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C-class Functions and Common Fixed Point Theorems
Satisfying ¢-weakly Contractive Conditions

Arslan Hojat Ansari', Tatjana Dosenovié®>*, Stojan Radenovié?®,

and Jeong Sheok Ume?

ABSTRACT. In this paper, we discuss and extend some recent com-
mon fixed point results established by using p—weakly contractive
mappings. A very important step in the development of the fixed
point theory was given by A.H. Ansari by the introduction of a
C—class function. Using C—class functions, we generalize some
known fixed point results. This type of functions is a very impor-
tant class of functions which contains almost all known type con-
traction starting from 1922. year, respectively from famous Banach
contraction principle. Three common fixed point theorems for four
mappings are presented. The obtained results generalizes several
existing ones in literature.We finally propose three open problems.

1. INTRODUCTION AND PRELIMINARIES

Start of development of the theory of fixed points is tied to the end of
the 19th century. Method of successive approximations is used in order
to prove the existence and uniqueness of the solution, at the beginning
in differential and integral equations. This branch of nonlinear analysis
has been developed through various classes of spaces, such as topological
spaces, metric spaces, probabilistic metric spaces, fuzzy metric spaces
and the others. Achievements in the development of the theory of fixed
points are applied in various sciences, such as optimization, economics
and approximation theory.
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One of the most important and most applicable results in the theory
of fixed points is certainly the Banach contraction principle. The above-
mentioned principle motivates scientists around the world to prove differ-
ent generalizations, both in metric spaces, and also, in the spaces which
represent a generalization of metric spaces. Nice generalization is given
in the Rhoades paper [25], where the notion of p-weakly contractive
mappings is introduced (for more details see: [I-3, 511, [3-17, 19-24)).

Theorem 1.1 ([25]). Let (X, d) be a complete metric space, and let
T:X — X be a mapping such that
d(vaTy) éd(l’,y) —gO(d(l',y)), fOT’ all x,yeX,

where ¢ : RT™ — R is continuous and nondecreasing, and o(t) = 0 if
and only if t = 0. Then T has a unique fized point.

In the literature, there are many generalizations of Rhoades results
(for more details see [1, B, 60, I3, 5, 06, [9-23]).

Motivated by these results, we consider the following contraction con-

ditions for the four self-mappings A, B, S and T defined on the metric
space (X,d) :

(1.1) d(Tz, Sy) < p2 (Mi(z,y)), forallz,yeX,

(1.2) @1 (d(T,Sy)) < w1 (Mi(z,y))—p2 (M(z,y)), forallzye X,
where i € {1,2,3}, o1 € Oy, 2 € Dy,

(1.3)
M (z,y) = max {d(A:L’, By),d(Axz,Tx),d(By, Sy),

. d(Az, Sy)d(Tz, By)
3 [d(Az, Sy) + d(T'z, By)] , 1+ d(Az,By)

d(Az,Tx)d(By, Sy) 1+ d(Axz,Sy)+ d(Tz, By)
1+ d(Az,By) 1+ d(Az,Tz)+ d(By, Sy)

X d(Ax,T:c)},
(1.4)
Ms(z,y) = max {d(A:L’, By),d(Axz,Tx),d(By, Sy),

1+ d(Ax,Tx)

1
5 [d(Axa Sy) + d(Tx, By)] ) m

d(By, Sy),

1 + d(By, Sy)

1+ d(Az, By) d(Ax,Tx),
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1+ d(Az, Sy) + d(Tx, By)
d(B
1+ d(Az, Tz) + d(By, Sy) "B

(1.5) M;s(z,y) = max {d(AZL’, By),d(Ax,Tx),d(By, Sy),

[d(Ax, Sy) 4+ d(Tz, By)] },

N |

while,
®; = {o: Rt — RT: ¢ is continuous and nondecreasing and
©(t) = 0 if and only if ¢t = 0},
and
Py = {p:RT - RT: ¢ is lower semi-continuous and
©(t) = 0 if and only if ¢ = 0}.

Motivated by already some known results, our contribution in this
paper is a generalization of the contractive conditions given in the paper
by Liu et.al. [I5], by introduction of the C-class functions.

In 2014, the concept of C-class functions (see Definition [2) was
introduced by A.H. Ansari. This is a very important class of functions

which contains almost all known types of contractions, starting from
1922, i.e. of Banach contractions.

Definition 1.2 ([I8]). A mapping H : [0,00)? — R is called a C-class
function if it is continuous and satisfies the following axioms, for all
u,v € [0,00) :

(hl) H(u,v) <

(h2) H(u,v) = u implies that either u = 0 or v = 0.

