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On Polar Cones and Differentiability in Reflexive Banach

Spaces
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Abstract. Let X be a Banach space, C ⊂ X be a closed convex
set included in a well-based cone K, and also let σC be the support
function which is defined on C. In this note, we first study the ex-
istence of a bounded base for the cone K, then using the obtained
results, we find some geometric conditions for the set C, so that
int(domσC) ̸= ∅. The latter is a primary condition for subdifferen-
tiability of the support function σC . Eventually, we study Gateaux
differentiability of support function σC on two sets, the polar cone
of K and int(domσC).

1. Introduction

1.1. A short survay on convex cones. The study of convex cones
and the geometric structure of their bases in a Banach space has many
applications in the theory of optimization, economics and engineering
which motivate us to study the subject. We recall [3, 6, 5, 11] and the
long list of their references for more details.

Throughout this paper, (X, ||.||) is a Banach space (unless it is spec-
ified) whose dual X∗ is endowed with the dual norm, denoted also by
||.||. As usual, having a nonempty subset C of X, define:

C+ := {x∗ ∈ X∗ : x∗(x) ≥ 0, ∀x ∈ C},
C− := −C+,

C⊥ := C+ ∩ C−.
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Let K be a cone in a Banach space X. We say that K is pointed if
K∩−K = {0} and it is solid if the interior of K, say intK, is nonempty.
A convex subset B of X is called a base for K if 0 is not included in
the closure of B, say clB, and coneB := {tx : x ∈ B, t ≥ 0} = K.
Also, a proper convex cone K is called well-based if K has a bounded
base. It is known that a cone with a base is necessarily convex and
pointed. Also, if X is a real separable normed space, every nontrivial
closed pointed convex cone has a base [8, Corollary 3.39]. Note that
the separability assumption is essential and cannot be dropped. Krein-
Rutman [8], gave an interesting example which shows that the assertion
fails in a nonseparable space.

Let K be a cone. The polar of K is defined by

K# := {x∗ ∈ X∗ : x∗(x) > 0, ∀x ∈ K\{0}} .

There is a direct connection between existence of a base for a cone K
and the structure of K#. In fact, a convex cone K has a base if and
only if K# ̸= ∅. Indeed, let K# ̸= ∅. For every x∗ ∈ K#, the set Bx∗ :=
{x ∈ K : x∗(x) = 1} defines a base on the cone K. Conversely, from the
Hahn-Banach theorem, we could separate B from 0 by x∗ ∈ K#.

Note that the polar cone K# could be empty. For example, we con-
sider the space B([a, b]) of all functions on the real interval [a, b] endowed
with the usual ” sup ” norm and the standard positive cone:

K = {f ∈ B[a, b] : f(t) ≥ 0, ∀t ∈ [a, b]},

then K# is empty. See [8] and references therein for more details.

Remark 1.1. If a closed convex coneK is pointed, then intK+ = intK#

and we have the followings:

(a1) The polar cone K# need not necessarily be the interior of K+.
For example, if K is the nonnegative orthant of the sequence
space lp, 1 < p < ∞, then intK+ = ∅ but K# is nonempty.

(a2) The interior of K+ could be nonempty. Let α ∈ (0, 1) and
aα = (α, α2, . . .) ∈ l2 with

||aα||2 = α2

(1− α2)
.

For any 0 < ε < (1− α2)
1
2 , set

K := {z ∈ l2 : a
αz ≥ ε||aα||.||z||}.

Then intK+ ̸= ∅.

Part (a2) in Remark 1.1 is equivalent to the existence of a bounded
base for the cone K as stated in the following theorem.
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Theorem 1.2 ([3] Theorem 2.2). Let K be a nontrivial closed convex
cone in X. Then K is well-based if and only if K# is solid.

In fact, Bx∗ is a bounded base for the closed convex cone K if and
only if x∗ ∈ intK#.

