn,Sxn(s) ≥ lim inf
n→∞

FAxn,Sxn(s) = 1,

then

lim
n→∞

FAxn,Sxn(s) = 1.

Let G = 1− L, then G ∈ ∆+ and in the same way we can show that

lim
n→∞

GAxn,Sxn(s) = 1.

Hence

lim
n→∞

LAxn,Sxn(s) = 0,

therefore

lim
n→∞

µAxn,Sxn(s) = (1, 0) = 1L∗ .

Since A(X) ⊂ T (X), so for the sequence (xn) there exists a sequence
(yn) in X such that Axn = Tyn. We also have

lim
n→∞

µAxn,T yn(s) = (1, 0) = 1L∗ = lim
n→∞

µTyn,Sxn(s).

Now by the triangle inequality for µ and arbitrary ϵ > 0 we have

µAxn,Byn(s) ≥ T (µAxn,T yn (ϵ) , µTyn,Byn (s− ϵ)) .(2.2)

Now by taking the lim inf as n → ∞, we have

lim inf
n→∞

µAxn,Byn(s) ≥ T
(
lim inf
n→∞

µAxn,Tyn (ϵ) , lim inf
n→∞

µTyn,Byn (s− ϵ)
)

= T
(
1L∗ , lim inf

n→∞
µTyn,Byn (s− ϵ)

)
= lim inf

n→∞
µTyn,Byn (s− ϵ) ,

since ϵ is arbitrary, so we have

lim inf
n→∞

µAxn,Byn(s) ≥ lim inf
n→∞

µTyn,Byn(s).

If we change the roles of Axn and Tyn, we get

lim inf
n→∞

µAxn,Byn(s) ≤ lim inf
n→∞

µTyn,Byn(s),

therefore,

lim inf
n→∞

µAxn,Byn(s) = lim inf
n→∞

µTyn,Byn(s).

Similarly, we can show that

lim inf
n→∞

µSxn,Byn(s) = lim inf
n→∞

µTyn,Byn(s).



42 H. SHAYANPOUR AND A. NEMATIZADEH

Instead of lim inf, if we take the lim sup of (2.2), then by the same
method we can show that

lim sup
n→∞

µAxn,Byn(s) = lim sup
n→∞

µSxn,Byn(s)

= lim sup
n→∞

µTyn,Byn(s).

Now, we show that

lim
n→∞

µByn,z(s) = 1L∗ .

By using inequality (2.1), we have

F (µAxn,Byn(s), µSxn,Tyn(s), µTyn,Byn(s), µSxn,Axn(s)(2.3)

, µAxn,Tyn(s), µSxn,Byn(s)) ≥L∗ 0L∗ .

Now, by taking the lim inf as n → ∞, we get

F ( lim inf
n→∞

µAxn,Byn(s), lim inf
n→∞

µSxn,Tyn(s), lim inf
n→∞

µTyn,Byn(s),

lim inf
n→∞

µSxn,Axn(s), lim inf
n→∞

µAxn,Tyn(s), lim inf
n→∞

µSxn,Byn(s)) ≥L∗ 0L∗ .

So, we have

F (lim inf
n→∞

µAxn,Byn(s), 1L∗ , lim inf
n→∞

µAxn,Byn(s), 1L∗

, 1L∗ , lim inf
n→∞

µAxn,Byn(s)) ≥L∗ 0L∗ .

Since

lim inf
n→∞

µAxn,Byn(s) = lim inf
n→∞

µAxn,Byn(s)

= lim inf
n→∞

µAxn,Byn(s),

then, by using (F1), we get

lim inf
n→∞

µAxn,Byn(s) ≥L∗ 1L∗ ,

for all s > 0, so that lim inf
n→∞

FAxn,Byn(s) = 1. Let T = (T, S) where T is

a continuous t-norm and S is a continuous t-conorm. Now, by triangle
inequality for F and arbitrary ϵ > 0, we have

FAxn,Byn(s) ≥ T (FAxn,z(ϵ), Fz,Byn(s− ϵ)).

Now, by taking the lim inf as n → ∞, we get

lim inf
n→∞

FAxn,Byn(s) ≥ T
(
lim inf
n→∞

FAxn,z(ϵ), lim inf
n→∞

Fz,Byn (s− ϵ)
)

= T
(
1, lim inf

n→∞
Fz,Byn (s− ϵ)

)
= lim inf

n→∞
Fz,Byn (s− ϵ) ,
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since ϵ is arbitrary, so we have

lim inf
n→∞

FAxn,Byn(s) ≥ lim inf
n→∞

Fz,Byn(s).

