Sahand Communications in Mathematical Analysis (SCMA) Vol. 11, No. 1 (2018), 13-23
http://scma.maragheh.ac.iy

DOI: 10.22130/scma.2018.72221.284

On Polar Cones and Differentiability in Reflexive Banach
Spaces
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ABSTRACT. Let X be a Banach space, C C X be a closed convex
set included in a well-based cone K, and also let ¢ be the support
function which is defined on C. In this note, we first study the ex-
istence of a bounded base for the cone K, then using the obtained
results, we find some geometric conditions for the set C, so that
int(domoc) # 0. The latter is a primary condition for subdifferen-
tiability of the support function oc. Eventually, we study Gateaux
differentiability of support function o on two sets, the polar cone
of K and int(domoc).

1. INTRODUCTION

1.1. A short survay on convex cones. The study of convex cones
and the geometric structure of their bases in a Banach space has many
applications in the theory of optimization, economics and engineering
which motivate us to study the subject. We recall [3, B, §, [1] and the
long list of their references for more details.

Throughout this paper, (X, ||.||) is a Banach space (unless it is spec-
ified) whose dual X* is endowed with the dual norm, denoted also by
||.]|. As usual, having a nonempty subset C' of X, define:

CT:={z*ec X*:2%(x) >0,Va € C},
C™ = —C’+,
ct.=ctnc .
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Let K be a cone in a Banach space X. We say that K is pointed if
KN—K = {0} and it is solid if the interior of K, say intK, is nonempty.
A convex subset B of X is called a base for K if 0 is not included in
the closure of B, say clB, and coneB := {tz : x € B,t > 0} = K.
Also, a proper convex cone K is called well-based if K has a bounded
base. It is known that a cone with a base is necessarily convex and
pointed. Also, if X is a real separable normed space, every nontrivial
closed pointed convex cone has a base [8, Corollary 3.39]. Note that
the separability assumption is essential and cannot be dropped. Krein-
Rutman [8], gave an interesting example which shows that the assertion
fails in a nonseparable space.
Let K be a cone. The polar of K is defined by

K% :={z* e X*:2*(x) > 0,Yz € K\{0}}.

There is a direct connection between existence of a base for a cone K
and the structure of K#. In fact, a convex cone K has a base if and
only if K# # (). Indeed, let K# # (). For every z* € K%, the set By :=
{z € K : 2*(z) = 1} defines a base on the cone K. Conversely, from the
Hahn-Banach theorem, we could separate B from 0 by z* € K#.

Note that the polar cone K# could be empty. For example, we con-
sider the space B([a, b]) of all functions on the real interval [a, b] endowed
with the usual ” sup” norm and the standard positive cone:

K ={f € Bla,b] : f(t) > 0,Vt € [a,bl]},
then K# is empty. See [8] and references therein for more details.

Remark 1.1. If a closed convex cone K is pointed, then int K+ = int K#
and we have the followings:

(a1) The polar cone K# need not necessarily be the interior of K.
For example, if K is the nonnegative orthant of the sequence
space Iy, 1 < p < oo, then intK* = () but K# is nonempty.

(az) The interior of K could be nonempty. Let o € (0,1) and
a® = (a,a?,...) € Iy with

For any 0 <e < (1 — a2)%, set
K :={z€ly:a% > ¢l|a®||.||2]|}
Then int K+ # 0.

Part (a2) in Remark I is equivalent to the existence of a bounded
base for the cone K as stated in the following theorem.
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Theorem 1.2 ([8] Theorem 2.2). Let K be a nontrivial closed convex
cone in X. Then K is well-based if and only if K# is solid.

In fact, B~ is a bounded base for the closed convex cone K if and
only if 2* € intK#.

Definition 1.3. Let X be a Banach space, X* be its dual and let K be
a cone in X (see [6] and references therein).

(b1) K is said to be acute if there is an open half space
Ly ={x € X :2%(z) > 0},

with 2* € X*, a* # 0, such that ¢!K C L.~ U {0}.

(b2) For z* € K~ and ¢ > 0, set v(z*,0) := {x € K : z*(z) > 0}.
Recall that the cone K satisfies property (m) (weak property
(7)), if there exists * € K~ such that for all 6 > 0 the set
v(x*, ) is relatively weakly compact (bounded).

