DOI: 10.22130/scma.2018.72221.284

On Polar Cones and Differentiability in Reflexive Banach Spaces

Ildar Sadeqi 1* and Sima Hassankhali 2

ABSTRACT. Let X be a Banach space, $C \subset X$ be a closed convex set included in a well-based cone K, and also let σ_C be the support function which is defined on C. In this note, we first study the existence of a bounded base for the cone K, then using the obtained results, we find some geometric conditions for the set C, so that $\operatorname{int}(\operatorname{dom}\sigma_C) \neq \emptyset$. The latter is a primary condition for subdifferentiability of the support function σ_C . Eventually, we study Gateaux differentiability of support function σ_C on two sets, the polar cone of K and $\operatorname{int}(\operatorname{dom}\sigma_C)$.

1. Introduction

1.1. A short survay on convex cones. The study of convex cones and the geometric structure of their bases in a Banach space has many applications in the theory of optimization, economics and engineering which motivate us to study the subject. We recall [3, 6, 5, 11] and the long list of their references for more details.

Throughout this paper, (X, ||.||) is a Banach space (unless it is specified) whose dual X^* is endowed with the dual norm, denoted also by ||.||. As usual, having a nonempty subset C of X, define:

$$\begin{split} C^+ &:= \{x^* \in X^* : x^*(x) \geq 0, \forall x \in C\}, \\ C^- &:= -C^+, \\ C^\perp &:= C^+ \cap C^-. \end{split}$$

²⁰¹⁰ Mathematics Subject Classification. 49J50, 52A05, 52A41.

Key words and phrases. Recession cone, Polar cone, Bounded base, Support function, Gateaux differentiability.

Received: 20 September 2017, Accepted: 19 August 2018.

^{*} Corresponding author.

Let K be a cone in a Banach space X. We say that K is pointed if $K \cap -K = \{0\}$ and it is solid if the interior of K, say int K, is nonempty. A convex subset B of X is called a base for K if 0 is not included in the closure of B, say clB, and $coneB := \{tx : x \in B, t \geq 0\} = K$. Also, a proper convex cone K is called well-based if K has a bounded base. It is known that a cone with a base is necessarily convex and pointed. Also, if K is a real separable normed space, every nontrivial closed pointed convex cone has a base [8, Corollary 3.39]. Note that the separability assumption is essential and cannot be dropped. Krein-Rutman [8], gave an interesting example which shows that the assertion fails in a nonseparable space.

Let K be a cone. The polar of K is defined by

$$K^{\#} := \{x^* \in X^* : x^*(x) > 0, \forall x \in K \setminus \{0\}\}.$$

There is a direct connection between existence of a base for a cone K and the structure of $K^{\#}$. In fact, a convex cone K has a base if and only if $K^{\#} \neq \emptyset$. Indeed, let $K^{\#} \neq \emptyset$. For every $x^* \in K^{\#}$, the set $B_{x^*} := \{x \in K : x^*(x) = 1\}$ defines a base on the cone K. Conversely, from the Hahn-Banach theorem, we could separate B from 0 by $x^* \in K^{\#}$.

Note that the polar cone $K^{\#}$ could be empty. For example, we consider the space B([a,b]) of all functions on the real interval [a,b] endowed with the usual "sup" norm and the standard positive cone:

$$K=\{f\in B[a,b]: f(t)\geq 0, \forall t\in [a,b]\},$$

then $K^{\#}$ is empty. See [8] and references therein for more details.

Remark 1.1. If a closed convex cone K is pointed, then $\text{int}K^+ = \text{int}K^\#$ and we have the followings:

- (a₁) The polar cone $K^{\#}$ need not necessarily be the interior of K^{+} . For example, if K is the nonnegative orthant of the sequence space l_{p} , $1 , then int<math>K^{+} = \emptyset$ but $K^{\#}$ is nonempty.
- (a₂) The interior of K^+ could be nonempty. Let $\alpha \in (0,1)$ and $a^{\alpha} = (\alpha, \alpha^2, \ldots) \in l_2$ with

$$||a^{\alpha}||^2 = \frac{\alpha^2}{(1 - \alpha^2)}.$$

For any $0 < \varepsilon < (1 - \alpha^2)^{\frac{1}{2}}$, set

$$K:=\{z\in l_2: a^{\alpha}z\geq \varepsilon||a^{\alpha}||.||z||\}.$$

Then $int K^+ \neq \emptyset$.