We denote C-class functions as C.

Example 1.3 ([I8]). The following functions H : [0,00)> — R are
elements of the class C :

H(u,v) =u—wv;

H(u,v) = Au, 0<A<1;

H(ua U) = UB(U), B [0,00) — [07 1);

H(u,v) = u — ¢ (u), where ¢ : [0,00) — [0,00) is a continuous
function such that ¢(u) = 0 if and only if u = 0.

Below, the things that we need for the proof of our main results are
listed.

Definition 1.4 ([I2, [4]). A pair of self mappings f and g in a nonempty
set X is weakly compatible if f (g (t)) = g (f (t)) whenever f (t) =g (t).
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Lemma 1.5 ([I0, 23]). Let (X,d) be a metric space and let {y,} be a
sequence in X such that d(yn, Yn+1) s nonincreasing and d(Yn, Yn+1) —
0 as n — oco. If {yan} is not a Cauchy sequence, then there exist € > 0
and sequences {my} and {ny} of positive integers such that the following
sequences tend to € when k — oco:

d (mek,ank) 7d (y?mk b y2nk+1> b d (mek—h y2nk) I d (Z/ka—h y2nk+1) i
d (y2mk+1,y2nk+1) P
2. CoMMON FIXED POINT RESULTS

Our main results are as follows.

Theorem 2.1. Let A, B,S and T be self mappings in a metric space
(X, d) such that

(2.1) {A, T} and {B, S} are weakly compatible;

(2.2) T(X) C B(X) and S(X) C A(X);

(2.3) one of A(X), B(X),S(X) and T(X) is complete;

(24)  d(Tz,Sy) < HMy(z,y), o(Mi(z,y))), for all z,y € X,

where H € C , ¢ € &1 and M is defined by (I=3). Then A,B,S and T
have a unique common fixed point in X .

Proof. Let xy € X. Using (E4), we conclude that there exist two se-

quences {yn Inen and {z, }nen, in X such that
(2.5)
Yont1 = Bwopy1 = Twon,  Yoni2 := ATony2 = Sxopq1, foralln eN.

If yx, = ygs1 for some k € N, then it is not difficult to obtain that {y,}
is a Cauchy sequence. Therefore, let d,, = d(yn, yn+1) > 0 for all n € N.
We will show that §,, is nonincreasing as well as that

(2.6) lim &, = 0.

n—oo
Using (24) and (23), we get that
(2.7) d2p = d(T'w2n, Ston—1) < H(Mi(z2n, T2n—1), (M1 (z2n, T2n-1)),

for all n € N, where
M (22n, x2n—1) = max {d (Azoy, Bxop—1) ,d (Azoy, Tron),

d(Br2p—1,ST20-1),

1
3 [d (Azan, Ston—1) + d(Tx2n, Bray—1)],
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d(Al’gn, S:Egn_l)d(T:Egn, B:Egn_l)

1+ d(A:L’Qn, Bmgn_l) ’
d(Axon, Txon)d(Bxan—1,5%2m—1)

1+ d(Al’Qn, B:L’Qn_l) ’
1+ d(AJZQn, ngn_l) + d(szn, Bl‘2n—1)
1 + d(AJJQn, Txgn) + d(B:EQn_l, S:L‘Qn_l)

X d(Axgn, TJIQ,—L) }

= max {d(y2m Yon—1)s A(Y2n, Y2n+1), A(Y2n—1, Y2n),

£ (0, y) - g, v,
d(y2n, yon)d(Y2n+1, Y2n—1)
1+ d(y2n, Y2n—1)
d(Y2n; Y2n+1)d(Y2n—1, Yon)
L+ d(y2n, Y2n—1)
L+ d(y2n, Y2n) + d(Yoni1, Yon—1)

1+ d(y2n, y2n+1) + d(y2n717 an)

d(yon, y2n+1)}

)

1 62n62n71
- 5 — 75 76 — )7d 9 — 70)7
max{ 2n-1, 920, 0201, 5 (Y2n+1, Y2n—1) T —

1+ d(y2n+17y2n—1)6
14 6op + Ogn1 "
= max{d2,_1,02,}, forallneN.

Suppose now that dg,,—1 < d2y,, for some m € N. Using (E77), ¢ € &y
and by properties of H, we conclude that

dom = H (d2m, ¢(62m)) -
Hence it follows that d2,, = 0, and this leads to a contradiction. Hence
don < Oon—1 = My (wopn, x2n—1), for allm € N.
Similarly we conclude that
(2.8) don+1 < 0o, = My (xop, von+1), forall n €N,
which together with (E28) ensures
Ont1 < 0p, forallnmeN.