Definition 1.3. Let X be a Banach space, X∗ be its dual and let K be
a cone in X (see [6] and references therein).

(b1) K is said to be acute if there is an open half space

Lx∗ = {x ∈ X : x∗(x) > 0},
with x∗ ∈ X∗, x∗ ̸= 0, such that clK ⊂ Lx∗ ∪ {0}.

(b2) For x∗ ∈ K− and δ > 0, set v(x∗, δ) := {x ∈ K : x∗(x) ≥ δ}.
Recall that the cone K satisfies property (π) (weak property
(π)), if there exists x∗ ∈ K− such that for all δ > 0 the set
v(x∗, δ) is relatively weakly compact (bounded).

(b3) A closed convex cone K satisfies angle property if there exist
x∗ ∈ X∗\{0} and 0 < ε ≤ 1 such that

K ⊂ {x ∈ K : x∗(x) ≤ ε||x∗||.||x||}.
(b4) A closed convex cone K is said to be a locally weakly compact

cone, if for every bounded set A in K, A is relatively weakly
compact.

A cone satisfying the (weak) property (π) is pointed and one can re-
place: ‘for all δ > 0’ by ‘there exists δ > 0’. Cesari and Suryanarrayana
showed that there exist infinite dimensional spaces including cones, sat-
isfying angle property. It is of interest to know that in a Banach space
X, a closed convex cone with angle property is acute and hence pointed.
Also, a closed convex cone K with property (π) is acute (and hence
pointed). Furthermore, when X is a reflexive Banach space, angle prop-
erty implies property (π). However, Cesari and Suryanarayana showed
that in the Hilbert space l2, we can find acute cones which niether have
property (π) nor the angle property. See [6, 5, 11] and references therein,
for more details.

Theorem 1.4. Let X be a Banach space and K be a closed convex cone.
Then,

K has angle property ⇒ K is acute ⇒ K is pointed.

Also, when X is reflexive

K satisfies property (π) ⇒ K is acute ⇒ K is pointed.

In 1978, Cesari and Suryanarrayana illustrated an example to show
that acuteness (hence either angel property or property (π)) is not
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satisfied for a half-space. In 1994, Han investigated the relations be-
tween cones satisfying angle property and solid cones. The investigation
showed that the two classes of cones are dual in some senses. Also,
they found a relation between solid cones, acute cones, cones satisfying
(weak) property (π) and cones having bounded bases. See, [6, 5] and
references therein.

Theorem 1.5. Let K be a nontrivial closed convex cone in a Banach
space X. Then:

(c1) K has angle property if and only if K has a closed bounded base
if and only if K− is solid if and only if K satisfies the weak
property (π).

(c2) K− (K) is solid if and only if K (K−) is well-based.
(c3) K is acute if and only if K has a closed convex base.
(c4) K has property (π) if and only if K is relatively weakly compact

with weak property (π).

From (b4) of Definition 1.3, every convex cone K in a reflexive Banach
space is relatively weakly compact. This remark together with (c1) and
(c4) of Theorem 1.5, imply that in reflexive Banach spaces, a closed
convex cone K has angle property if and only if it has property (π).
Hence, in reflexive Banach spaces, K− is solid if and only if K satisfies
angle property [6, Theorem 1.2].

1.2. Convex functions. Let U ⊂ X be an open subset of a Banach
space X and f : U → R be a real valued function. We say that f is
Gateaux differentiable at x ∈ U , if for every h ∈ X,

f
′
(x)(h) = lim

t→0

f(x+ th)− f(x)

t
,

exists in R and is a linear continuous function in h (i.e f
′
(x) ∈ X∗).