Part (a_2) in Remark 1.1 is equivalent to the existence of a bounded base for the cone K as stated in the following theorem.

Theorem 1.2 ([3] Theorem 2.2). Let K be a nontrivial closed convex cone in X. Then K is well-based if and only if $K^{\#}$ is solid.

In fact, B_{x^*} is a bounded base for the closed convex cone K if and only if $x^* \in \text{int}K^{\#}$.

Definition 1.3. Let X be a Banach space, X^* be its dual and let K be a cone in X (see [6] and references therein).

 (b_1) K is said to be acute if there is an open half space

$$L_{x^*} = \{ x \in X : x^*(x) > 0 \},\$$

with $x^* \in X^*$, $x^* \neq 0$, such that $clK \subset L_{x^*} \cup \{0\}$.

- (b2) For $x^* \in K^-$ and $\delta > 0$, set $v(x^*, \delta) := \{x \in K : x^*(x) \ge \delta\}$. Recall that the cone K satisfies property (π) (weak property (π)), if there exists $x^* \in K^-$ such that for all $\delta > 0$ the set $v(x^*, \delta)$ is relatively weakly compact (bounded).
- (b₃) A closed convex cone K satisfies angle property if there exist $x^* \in X^* \setminus \{0\}$ and $0 < \varepsilon \le 1$ such that

$$K \subset \{x \in K : x^*(x) \le \varepsilon ||x^*|| \cdot ||x||\}.$$

 (b_4) A closed convex cone K is said to be a locally weakly compact cone, if for every bounded set A in K, A is relatively weakly compact.

A cone satisfying the (weak) property (π) is pointed and one can replace: 'for all $\delta > 0$ ' by 'there exists $\delta > 0$ '. Cesari and Suryanarrayana showed that there exist infinite dimensional spaces including cones, satisfying angle property. It is of interest to know that in a Banach space X, a closed convex cone with angle property is acute and hence pointed. Also, a closed convex cone K with property (π) is acute (and hence pointed). Furthermore, when X is a reflexive Banach space, angle property implies property (π) . However, Cesari and Suryanarayana showed that in the Hilbert space l_2 , we can find acute cones which niether have property (π) nor the angle property. See [6, 5, 11] and references therein, for more details.

Theorem 1.4. Let X be a Banach space and K be a closed convex cone. Then,

K has angle property \Rightarrow K is acute \Rightarrow K is pointed. Also, when X is reflexive

 $K \text{ satisfies property } (\pi) \Rightarrow K \text{ is acute } \Rightarrow K \text{ is pointed.}$

In 1978, Cesari and Suryanarrayana illustrated an example to show that acuteness (hence either angel property or property (π)) is not

satisfied for a half-space. In 1994, Han investigated the relations between cones satisfying angle property and solid cones. The investigation showed that the two classes of cones are dual in some senses. Also, they found a relation between solid cones, acute cones, cones satisfying (weak) property (π) and cones having bounded bases. See, [6, 5] and references therein.

Theorem 1.5. Let K be a nontrivial closed convex cone in a Banach space X. Then:

- (c₁) K has angle property if and only if K has a closed bounded base if and only if K^- is solid if and only if K satisfies the weak property (π) .
- (c_2) K^- (K) is solid if and only if K (K^-) is well-based.
- (c_3) K is acute if and only if K has a closed convex base.
- (c₄) K has property (π) if and only if K is relatively weakly compact with weak property (π) .