If we change the roles of Axn and z, we get

lim inf
n→∞

FAxn,Byn(s) ≤ lim inf
n→∞

Fz,Byn(s),

therefore,
lim inf
n→∞

Fz,Byn(s) = lim inf
n→∞

FAxn,Byn(s) = 1.

Since
lim sup
n→∞

Fz,Byn(s) ≥ lim inf
n→∞

Fz,Byn(s) = 1,

then
lim
n→∞

Fz,Byn(s) = 1.

Since

lim sup
n→∞

µAxn,Byn(s) = lim sup
n→∞

µSxn,Byn(s)

= lim sup
n→∞

µTyn,Byn(s),

if we take the lim sup of (2.3) and use (F1), then we get

lim sup
n→∞

µAxn,Byn(s) ≥L∗ 1L∗ ,

for all s > 0, so we get

lim sup
n→∞

LAxn,Byn(s) ≤ 0.

Since
lim inf
n→∞

LAxn,Byn(s) ≤ lim sup
n→∞

LAxn,Byn(s) ≤ 0,

and L ∈ Γ+, then we have

lim
n→∞

LAxn,Byn(s) = 0.

Now, by triangle inequality for L, in the same way we can show that

lim
n→∞

Lz,Byn(s) = lim
n→∞

LAxn,Byn(s),

so
lim
n→∞

Lz,Byn(s) = 0,

therefore
lim
n→∞

µz,Byn(s) = (1, 0) = 1L∗ ,

then
lim
n→∞

Byn = z.

By the same method we can show that

lim
n→∞

Tyn = z,
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which shows that the pairs (A,S) and (B, T ) share the common property
(E.A.). □

Our next result is a common fixed point theorem via the common
property (E.A.).

Theorem 2.2. Let A,B, S and T be four self-mappings of an IMPM
space (X,µ, T ) satisfying the condition (2.1). Suppose that

(i) the pairs (A,S) and (B, T ) share the common property (E.A.),
(ii) S(X) and T (X) are closed subsets of X.

Then the pair (A,S) as well as (B, T ) have a coincidence point. More-
over, A,B, S and T have a unique common fixed point in X provided
that both the pairs (A,S) and (B, T ) are weakly compatible.

Proof. Since the pairs (A,S) and (B, T ) share the common property
(E.A.), there exist two sequences (xn) and (yn) in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z, for some z ∈ X.

Since S(X) is a closed subset of X, therefore

lim
n→∞

Sxn = z ∈ S(X).

Also, there exists a point u ∈ X such that Su = z. By the proof of the
above lemma, we can show that

lim
n→∞

µSu,Tyn(s) = lim
n→∞

µSu,Byn(s) = lim
n→∞

µByn,Tyn(s) = 1L∗ ,

and
lim inf
n→∞

µAu,Tyn(s) = lim inf
n→∞

µAu,Byn(s) = µAu,Su(s).

Now we show that µAu,Su(s) = 1L∗ . By using inequality (2.1), we have

F (µAu,Byn(s), µSu,Tyn(s), µTyn,Byn(s), µSu,Au(s)

, µAu,Tyn(s), µSu,Byn(s)) ≥L∗ 0L∗ ,

now taking the lim inf as n → ∞ , we get

F
(
lim inf
n→∞

µAu,Byn(s), 1L∗ , 1L∗ , µAu,Su(s), lim inf
n→∞

µAu,Tyn(s), 1L∗

)
≥L∗ 0L∗ .

Using (F1), we get

lim inf
n→∞

µAu,Byn(s) ≥L∗ 1L∗ , for all s > 0,

so that
lim inf
n→∞

µAu,Byn(s) = 1L∗ .

Therefore µAu,Su(s) = 1L∗ , that is Au = z = Su. Thus, u is a coin-
cidence point of the pair (A,S). Since T (X) is a closed subset of X,
therefore

lim
n→∞

Tyn = z ∈ T (X).
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So, there exists a point w ∈ X such that Tw = z. By the same method
we can show that w is a coincidence point of the pair (B, T ).