The functional f
′
(x) is then called the Gateaux derivative or Gateaux

differential of f at x.
Recall that domf of a function f : X → R̄ := R ∪ {−∞,+∞} is the

set {x ∈ X : f(x) < ∞} and f is proper if domf ̸= ∅ and f(x) ̸= −∞
for each x ∈ X. The subdifferential of a proper function f at x ∈ domf
(f(x) ̸= −∞) is defined by

∂f(x) := {x∗ ∈ X∗ : x∗(y − x) ≤ f(y)− f(x),∀y ∈ X},

and ∂f(x) = ∅ for x ∈ X\domf . Of course, the domain of ∂f is

dom∂f = {x ∈ X : ∂f(x) ̸= ∅}(⊂ domf).
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Let C be a nonempty subset of the Banach space X. The support
function of C is an extended real valued function on X∗ defined by

σC : X∗ → R̄, σC(x
∗) := sup

C
x∗.

It is well-known that for a nonempty subset C of the Banach space X,
we have σC = σconvC = σclC = σcl(convC), where convC is the convex
hull of C. So we could assume that C is a nonempty, closed and convex
set (unless otherwise is specified). Moreover, when the Banach space X
is reflexive, we have

(1.1) ∂σC(x
∗) = {u ∈ C : x∗(u) = σC(x

∗)},
and ∂σC(0) = C ([1, 4]).

Rest of the paper is organized as follows. In Section 2, we find some
results related to the solidness of polar cones, specially the polar of
recession cone of a closed convex set C, and we apply the nonemptiness
of int(domσC). In Section 3, assuming that C is a subset of a closed
well-based convex cone K, we study Gateaux differentiability of σC on
both K# and int(domσC).

2. Conditions in which int(domσC) ̸= ∅

In Theorem 1.2, it is shown that a nontrivial closed convex cone is
well-based if and only if its polar is solid. Here, we show that in reflexive
Banach spaces, solidness of the polar cone is equivalent to the existence
of a weakly compact base for the cone.

Theorem 2.1. Let X be a reflexive Banach space and K be a closed
convex cone. Then K# is solid if and only if K has a weakly compact
base Bx∗, for some x∗ ∈ K#.

Proof. Let intK# ̸= ∅. By Theorem 1.2, for each x∗ ∈ intK#, the set
Bx∗ is a bounded base for the cone K and by [10, Theorem 4], K# =
intK#. We show that for each x∗ ∈ K#, the base Bx∗ is weakly compact.
By the contrary, let x∗0 ∈ K# where Bx∗

0
is not weakly compact. By

James theorem [4, Theorem 3.130], there exists y∗ ∈ X∗ such that

y∗(x) > inf{y∗(b) : b ∈ Bx∗
0
}, ∀x ∈ Bx∗

0
.

Let l := inf{y∗(b) : b ∈ Bx∗
0
}. When l > 0, define x∗1 := y∗

l − x0 (for

l = 0, define x∗1 := y∗ and for l < 0, define x∗1 := x0 − y∗

l ). So, we

have x∗1 ∈ K#\intK#. Indeed, if x∗1 ∈ intK#, there exists r > 0 such
that x∗1 + rBX∗ ⊂ K# (BX∗ is the unit ball of X∗). Therefore, for each
k ∈ K, we get

x∗1(k) =
y∗(k)

l
− x∗0(k) ≥ r||k||.
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From definition of l, there exists (bn) ⊂ Bx∗
0
so that y∗(bn) → l. So, for

each n ∈ N, r||bn|| ≥ 0 and bn → 0. But this makes a contradition since
0 /∈ Bx∗

0
. Therefore, x∗1 ∈ K#\intK# which contradicts K# = intK#.

So, for each x∗ ∈ K#, the base Bx∗ is weakly compact. □

Recall that recession cone of a subset C of a Banach spaceX is defined
by

C∞ := {w ∈ X : x+ tw ∈ C, ∀t ≥ 0, ∀x ∈ C}.
It is clear that if C is closed, then C∞ is closed, and if C is closed

and convex, we have C∞ =
∩

t≥0 t(C − a), where a ∈ C. Note that in
finite dimensional Banach spaces, the closed convex set C is bounded if
and only if C∞ = {0}. But, the latter is not correct for infinite case in
general. For example, let X = l2 and C = {x ∈ l2 : |xi| ≤ 1∀i ∈ N}.
It is clear that X is a reflexive Banach space and C is a closed convex
unbounded subset of X. We show that C∞ = {0}. It is obvious that
0 ∈ C∞. Let v ∈ C∞ where v ̸= 0. Then c + tv ∈ C for each t ≥ 0.
Hence, for a sufficiently large t, we may have |ci+tvi| > 1 for some i ∈ N
which is a contradicts with definition of C.