From (b_4) of Definition 1.3, every convex cone K in a reflexive Banach space is relatively weakly compact. This remark together with (c_1) and (c_4) of Theorem 1.5, imply that in reflexive Banach spaces, a closed convex cone K has angle property if and only if it has property (π) . Hence, in reflexive Banach spaces, K^- is solid if and only if K satisfies angle property [6, Theorem 1.2].

1.2. Convex functions. Let $U \subset X$ be an open subset of a Banach space X and $f: U \to \mathbb{R}$ be a real valued function. We say that f is Gateaux differentiable at $x \in U$, if for every $h \in X$,

$$f'(x)(h) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t},$$

exists in \mathbb{R} and is a linear continuous function in h (i.e $f'(x) \in X^*$). The functional f'(x) is then called the Gateaux derivative or Gateaux differential of f at x.

Recall that dom f of a function $f: X \to \mathbb{R} := \mathbb{R} \cup \{-\infty, +\infty\}$ is the set $\{x \in X : f(x) < \infty\}$ and f is proper if $\text{dom} f \neq \emptyset$ and $f(x) \neq -\infty$ for each $x \in X$. The subdifferential of a proper function f at $x \in \text{dom} f$ $(f(x) \neq -\infty)$ is defined by

$$\partial f(x) := \{ x^* \in X^* : x^*(y - x) \le f(y) - f(x), \forall y \in X \},\$$

and $\partial f(x) = \emptyset$ for $x \in X \setminus \text{dom } f$. Of course, the domain of ∂f is

$$\mathrm{dom}\partial f=\{x\in X:\partial f(x)\neq\emptyset\}(\subset\mathrm{dom}f).$$

Let C be a nonempty subset of the Banach space X. The support function of C is an extended real valued function on X^* defined by

$$\sigma_C: X^* \to \bar{\mathbb{R}}, \qquad \sigma_C(x^*) := \sup_C x^*.$$

It is well-known that for a nonempty subset C of the Banach space X, we have $\sigma_C = \sigma_{\operatorname{conv} C} = \sigma_{\operatorname{cl} C} = \sigma_{\operatorname{cl} (\operatorname{conv} C)}$, where $\operatorname{conv} C$ is the convex hull of C. So we could assume that C is a nonempty, closed and convex set (unless otherwise is specified). Moreover, when the Banach space X is reflexive, we have

(1.1)
$$\partial \sigma_C(x^*) = \{ u \in C : x^*(u) = \sigma_C(x^*) \},$$

and $\partial \sigma_C(0) = C$ ([1, 4]).

Rest of the paper is organized as follows. In Section 2, we find some results related to the solidness of polar cones, specially the polar of recession cone of a closed convex set C, and we apply the nonemptiness of $\operatorname{int}(\operatorname{dom}\sigma_C)$. In Section 3, assuming that C is a subset of a closed well-based convex cone K, we study Gateaux differentiability of σ_C on both $K^{\#}$ and $\operatorname{int}(\operatorname{dom}\sigma_C)$.

2. Conditions in which $int(dom\sigma_C) \neq \emptyset$

In Theorem 1.2, it is shown that a nontrivial closed convex cone is well-based if and only if its polar is solid. Here, we show that in reflexive Banach spaces, solidness of the polar cone is equivalent to the existence of a weakly compact base for the cone.

Theorem 2.1. Let X be a reflexive Banach space and K be a closed convex cone. Then $K^{\#}$ is solid if and only if K has a weakly compact base B_{x^*} , for some $x^* \in K^{\#}$.