This means that the sequence {J, },en is nonincreasing and bounded.
Consequently there exists r > 0 with lim,, .o 6, = r > 0. It follows from
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(273) and () that

r = lim d9,
n—oo

< lim H (M (z2n, T2n—1) , ¢ (M1 (z2n, T2n-1)))

n—oo

—H ( lim d,-1, lim go(égn_l))

= H (r,(r)).

Therefore, 7 = 0 or ¢(r) = 0. Hence r = 0 and so (Z8) holds.

Next we will prove that {y,}nen is a Cauchy sequence. Because of
(@), it is sufficient to verify that {ya, }nen is a Cauchy sequence. Sup-
pose that {yan}nen is not a Cauchy sequence. Then, by Lemma I3
there exist ¢ > 0 and two subsequences {Yop ) }ken and {yon() }ren of
{yon tnen, with 2n(k) > 2m(k) > 2k such that d (me(k),an(k)) > g,
d (y2m(k), ygn(k)_g) < g, and the following four sequences

(2.9)
d (an(k)7 y2m(k)) ) d(me(k)7 y2n(k)—1)’ d(yZm(k)+17 y2n(k))7 (me(k)—‘rlv y2n(k)—1)7

tend to €, when k — oo.
Note that (I=3) and (29) yield

(2.10)
My (Zom(k)s Ton(k)—1) = Max {d(Ame(k)a Bropky-1), A(AZom k) T2mk))s
d(Brap(k)y—1, STon(k)—1),

%[d(Ame(k)v ST (k)—1)

+ d(Tx 2 k), Bxon(k)—1)],

d(AZ o (k) STan(k)—1) AT Tom(k)s BTonk)—1)
1+ d(A:L‘Qm(k), Bm?n(k)—l)

A(AZ o (k) TT2m (k) ) A(BTon (k) —15 STon(k)—1)
1+ d(A:L‘Qm(k), B.Z‘Qn(k),l)

L+ d(Azom k), STon(k)—1) + AT Tomk), Brank)—1)

9

9

L+ d(Azom (k) TTomk)) + d(BT2n(k)—1, STan(k)—1)

X d( A2 (k) T1'2m(k))}
= max {d(me(k;), Yon(k)—1)s A Y2m(k)> Y2m (k)+1)>

1
d(Yan(k)—15 Y2n(k))s i[d(yZm(k:)a Yon(k))
+ d(Yom (k) +15 Yon(k)-1)]5
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A(Yom (k) Y2n (k) ) A(Y2m (k) +15 Y2n(k)—1)
L+ d(Yom (k) Yan(k)—1)
d(me(k)7 me(k)+1)d(Z/2n(k)—1, y2n(k))
L+ d(Yom(k)» Yon(k)—1)

L+ d(Yam (k) Y2n(k)) + AY2m ) +1, Y2n(r)—1)
L+ d(Yamk)» Yomm)+1) + AY2ne) =1, Y2n(k))

)

)

X d(Y2m (k) y2m(k)+1)}

1 2
— maX{E,O,O,(E—FE),E,O,O} =¢c as k — oo.
2 1+¢

Then,
d (Txamy,, STon,—1) = d (Yamy+1,Y2n,,) — &,
and therefore
e< H(gple)) <e,

so H(e,p(e)) =ecie,e=00r¢(e)=0.

In both cases this is a contradiction. Hence {y,}nen is a Cauchy
sequence.

Assume that A(X) is complete. Observe that {ya,}nen is a Cauchy
sequence in A(X). Consequently there exists (z, v) € A(X) x X with

limy, 00 Yo, = 2z = Av. It is easy to see
(2.11)
z= lim y, = lim Tz, = lim Bxoyy1 = lim Szo,_1 = lim Axo,.
n—00 n—00 n—00 n—00 n—00

Suppose that Tv # z. Note that (I=3) and (E8) imply

M (v, 2op4+1) = max {d(Av, Bxopt1),d(Av, Tv), d(Bxan+1, STon+1),

%[d(Av, Sxon+1) + d(Tv, Brapi1)],
d(AU, Sx2n+1)d(Tv, B:an_H)

1+ d(Av, Bxont1) ’
d(AU, T’U)d(BCCQ,—H_l, S:CQ,H_l)