Theorem 2.2. Let X be a reflexive Banach space and K be a closed
convex cone. Then the following statements are established.

(h1) int(domσK) ̸= ∅ if and only if K# is solid.
(h2) int(domσC) ̸= ∅ where C is a closed convex subset of K with

C∞ ̸= {0}.

Proof. For (h1), since K∞ = K, the “if” part is a consequence of (h1).
For the other part, let K# be solid. Then for each (xn) ⊂ K with

||xn|| → ∞ and
(
||xn||−1xn

) w→ u, one has u ̸= 0. Otherwise, let u = 0.
Since the polar of K is solid, each sequence of K which weakly converges
to zero is norm convergence. Hence, ||xn||−1xn is norm convergence to
zero, which is a contradiction. To prove (h2), it is sufficies to piont out
that when C ⊂ K, we have domσK ≤ domσC and K# ⊂ C∞. □

Let C be a nonempty closed subset of the Banach space X including
a half-line. Define P := cl(convC) and the set-valued function WC :
X∗ → X by

WC(x
∗) : = {u ∈ C : x∗(u) = σC(x

∗)}
= C ∩ ∂σC(x

∗).

The following theorem is holds.

Theorem 2.3. Let X be a reflexive Banach space and C be a nonempty
closed subset of X which is included in a closed convex well-based cone.
Then the following assertions hold:
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(i1) int(domσC) = intP− and σC is continuous on intP−.
(i2) ∂σC(x

∗) is nonempty and weakly compact for every x∗ ∈ intP−.
Also, ∂σC(x

∗) is singleton if and only if σC is Gateaux differ-
entiable at x∗

(i3) domWC ⊂ domσC ⊂ P−. Also, WC(x
∗) is nonempty and w-

compact for every x∗ ∈ intP−.
(i4) int(domσC) = int(domσC)\{0} = int(domσC)\(lin0C)⊥.

Proof. (i1) It is clear that

cl(domσC) = (cl(convC))−∞ = P−,

(for convex sets, the weak and norm closure coincide). Theorem
2.2 implies that int(domσC) ̸= ∅. So, from [5, Lemma 12],
convexity of domσC implies that

int(domσC) = int[cl(domσC)].

Hence, int(domσC) = intP−. Also, from [2, Proposition 4.1.5],
the support function σC is continuous on x∗ ∈ domσC if and
only if x∗ ∈ int(domσC).

(i2) The subdifferential of a proper convex function is nonempty,
convex and w-compact at any point of continuity from its do-
main [1, Theorem 7.13]. The second allegation comes from
Smulyan lemma [4, Theorem 7.17].

(i3) Fix u0 ∈ C and x∗ ∈ intP−. Define

C0 := {u ∈ C : x∗(u) ≥ x∗(u0)}.

It is clear that C0 is nonempty, closed and σC0(x
∗) = σC(x

∗).
We show that C0 is bounded. By the contrary, assume that
there exists (xn) ⊂ C0 with ||xn|| → ∞. We may assume that
xn||xn||−1 weakly converges to v. Note that from (g1) of Theo-
rem 2.5, we have v ̸= 0 and v ∈ P\{0}. Since x∗(xn) ≥ x∗(u0)
for every n ∈ N, we get the contradiction 0 > x∗(v) ≥ 0. Hence,
C0 is bounded, and so weakly compact. Now, by James theorem
[4, Theorem 3.130], x∗ attains its supermum on C0 at v ∈ C0

and σC(x
∗) = x∗(v). It follows that v ∈ WC(x

∗). So, WC(x
∗)

is nonempty for each x∗ ∈ intP−. Moreover, the fact that the
intersection of a closed set and a weakly compact set is weakly
compact completes the proof.