(bs) A closed convex cone K satisfies angle property if there exist
z* € X*\{0} and 0 < ¢ <1 such that

K c{x e K :z"(x) <cellz*||.||z]|}.

(bg) A closed convex cone K is said to be a locally weakly compact
cone, if for every bounded set A in K, A is relatively weakly
compact.

A cone satisfying the (weak) property (7) is pointed and one can re-
place: ‘for all 6 > 0’ by ‘there exists § > 0’. Cesari and Suryanarrayana
showed that there exist infinite dimensional spaces including cones, sat-
isfying angle property. It is of interest to know that in a Banach space
X, a closed convex cone with angle property is acute and hence pointed.
Also, a closed convex cone K with property (7) is acute (and hence
pointed). Furthermore, when X is a reflexive Banach space, angle prop-
erty implies property (7). However, Cesari and Suryanarayana showed
that in the Hilbert space l2, we can find acute cones which niether have
property (7) nor the angle property. See [, B, 1] and references therein,
for more details.

Theorem 1.4. Let X be a Banach space and K be a closed convex cone.
Then,

K has angle property = K is acute = K is pointed.
Also, when X is reflexive
K satisfies property (r) = K is acute = K is pointed.

In 1978, Cesari and Suryanarrayana illustrated an example to show
that acuteness (hence either angel property or property (7)) is not
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satisfied for a half-space. In 1994, Han investigated the relations be-
tween cones satisfying angle property and solid cones. The investigation
showed that the two classes of cones are dual in some senses. Also,
they found a relation between solid cones, acute cones, cones satisfying
(weak) property (m) and cones having bounded bases. See, [B, ] and
references therein.

Theorem 1.5. Let K be a nontrivial closed convexr cone in a Banach
space X. Then:

(c1) K has angle property if and only if K has a closed bounded base
if and only if K~ is solid if and only if K satisfies the weak
property ().

(co) K= (K ) is solid if and only if K (K~ ) is well-based.

(c3) K is acute if and only if K has a closed convex base.

(ca) K has property () if and only if K is relatively weakly compact
with weak property ().

From (b4) of Definition 23, every convex cone K in a reflexive Banach
space is relatively weakly compact. This remark together with (¢1) and
(cq) of Theorem [H, imply that in reflexive Banach spaces, a closed
convex cone K has angle property if and only if it has property (7).
Hence, in reflexive Banach spaces, K~ is solid if and only if K satisfies
angle property [6, Theorem 1.2].

1.2. Convex functions. Let U C X be an open subset of a Banach
space X and f : U — R be a real valued function. We say that f is
Gateaux differentiable at x € U, if for every h € X,

p . flx+th) — f(x)
/(@) (h) = lim t

)

exists in R and is a linear continuous function in h (ie f'(z) € X*).
The functional f (x) is then called the Gateaux derivative or Gateaux
differential of f at x.

Recall that domf of a function f: X — R := RU {—o00, +oc} is the
set {x € X : f(z) < oo} and f is proper if domf # () and f(z) # —o0
for each x € X. The subdifferential of a proper function f at x € domf
(f(z) # —o0) is defined by

Of () :={2" € X*: 2%(y —x) < fly) — f(2), Vy € X},
and df(z) = 0 for z € X\domf. Of course, the domain of 9f is
domdf = {z € X : 0f(z) # 0}(C domf).
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Let C' be a nonempty subset of the Banach space X. The support
function of C' is an extended real valued function on X* defined by

oo X* =R, oc(x*) :==supz”.
C

It is well-known that for a nonempty subset C' of the Banach space X,
we have o = Oconve = o = T cl(conv ) where conv C is the convex
hull of C'. So we could assume that C' is a nonempty, closed and convex
set (unless otherwise is specified). Moreover, when the Banach space X
is reflexive, we have

(1.1) doc(z*) = {u e O : 2*(u) = oc(z*)),

and doc(0) = C ([m, 4]).

Rest of the paper is organized as follows. In Section B, we find some
results related to the solidness of polar cones, specially the polar of
recession cone of a closed convex set C', and we apply the nonemptiness
of int(domo¢). In Section B, assuming that C is a subset of a closed
well-based convex cone K, we study Gateaux differentiability of oo on

both K# and int(domo¢).