1+ d(Av, Bxani1) ’
1+ d(Av, Sxont1) + d(Tv, Bxons1)
1+ d(AU, TU) + d(BLEQn_H, Sx2n+1)

d(AU,Tv)}

—  max {d(Av, 2),d(Av, Tv),d(z, 2), %[d(Av, z) +d(Tv, z)],

d(Av,2)d(Tv,z) d(Av,Tv)d(z, z)
1+d(Av,z) = 1+d(Av,z)




24 A.H. ANSARI, T. DOSENOVIC, S. RADENOVIC, AND J.S. UME

1+ d(Av, z) + d(Tv, z)
1+ d(Av,Tv) + d(z,2)

d(Av, Tv)}

1
= max {0, d(z,Tv),0, id(TU, 2),0,0,d(z, Tv)}
=d(Tv,z) as n — oo,
which together with (22) give

d(TUa Z) = h_>m d(TUa y2n+2)
= lim d(TU,S.’L‘Qn+1)

n—o0

< lim H(Mi(v, r2n41), o(M1(v, T2n41)))

n—o0

= H( lim Ml(U,QZQn_H), lim @(Ml(v,$2n+1)))
n—00 n—00

< H(d(Tv,z), o(d(Tv, 2))),

so, d(Twv,z) = 0 or ¢(d(Tv,z)) = 0. Hence we get a contradiction.
Hence Tv = z. It follows from (22) that there exists a point w € X
with z = Bw = Twv. Suppose that Sw # z. In the light of (I=33) and
(21), we deduce

M (z9p, w) = max {d(Aaczn, Bw), d(Azap, T'zay,), d(Bw, Sw),

%[d(Aazgn, Sw) + d(Twsn, Bw)),

d(Azay, Sw)d(Txay,, Bw)

1+ d(AxQR, Bw) ’
d(Azay, Txay,)d(Bw, Sw)

1+ d(A.%'Qn, Bw) ’
1+ d(Azap, Sw) + d(Tx2,, Bw)
1+ d(Azay, Txoy) + d(Bw, Sw)

d(AfL?na Tx2n)}

—  max {d(z, Bw),d(z, z),d(Bw, Sw), %[d(z, Sw) + d(z, Bw)],

d(z,Sw)d(z, Bw) d(z,z)d(Bw,Sw)
1+d(z,Bw) > 1+d(z,Bw) '’

1+d(z,Sw) 4 d(z, Bw)

T d(z,2) + d(Bw Sw) Z)}

1
= max {0, 0,d(z, Sw), id(z, Sw), 0,0, 0}

=d(z,Sw) as n — oo,
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which together with (2) yield
d(z,Sw) = li_>m d(yan+1, Sw)
= lim d(Txap, Sw)
n—oo

< lim H(Mi(xon, w), o( M) (z2n,w)))

n—oo
= H( ILm M (xon, w), ILm o(Mi(z2n,w)))
< H(d(z, Sw), p(d(z, Sw))),
so, d(z,Sw) = 0 or ¢(d(z,Sw)) = 0. We get a contradiction and hence

Sw = z. Thus (2Z0) means Az = ATv = TAv =Tz and Bz = BSw =
SBw = Sz. Suppose that Tz # Sz. It follows from (24) that

M;i(z,z) = max {d(Az, Bz),d(Az,Tz),d(Bz,Sz),

%[d(Az, Sz)+d(Tz, Bz)],

d(Az,S2)d(Tz,Bz) d(Az,Tz)d(Bz,Sz)
14+d(Az,Bz) ~ 1+d(Az Bz)
1+ d(Az,Sz)+d(Tz, Bz)
d(A
1+ d(Az,Tz) + d(Bz,Sz) (42,T)

= max {d(Tz, Sz),0,0, %[d(Tz, Sz)+d(Tz,Sz)],
d*(Tz, Sz
i)
=d(Tz,5z)
and
d(Tz,8z) < H (Mi(z,2), p(Mi(z,2)))
= H(d(Tz,5z2),¢(d(Tz,Sz))),

which is a contradiction and hence Tz = Sz.
Suppose that Tz # z. It follows from (IZ3) that

M;(z,w) = max {d(Az, Bw),d(Az,Tz),d(Bw, Sw),

d(Az, Sw)d(Tz, Bw)
1+ d(Az, Bw)

Sld(A2, Sw) + d(Tz, Bu)],

d(Az,Tz)d(Bw, Sw)
1+d(Az, Bw) ’
1+ d(Az, Sw) + d(Tz, Bw)
Az, T
1+ d(Az,Tz) + d(Bw, Sw) d(4zTz)
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1 d*(Tz, z)
— - PR S
max{d(lz,z),(),(),2[d(12,z)+d(12,z)], 1 ( z,z)’o’o}

=d(Tz,z),
which together with (24), imply
d(Tz,z) =d(Tz, Sw)
< H(Mi(z,w), p(Mi(z,w)))
= H(d(T'z, 2),(d(T'z, 2))),
so, d(Tz,z) = 0 or p(d(Tz,z)) = 0. So, we get a contradiction and
hence Tz = z. Therefore, z is a common fixed point of 4, B, S and T.