Since Au = z = Su and the pair (A,S) is weakly compatible, therefore
Az = ASu = SAu = Sz. Now we need to show that z is a common
fixed point of the pair (A,S), so we show that µAz,z(s) = 1L∗ . By using
inequality (2.1), we have

F (µAz,Bw(s), µSz,Tw(s), µTw,Bw(s), µSz,Az(s), µAz,Tw(s), µSz,Bw(s)) ≥L∗ 0L∗ ,

implying thereby

F (µAz,z(s), µAz,z(s), 1L∗ , 1L∗ , µAz,z(s), µAz,z(s)) ≥L∗ 0L∗ .

Using (F2), we get µAz,z(s) ≥L∗ 1L∗ , for all s > 0, so that µAz,z(s) =
1L∗ , that is Az = z which shows that z is a common fixed point of the
pair (A,S).
Also Bw = z = Tw and the pair (B, T ) is weakly compatible, therefore
Bz = BTw = TBw = Tz. By the same method we can show that z is a
common fixed point of the pair (B, T ). Uniqueness of the common fixed
point is an easy consequence of inequality (2.1) (in view of condition
(F2)). □
Corollary 2.3. The conclusions of Theorem 2.2 remain true if the con-
dition (ii) of Theorem 2.2 is replaced by the following condition:

(ii’) A(X) ⊂ T (X) and B(X) ⊂ S(X).

Proof. Since the pairs (A,S) and (B, T ) share the common property
(E.A.), there exist two sequences (xn) and (yn) in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z, for some z ∈ X.

Since B(X) ⊂ S(X) and lim
n→∞

Byn = z, therefore z ∈ B(X) ⊂ S(X).

So, there exists a point u ∈ X such that Su = z. The rest of the proof
can be completed on the lines of Theorem 2.2. □
Corollary 2.4. The conclusions of Theorem 2.2 remain true if the con-
ditions (ii) is replaced by the following condition:
(ii”) A(X) and B(X) are closed subsets of X, A(X) ⊂ T (X) and
B(X) ⊂ S(X).

Proof. Since A(X) and B(X) are closed subsets of X, so B(X) =

B(X) ⊆ S(X) and A(X) = A(X) ⊆ T (X) and by Corollary 2.3 the
result follows. □
Theorem 2.5. Let A,B, S and T be four self-mappings of an IMPM
space (X,µ, T ) satisfying the condition (2.1). Suppose that

(i) the pair (A,S) (or (B, T )) satisfies the property (E.A.),
(ii) A(X) ⊂ T (X) (or B(X) ⊂ S(X)),
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(iii) B(yn) converges for every sequence yn in X whenever T (yn)
converges (or A(xn) converges for every sequence xn in X when-
ever S(xn) converges),

(iv) S(X) (or T (X)) be a closed subset of X.

Then the pair (A,S) as well as (B, T ) have a coincidence point. More-
over, A,B, S and T have a unique common fixed point in X provided
that the pairs (A,S) and (B, T ) are weakly compatible.

Proof. By Lemma 2.1 and by Theorem 2.2 the result follows. □

By choosing A,B, S, and T suitably, one can deduce corollaries for
a pair as well as trio of mappings. As a simple we drive the following
corollary for a pair of mappings.

Corollary 2.6. Let A and S be two self-mappings of an IMPM space
(X,µ, T ) satisfying the following conditions:

(i) the pair (A,S) satisfies the property (E.A.) and A(xn) converges
for every sequence (xn) in X whenever S(xn) converges,

(ii) S(X) is a closed subset of X,
(iii) for all x, y ∈ X, s > 0 and F ∈ Ψ,

F (µAx,Ay(s), µSx,Sy(s), µSy,Ay(s), µSx,Ax(s), µAx,Sy(s), µAy,Sx(s)) ≥L∗ 0L∗ .

Then the pair (A,S) has a coincidence point. Moreover, A and S have a
unique common fixed point in X provided that the pair (A,S) is weakly
compatible.

As an application of Theorem 2.2, we can have the following result
for four finite families of self-mappings. While proving this result, we
utilize Definition 1.30 which is a natural extension of the commutativity
condition to two finite families of mappings.

Theorem 2.7. Let {A1, A2, . . . , Am}, {B1, B2, . . . , Bp}, {S1, S2, . . . , Sn}
and {T1, T2, . . . , Tq} be four finite families of self-mappings of an IMPM
space (X,µ, T ) with A = A1A2 . . . Am, B = B1B2 . . . Bp, S = S1S2 . . . Sn

and T = T1T2 . . . Tq satisfying inequality (2.1). Suppose that

(i) the pairs (A,S) and (B, T ) share the common property (E.A.),
(ii) S(X) and T (X) are closed subsets of X,
(iii) the pairs of families (Ai, Sk) and (Br, Tt) commute pairwise,

where i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, r ∈ {1, . . . , p} and t ∈
{1, . . . , q}.