Proof. Let $\operatorname{int} K^{\#} \neq \emptyset$. By Theorem 1.2, for each $x^* \in \operatorname{int} K^{\#}$, the set B_{x^*} is a bounded base for the cone K and by [10, Theorem 4], $K^{\#} = \operatorname{int} K^{\#}$. We show that for each $x^* \in K^{\#}$, the base B_{x^*} is weakly compact. By the contrary, let $x_0^* \in K^{\#}$ where $B_{x_0^*}$ is not weakly compact. By James theorem [4, Theorem 3.130], there exists $y^* \in X^*$ such that

$$y^*(x) > \inf\{y^*(b) : b \in B_{x_0^*}\}, \quad \forall x \in B_{x_0^*}.$$

Let $l := \inf\{y^*(b) : b \in B_{x_0^*}\}$. When l > 0, define $x_1^* := \frac{y^*}{l} - x_0$ (for l = 0, define $x_1^* := y^*$ and for l < 0, define $x_1^* := x_0 - \frac{y^*}{l}$). So, we have $x_1^* \in K^\# \setminus \inf K^\#$. Indeed, if $x_1^* \in \inf K^\#$, there exists r > 0 such that $x_1^* + rB_{X^*} \subset K^\#$ (B_{X^*} is the unit ball of X^*). Therefore, for each $k \in K$, we get

$$x_1^*(k) = \frac{y^*(k)}{l} - x_0^*(k) \ge r||k||.$$

From definition of l, there exists $(b_n) \subset B_{x_0^*}$ so that $y^*(b_n) \to l$. So, for each $n \in \mathbb{N}$, $r||b_n|| \ge 0$ and $b_n \to 0$. But this makes a contradition since $0 \notin B_{x_0^*}$. Therefore, $x_1^* \in K^\# \setminus \operatorname{int} K^\#$ which contradicts $K^\# = \operatorname{int} K^\#$. So, for each $x^* \in K^\#$, the base B_{x^*} is weakly compact.

Recall that recession cone of a subset C of a Banach space X is defined by

$$C_{\infty} := \{ w \in X : x + tw \in C, \forall t \ge 0, \forall x \in C \}.$$

It is clear that if C is closed, then C_{∞} is closed, and if C is closed and convex, we have $C_{\infty} = \bigcap_{t \geq 0} t(C-a)$, where $a \in C$. Note that in finite dimensional Banach spaces, the closed convex set C is bounded if and only if $C_{\infty} = \{0\}$. But, the latter is not correct for infinite case in general. For example, let $X = l_2$ and $C = \{x \in l_2 : |x_i| \leq 1 \forall i \in \mathbb{N}\}$. It is clear that X is a reflexive Banach space and C is a closed convex unbounded subset of X. We show that $C_{\infty} = \{0\}$. It is obvious that $0 \in C_{\infty}$. Let $v \in C_{\infty}$ where $v \neq 0$. Then $c + tv \in C$ for each $t \geq 0$. Hence, for a sufficiently large t, we may have $|c_i + tv_i| > 1$ for some $i \in \mathbb{N}$ which is a contradicts with definition of C.

Theorem 2.2. Let X be a reflexive Banach space and K be a closed convex cone. Then the following statements are established.

- (h_1) int $(dom \sigma_K) \neq \emptyset$ if and only if $K^{\#}$ is solid.
- (h_2) int $(\text{dom}\sigma_C) \neq \emptyset$ where C is a closed convex subset of K with $C_{\infty} \neq \{0\}$.

Proof. For (h_1) , since $K_{\infty} = K$, the "if" part is a consequence of (h_1) . For the other part, let $K^{\#}$ be solid. Then for each $(x_n) \subset K$ with $||x_n|| \to \infty$ and $(||x_n||^{-1}x_n) \stackrel{w}{\to} u$, one has $u \neq 0$. Otherwise, let u = 0. Since the polar of K is solid, each sequence of K which weakly converges to zero is norm convergence. Hence, $||x_n||^{-1}x_n$ is norm convergence to zero, which is a contradiction. To prove (h_2) , it is sufficient to piont out that when $C \subset K$, we have $\mathrm{dom} \sigma_K \leq \mathrm{dom} \sigma_C$ and $K^{\#} \subset C_{\infty}$.

Let C be a nonempty closed subset of the Banach space X including a half-line. Define $P:=cl(\operatorname{conv} C)$ and the set-valued function $W_C:X^*\to X$ by

$$W_C(x^*) := \{ u \in C : x^*(u) = \sigma_C(x^*) \}$$

= $C \cap \partial \sigma_C(x^*)$.