2. CONDITIONS IN WHICH int(domo¢) # ()

In Theorem [, it is shown that a nontrivial closed convex cone is
well-based if and only if its polar is solid. Here, we show that in reflexive
Banach spaces, solidness of the polar cone is equivalent to the existence
of a weakly compact base for the cone.

Theorem 2.1. Let X be a reflexive Banach space and K be a closed
convez cone. Then K7 is solid if and only if K has a weakly compact
base By=, for some x* € K.

Proof. Let int K# # (. By Theorem [2, for each z* € intK#, the set
B,+ is a bounded base for the cone K and by [0, Theorem 4], K# =
int K#. We show that for each 2* € K#, the base B, is weakly compact.
By the contrary, let x5 € K # where By is not weakly compact. By
James theorem [@, Theorem 3.130], there exists y* € X* such that

y*(w) > inf{y"(b) : b € Byz}, Va € By
Let [ := inf{y*(b) : b € Byz}. When [ > 0, define 27 := % — xo (for
I = 0, define 27 := y* and for I < 0, define z} := xo — %-). So, we
have 27 € K#\intK#. Indeed, if 2} € intK#, there exists 7 > 0 such

that 27 + rBx« C K7 (Bx-« is the unit ball of X*). Therefore, for each
ke K, we get
y* (k)

zi(k) = == — 25(k) = r[lK]].
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From definition of [, there exists (b,) C By so that y*(b,) — [. So, for
each n € N, r||b,|| > 0 and b,, — 0. But this makes a contradition since
0 ¢ Byr. Therefore, 27 € K #\int K# which contradicts K# = intK#.

So, for each z* € K#, the base B, is weakly compact. O

Recall that recession cone of a subset C' of a Banach space X is defined
by
Coo ={weX:z+tweCVt>0,VzeC}.

It is clear that if C' is closed, then C4 is closed, and if C is closed
and convex, we have Co, = ()50 t(C — a), where a € C. Note that in
finite dimensional Banach spaces, the closed convex set C' is bounded if
and only if Cs, = {0}. But, the latter is not correct for infinite case in
general. For example, let X = 1lp and C = {z € Iy : |z;] < 1Vi € N}
It is clear that X is a reflexive Banach space and C' is a closed convex
unbounded subset of X. We show that C, = {0}. It is obvious that
0 € Cy. Let v € Cy where v # 0. Then ¢+ tv € C for each t > 0.
Hence, for a sufficiently large ¢, we may have |¢; +tv;| > 1 for some i € N
which is a contradicts with definition of C.

Theorem 2.2. Let X be a reflexive Banach space and K be a closed
convex cone. Then the following statements are established.
(h1) int(domog) # 0 if and only if K# is solid.
(h2) int(domoc) # 0 where C is a closed convex subset of K with
Cuo # {0},

Proof. For (hy), since K, = K, the “if” part is a consequence of (hy).
For the other part, let K# be solid. Then for each (z,) C K with
||zn|| = o0 and (||zn ||~ 2n) = u, one has u # 0. Otherwise, let u = 0.
Since the polar of K is solid, each sequence of K which weakly converges
to zero is norm convergence. Hence, ||z,|| 12, is norm convergence to
zero, which is a contradiction. To prove (hs), it is sufficies to piont out
that when C C K, we have domog < domoc and K# C C.. O

Let C be a nonempty closed subset of the Banach space X including
a half-line. Define P := cl(conv () and the set-valued function W¢ :
X*— X by
We(z*) :={ue C:z"(u) = oc(z™)}
= CNaoc(z").
The following theorem is holds.
Theorem 2.3. Let X be a reflexive Banach space and C' be a nonempty

closed subset of X which is included in a closed convex well-based cone.
Then the following assertions hold:
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(i1) int(domo¢) = intP~ and o¢ is continuous on int P~ .

(i2) Ooc(x*) is nonempty and weakly compact for every x* € int P~ .
Also, doc(x*) is singleton if and only if oc is Gateauz differ-
entiable at x*

(i3) domW¢e C domoc C P~. Also, We(z™) is nonempty and w-
compact for every z* € intP~.