Then Ai, Sk, Br and Tt have a unique common fixed point.

Proof. Since for all i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, r ∈ {1, . . . , p} and
t ∈ {1, . . . , q}, AiSk = SkAi and BrTt = TtBr, hence AS = SA and
BT = TB, therefore by Theorem 2.2, A,B, S and T have a unique
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common fixed point z in X. Now we show that z is a fixed point of
Ai, Br, Sk, Tt. To prove this, we have

A(Aiz) = (A1A2 . . . Am)(Aiz)

= (A1A2 . . . Am−1)(AmAiz)

= (A1A2 . . . Am−1)(AiAmz)

= (A1A2 . . . Am − 2)(Am−1AiAmz)

= (A1A2 . . . Am−2)(AiAm−1Amz)

...

= A1Ai(A2A3 . . . Amz)

= AiA1A2A3 . . . Amz

= AiAz

= Aiz.

This shows that Aiz is a fixed point of A and so Aiz = z. By a simillar
way, we can show that Aiz and Srz are fixed points of (A,S) and Bkz
and Ttz are fixed points of (B, T ). Now by uniqueness of the common
fixed point we have z = Aiz = Srz = Bkz = Ttz, so z is a common fixed
point of Ai, Br, Sk, Tt. □

By setting A1 = A2 = · · · = Am = A,B1 = B2 = · · · = Bp = B,S1 =
S2 = · · · = Sn = S and T1 = T2 = · · · = Tq = T in Theorem 2.7, we
deduce the following:

Corollary 2.8. Let A,B, S and T be four self-mappings of an IMPM
space (X,µ, T ) such that the pairs (Am, Sn) and (Bp, T q) share the com-
mon property (E.A.) and also satisfy the condition (for all x, y ∈ X, s >
0, F ∈ Ψ and for all m,n, p, q ≥ 2),

F (µAmx,Bpy(s), µSnx,T qy(s),µT qy,Bpy(s), µSnx,Amx(s),(2.4)

µAmx,T qy(s), µSnx,Bpy(s)) ≥L∗ 0L∗ .

where m,n, p and q are positive integers. If Sn(X) and T q(X) are closed
subsets of X, then A,B, S and T have a unique common fixed point
provided that AS = SA and BT = TB.

Example 2.9. Let X = [0, 1]. For all a = (a1, a2) and b = (b1, b2) ∈ L∗,
denote T (a, b) = (min{a1, b1},max{a2, b2}) and let

µx,y(t) =

(
t

t+ |x− y|
,

|x− y|
t+ |x− y|

)
,
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for all x, y ∈ X and t > 0. By a simple calculation we see that (X,µ, T )
is an IMPM space. Define A,S,B and T by Ax = Bx = 1 and

S(x) = T (x) =

{
1, x ∈ [0, 1] ∩Q,
1
3 , x /∈ [0, 1] ∩Q.

Also define F (t1, t2, t3, t4, t5, t6) = 15t1 − 13t2 + 5t3 − 7t4 + t5 − t6. For
all m,n, p, q ≥ 2 and x, y ∈ X and t > 0, the inequality (2.4) holds. The
remaining requirements of Corollary 2.8 can be easily verified and 1 is
the unique common fixed point of A,S,B and T .
However, this implicit function F does not hold for the maps A,S,B
and T in respect of Theorem 2.2. Otherwise, with x = 0 and y = 1√

2
,

we get

F (µAx,By(st),µSx,Ty(t), µTy,By(t), µSx,Ax(t), µAx,Ty(t), µSx,By(t))

=15(1, 0)− 13

(
t

t+ 2
3

,
2
3

t+ 2
3

)
+ 5

(
t

t+ 2
3

,
2
3

t+ 2
3

)
− 7(1, 0)

+

(
t

t+ 2
3

,
2
3

t+ 2
3

)
− (1, 0)

=

(
14
3

t+ 2
3

,
−14
3

t+ 2
3

)
/∈ L∗.

Thus Corollary 2.8 is a partial generalization of Theorem 2.2 and can
be situationally useful.
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