(i4) This is a consequence of (i1) and definitions of intP− and (lin0C)⊥.
□

Remark 2.4. Note that ∂σC(0) = C and σC is Gateaux differentiable
on 0 if and only if C is singleton. Also, x∗ ∈ X∗ is constant on C if and
only if x∗ belongs to (lin0C)⊥. Hence, when C is not singleton, σC is
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not Gateaux differentiable on (lin0C)⊥. But, according to (i4), under
our assumptions, int(domσC) ∩ (lin0C)⊥ = ∅ and we can speak about
differentiability of σC on int(domσC).

Corollary 2.5. Let X be a reflexive Banach space and C be a closed
convex set that C∞ ̸= {0}. The followings are equivalent:

(g1) C#
∞ ̸= ∅ and for every sequence (xn) ∈ C with ||xn|| → ∞ and

||xn||−1xn
w→ u, one has u ̸= 0 .

(g2) int(domσC) ̸= ∅.
(g4) C∞ is well-based (C#

∞ is solid).
(g5) there exists x∗ ∈ K# such that Bx∗ is a weakly compact base

for the cone K.
(g6) C∞ has property (π) (weak-property (π)).
(g7) C∞ has angle property.

3. Differentiability of σC

In this section, letX be a reflexive Banach space and C be a nonempty
closed subset of X which is included in a closed convex well-based cone
K (unless otherwise is stated).

Theorem 3.1. The support function σC is Gateaux differentiable on
int(domσC) if and only if

∀x, y ∈ ∂σC(int(domσC)), x ̸= y, ∀λ ∈ (0, 1) :

λx+ (1− λ)y /∈ ∂σC(int(domσC)).(3.1)

Proof. Let 3.1 hold. Consider x∗ ∈ int(domσC) where σC is not Gateaux
differentiable on x∗. From (i2) of Theorem 2.3, σC is subdifferentiable
on int(domσC) and there exist x, y ∈ ∂σC with x ̸= y. Therefore, the
convexity of ∂σC implies that λx+(1−λ)y ∈ ∂σC(x

∗) for all λ ∈ (0, 1),
which is a contradiction.

Now, let σC be Gateaux differentiable on int(domσC). By the con-
trary, let x0, y0 ∈ ∂σC(int(domσC)), where x0 ̸= y0 and λ0 ∈ (0, 1)
such that z := λ0x0 + (1 − λ0)y0 ∈ ∂σC(int(domσC)). So, there exists
x∗ ∈ (int(domσC)) such that z ∈ ∂σC(x

∗) which implies that

x∗(z) = σC(x
∗) ≥ λ0x

∗(x0) + (1− λ0)x
∗(y0) = x∗(z).

It means that x∗(x0) = x∗(y0) = σC(x
∗) and x0, y0 ∈ ∂σC(x

∗). But,
by (i2) of Theorem 2.3, ∂σC(x

∗) is singleton for each x∗ ∈ int(domσC),
which is a contradiction. □

Theorem 3.2. σC is Gateaux differentiable on int(domσC) if
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(3.2) ∀x, y ∈ C, x ̸= y, ∀λ ∈ (0, 1) : λx+ (1− λ)y ∈ H,

where H := C + (C∞\{0}).