(i4) int(domoc) = int(domoe)\{0} = int(domoc)\ (lingC)*.

Proof. (i1) Tt is clear that
cl(domo¢) = (cl(convC)), = P,

(for convex sets, the weak and norm closure coincide). Theorem
22 implies that int(domoc) # 0. So, from [H, Lemma 12],
convexity of domo¢ implies that

int(domo¢) = int[cl(domo¢)].

Hence, int(domo¢) = intP~. Also, from [2, Proposition 4.1.5],
the support function o¢ is continuous on z* € domo¢ if and
only if z* € int(domo().

(i2) The subdifferential of a proper convex function is nonempty,
convex and w-compact at any point of continuity from its do-
main [0, Theorem 7.13]. The second allegation comes from
Smulyan lemma [@, Theorem 7.17].

(i3) Fix up € C and z* € int P~. Define

Co:={ueC:z"(u) > z"(uo)}

It is clear that Cy is nonempty, closed and o¢,(z*) = oc(z*).
We show that Cjy is bounded. By the contrary, assume that
there exists (z,,) C Cp with ||z,|| = co. We may assume that
Tp||2n ||t weakly converges to v. Note that from (g;) of Theo-
rem 23, we have v # 0 and v € P\{0}. Since z*(zy) > 2*(uo)
for every n € N, we get the contradiction 0 > z*(v) > 0. Hence,
Cy is bounded, and so weakly compact. Now, by James theorem
[@, Theorem 3.130], z* attains its supermum on Cj at v € Cj
and oc(x*) = 2*(v). It follows that v € We(z*). So, We(z*)
is nonempty for each z* € intP~. Moreover, the fact that the
intersection of a closed set and a weakly compact set is weakly
compact completes the proof.
(i4) This is a consequence of (i1) and definitions of int P~ and (lingC)*.
O

Remark 2.4. Note that doc(0) = C and o¢ is Gateaux differentiable
on 0 if and only if C' is singleton. Also, z* € X* is constant on C if and
only if z* belongs to (lingC)*. Hence, when C is not singleton, o¢ is
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not Gateaux differentiable on (lingC)+. But, according to (i4), under
our assumptions, int(domoc) N (lingC)* = () and we can speak about
differentiability of o¢ on int(domoc).

Corollary 2.5. Let X be a reflexive Banach space and C be a closed
convex set that Coo # {0}. The followings are equivalent:

(q1) CZ% + @ and for every sequence (z,) € C with ||ay|| — oo and
|||ty = u, one has u #0 .

(g92) int(domoe) # 0.

(94) Coo is well-based (CZ is solid).

(g5) there exists x* € K% such that By« is a weakly compact base
for the cone K.

(96) Coo has property (m) (weak-property () ).

(97) Coo has angle property.

3. DIFFERENTIABILITY OF o¢

In this section, let X be a reflexive Banach space and C be a nonempty
closed subset of X which is included in a closed convex well-based cone
K (unless otherwise is stated).

Theorem 3.1. The support function oc is Gateaux differentiable on
int(domo¢) if and only if

Vz,y € doc(int(domoe)), z # y,VA € (0,1) :
(3.1) Az + (1 — ANy ¢ doc(int(domoc)).

Proof. Let B hold. Consider z* € int(domo¢) where o¢ is not Gateaux
differentiable on z*. From (i2) of Theorem I3, o¢ is subdifferentiable
on int(domo¢) and there exist x,y € doc with = # y. Therefore, the
convexity of do¢ implies that Az + (1 — \)y € doc(z*) for all X € (0,1),
which is a contradiction.

Now, let o be Gateaux differentiable on int(domo¢). By the con-
trary, let xg,yo € Odoc(int(domoc)), where xg # yo and A9 € (0,1)
such that z := Aoz + (1 — Ao)yo € Jdoc(int(domoc)). So, there exists
z* € (int(domo¢)) such that z € doc(«*) which implies that

z¥(z) = oc(z*) > Mz (z0) + (1 — Xo)z™ (y0) = 2" (2).