Suppose that A, B,S and T have another common fixed point u €
X \ {z}. Using (I33) and (24), we have

M (u, z) = max {d(Au, Bz),d(Au,Tu),d(Bz, Sz),
d(Au, Sz)d(Tu, Bz)

%[d(Au, Sz) + d(Tu, Bz))],

1+ d(Au,Bz)
d(Au,Tu)d(Bz, Sz)
1+ d(Au, Bz)
1+ d(Au, Sz) + d(Tu, Bz)
Au, T
1+ d(Au, Tu) £ d(Bz, 82) " AW TY)

2(u, 2
= max {d(u7 2),0,0, %[d(u, 2) + d(u, 2)], 1d+(d(’u,)z)’ 0, 0}

=d(u, z),
and

d(u,z) = d(Tu, Sz)
< H(Ml(u? Z)?@(Ml(uvz)))
= H(d(u7 Z)?@(d(u7 Z)))a

so, d(u,z) = 0 or ¢(d(u,z)) = 0. Hence d(u,z) = 0 which is a con-
tradiction. So, z is a unique common fixed point of A, B, S and T in
X.

Similarly, we conclude that A, B, .S and T have a unique common fixed
point in X if one of B(X), S(X) or T(X) is complete. This completes
the proof. O

Similar to the proof of Theorem B, we have the following results
whose proofs are omitted.
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Theorem 2.2. Let A, B,S and T be self mappings in a metric space

(X, d) satisfying (Z3)-(23) and
(2.12) d(Tz,Sy) < H(Ma(x,y), o(Ma(z,y))), foralzxz,yec X,

where H € C , ¢ € ®1 and My is defined by (TA). Then A,B,S and T
have a unique common fixed point in X .

Theorem 2.3. Let A, B,S and T be self mappings in a metric space
(X, d) satisfying (273)-(23) and
(213) d(Tl’,Sy) gH(Mg(x,y),cp(Mg(x,y))), fOT all xayer

where H € C , ¢ € ®1 and Ms is defined by (3). Then A, B,S and T

have a unique common fized point in X.

Remark 2.4. If in Theorem 3 put H(u,v) = Au, 0 < A< 1, T =95
and A = B = Ix (identity mapping of X), we obtain the Ciri¢ [d]
generalized contraction.

Remark 2.5. Let us to mention also an important recent paper [I0]
which showed that some of the results involving two functions ¢, ¥ can
be reduced to the case of one function say 1. It was also shown in [1]]
that conditions on functions ¢ and ¢ can be weaker.

Remark 2.6. It is worth to mention that in all previously results, we
can use also as well as the function ¢ € ®; with both hand. For example,
Theorem P71 became

e Let A, B, S and T be self mappings in a metric space (X, d) such that
{A,T},{B,S} are weakly compatible, T (X) C B(X), S(X) C A(X)
as well as one of A(X),B(X),S(X) and T (X) is complete and for all
z,ye X

where H € C,v,p € ®; and M; is denoted by (I=3). This new result is
according to [M0] equivalent to Theorem P

We finally pose the following problems:
Problem 2.7. Does Theorem 1 hold for ¢ € ®57

Problem 2.8. Does Theorem P hold if instead of (Z22) we suppose
that there exist the sequences {x,},{yn} C X such that (Z3) hold?

Problem 2.9. Does Theorem P hold for ¢ € ®5 as well as if instead
of (22) we suppose that there exist the sequences {x,},{y,} C X such
that (23) hold?
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3. CONCLUSION

Hence, putting any function from the class C one can obtain some
new results from the fixed point theory which generalize several known
results from literature. Putting in all previously results H (u,v) = u—wv,
we obtain genuine generalizations of all results in [1], [2], [6], [13], [I5],
[25]. This namely shows that, using any C-class function H one can
(from already known examples) obtain new ones. Therefore, our new
approach in this paper is significant and very useful for researchers who
involved in the fixed point theory. Also, Lemma 2.1. from [I[1] give
us much shorter as well as nicer proofs than ones in literature. For
other details regarding generalizations in the theory of fixed point for
contractive conditions see also [I7].
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