Proof. First, we show that ∂σC(int(domσC)) is a subset of C\H. Let-
ting y ∈ ∂σC(int(domσC)) ∩ H (by the contrary), there exist y∗ ∈
int(domσC), u ∈ C and v ∈ C∞\{0} such that y ∈ ∂σC(y

∗) and
y = u+ v. So,

σC(y
∗) > y∗(u) + y∗(v) = y∗(y) = σC(y

∗),

which is not possible. Now, it is easy to show that (3.2) implies the
following condition:

∀x, y ∈ C\H,x ̸= y, ∀λ ∈ (0, 1) : λx+ (1− λ)y /∈ C\H.(3.3)

In fact, the implications (3.2) ⇒ (3.3) ⇒ (3.1) hold. Therefore, (3.2) and
(3.3) together imply that σC is Gateaux differentiable on int(domσC).

□

Definition 3.3. Let K be a closed convex pointed cone and C be a
nonempty set inX. The set of Pareto minimal points, S-properly points,
Borwien properly minimal points, and Henig global properly minimal
points of C with respect to K are shown by,

Min(C,K) := {u ∈ C : C ∩ (u+K) = {u}} = C\(C + (K\{0})),

S − PMin(C,K) := {u ∈ C : ∃y∗ ∈ K#, ∀y ∈ C, y∗(u) ≤ y∗(y)},
Bo−Min(C,K) := {u ∈ C : clcone(C − u) ∩ (−K) = {0})},

and

GHe− PMin(C,K) :=

{
u ∈ C : ∃ a proper convex cone P with

K\{0} ⊂ intP such that (C − u) ∩ (−intP ) = ∅
}
,

respectively.

Remark 3.4. Let K be a closed convex well-based cone and C ⊂ K be
closed and convex with C∞ ̸= {0}.

(j1) S − PMin(C,K) = ∂σC(−K#) =
∪

x∗∈K# ∂σC(−x∗).
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(j2) Since C +K is closed, we get the following results (see [9] for
more details)

S − PMin(C,K) = S − PMin(C +K,K)

= GHe− PMin(C,K)

= Bo−Min(C,K)

⊂ Min(C,K).

Theorem 3.5. σC is Gateaux differentiable on −K# if and only if σC+K

is Gateaux differentiable on int(domσC+K).

Proof. By the assumption, we get C∞ ⊂ K and (C +K)∞ = K∞ = K.
Moreover, σC+K = σC + σK = σC + ιK . Since the space is reflexive, we
have

−K# = intK− ⊂ domσC+K = K− ∩ domσC ⊂ K− ∩ C−
∞ = K−.

By taking the interior of the both sides, we have int(domσC+K) = −K#

and

∂σC+K [int(domσC+K)] = ∂σC+K(−K#)

= S − PMin(C +K,K)

= S − PMin(C,K)

= ∂σC(−K#).

So ∂σC is singleton on −K# if and only if ∂σC+K is singleton on
int(domσC+K) which means that σC is Gateaux differentiable on −K#

if and only if σC+K is Gateaux differentiable on int(domσC+K). □

Theorem 3.6. σC is Gateaux differentiable on −K# if and only if

∀x, y ∈ S − PMin(C,K), x ̸= y,(3.4)

∀λ ∈ (0, 1) : λx+ (1− λ)y /∈ S − PMin(C,K).

Proof. By Theorem 3.5, σC is Gateaux differentiable on −K# if and only
if σC+K is Gateaux differentiable on int(domσC+K). Now, one obtains
the result by using Theorem 3.1 for int(domσC+K). □
Corollary 3.7. (h1) Since S−PMin(C,K) is a subset of Min(C,K),

considering the following condition,

∀x, y ∈ Min(C,K), x ̸= y,(3.5)

∀λ ∈ (0, 1) : λx+ (1− λ)y /∈ Min(C,K),

we have the implication 3.5 ⇒ 3.4. Hence, 3.5 implies that σC
is differentiable on −K#. Moreover, from the equalities in (j2)
of Remark 3.4, we could replace S-properly minimal points in
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condition 3.4, by Borwien properly minimal points and Henig
global properly minimal points of C with respect to K.

(h2) By taking K := C∞ in Theorem 3.6, we get K# = −int(domσC).
So, Theorem 3.1 is a consequense of Theorem 3.6.
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