It means that z*(z9) = x*(yo) = oc(z*) and xo,y0 € doc(z*). But,
by (i2) of Theorem P23, doc(x*) is singleton for each x* € int(domoc),
which is a contradiction. g

Theorem 3.2. o¢ is Gateaux differentiable on int(domoc) if
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(3.2) Ve,ye Cyx#y,VAe (0,1): e+ (1 — Ny € H,
where H := C' + (Cs\{0}).

Proof. First, we show that do¢(int(domo¢)) is a subset of C\H. Let-
ting y € Odoc(int(domoc)) N H (by the contrary), there exist y* €
int(domo¢), v € C and v € Cx\{0} such that y € Jdoc(y*) and
Yy =u+v. So,

oc(y") > y*(u) +y*(v) = y*(y) = oc(y"),

which is not possible. Now, it is easy to show that (B2) implies the
following condition:

(3.3) Ve,y € C\H,x #y,YA € (0,1) : \x + (1 — \)y ¢ C\H.

In fact, the implications (872) = (823) = (8) hold. Therefore, (B2) and
(B33) together imply that o¢ is Gateaux differentiable on int(domoc).
g

Definition 3.3. Let K be a closed convex pointed cone and C be a
nonempty set in X. The set of Pareto minimal points, S-properly points,
Borwien properly minimal points, and Henig global properly minimal
points of C' with respect to K are shown by,

Min(C,K) ={ueC:CN(u+K)={u}} =C\(C+ (K\{0})),
S — PMin(C,K) :={ue C:3y* € K¥ Vyec Cy*(u) <y*(y)},
Bo— Min(C,K) :={u € C : clcone(C —u)N(—K)={0})},

and

GHe — PMin(C, K) ::{u € C : 4 a proper convex cone P with
K\{0} C intP such that (C' —u) N (—intP) = @},

respectively.

Remark 3.4. Let K be a closed convex well-based cone and C' C K be
closed and convex with C # {0}.

(j1) S — PMin(C,K) = doc(—K#) = U, s 000(—2%).
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(j2) Since C' + K is closed, we get the following results (see [9] for
more details)

S — PMin(C,K) = § — PMin(C + K, K)
=GHe - PMin(C,K)
= Bo— Min(C, K)
C Min(C,K).

Theorem 3.5. o¢ is Gateauz differentiable on — K7 if and only if oo+ i
is Gateauz differentiable on int(domoc ).

Proof. By the assumption, we get Coo C K and (C + K)o = Koo = K.
Moreover, oo+x = 0c + 0 = oc + Lti. Since the space is reflexive, we
have

—K#* =intK~ C domocix = K~ Ndomoc C K- NC =K.

By taking the interior of the both sides, we have int(domoc, ) = — K7
and

(90’0+K[int(d0mac+K)] = 8UC+K(—K#)
=S—-PMin(C+ K,K)
=S —-PMin(C,K)
= Joc(—K7).
So doc is singleton on —K7 if and only if docy is singleton on
int(domoc 4 i) which means that o¢ is Gateaux differentiable on —K#
if and only if ooy i is Gateaux differentiable on int(domocy k). O
Theorem 3.6. ¢ is Gateaux differentiable on —K7¥ if and only if
(3.4) Ve,y € S — PMin(C,K), x # vy,
VA e (0,1): Az + (1 =Ny ¢ S—PMin(C, K).
Proof. By Theorem B, o¢ is Gateaux differentiable on —K# if and only

if ooy Kk is Gateaux differentiable on int(domocy ). Now, one obtains
the result by using Theorem B for int(domoc k). O

Corollary 3.7. (h1) Since S—PMin(C, K) is a subset of Min(C, K),
considering the following condition,
(3.5) Va,y € Min(C,K), x # v,
VYA€ (0,1): A+ (1 =Ny ¢ Min(C,K),
we have the implication T8 = B-4. Hence, B implies that o¢

is differentiable on —K#. Moreover, from the equalities in (j2)
of Remark B4, we could replace S-properly minimal points in
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condition B4, by Borwien properly minimal points and Henig
global properly minimal points of C' with respect to K.

(ha) By taking K := Cu in Theorem I8, we get K# = —int(domo).
So, Theorem B is a consequense of Theorem [Z4.
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