The following theorem is holds.

Theorem 2.3. Let X be a reflexive Banach space and C be a nonempty closed subset of X which is included in a closed convex well-based cone. Then the following assertions hold:

- (i_1) int $(dom \sigma_C) = int P^-$ and σ_C is continuous on $int P^-$.
- $(i_2) \ \partial \sigma_C(x^*)$ is nonempty and weakly compact for every $x^* \in \text{int} P^-$. Also, $\partial \sigma_C(x^*)$ is singleton if and only if σ_C is Gateaux differentiable at x^*
- (i_3) dom $W_C \subset \text{dom}\sigma_C \subset P^-$. Also, $W_C(x^*)$ is nonempty and wcompact for every $x^* \in \text{int}P^-$.
- (i_4) int $(\mathrm{dom}\sigma_C) = \mathrm{int}(\mathrm{dom}\sigma_C) \setminus \{0\} = \mathrm{int}(\mathrm{dom}\sigma_C) \setminus (\mathrm{lin}_0 C)^{\perp}$.

Proof. (i_1) It is clear that

$$cl(\text{dom}\sigma_C) = (cl(convC))_{\infty}^- = P^-,$$

(for convex sets, the weak and norm closure coincide). Theorem 2.2 implies that $int(dom\sigma_C) \neq \emptyset$. So, from [5, Lemma 12], convexity of $dom \sigma_C$ implies that

$$\operatorname{int}(\operatorname{dom}\sigma_C) = \operatorname{int}[cl(\operatorname{dom}\sigma_C)].$$

Hence, $\operatorname{int}(\operatorname{dom}\sigma_C) = \operatorname{int}P^-$. Also, from [2, Proposition 4.1.5], the support function σ_C is continuous on $x^* \in \text{dom}\sigma_C$ if and only if $x^* \in \operatorname{int}(\operatorname{dom}\sigma_C)$.

- (i_2) The subdifferential of a proper convex function is nonempty, convex and w-compact at any point of continuity from its domain [1, Theorem 7.13]. The second allegation comes from Smulyan lemma [4, Theorem 7.17].
- (i_3) Fix $u_0 \in C$ and $x^* \in \text{int} P^-$. Define

$$C_0 := \{ u \in C : x^*(u) \ge x^*(u_0) \}.$$

It is clear that C_0 is nonempty, closed and $\sigma_{C_0}(x^*) = \sigma_C(x^*)$. We show that C_0 is bounded. By the contrary, assume that there exists $(x_n) \subset C_0$ with $||x_n|| \to \infty$. We may assume that $|x_n||x_n||^{-1}$ weakly converges to v. Note that from (g_1) of Theorem 2.5, we have $v \neq 0$ and $v \in P \setminus \{0\}$. Since $x^*(x_n) \geq x^*(u_0)$ for every $n \in \mathbb{N}$, we get the contradiction $0 > x^*(v) \ge 0$. Hence, C_0 is bounded, and so weakly compact. Now, by James theorem [4, Theorem 3.130], x^* attains its supermum on C_0 at $v \in C_0$ and $\sigma_C(x^*) = x^*(v)$. It follows that $v \in W_C(x^*)$. So, $W_C(x^*)$ is nonempty for each $x^* \in \text{int} P^-$. Moreover, the fact that the intersection of a closed set and a weakly compact set is weakly compact completes the proof.

 (i_4) This is a consequence of (i_1) and definitions of $\operatorname{int} P^-$ and $(\operatorname{lin}_0 C)^{\perp}$.

Remark 2.4. Note that $\partial \sigma_C(0) = C$ and σ_C is Gateaux differentiable on 0 if and only if C is singleton. Also, $x^* \in X^*$ is constant on C if and only if x^* belongs to $(\lim_0 C)^{\perp}$. Hence, when C is not singleton, σ_C is

not Gateaux differentiable on $(\lim_0 C)^{\perp}$. But, according to (i_4) , under our assumptions, $\operatorname{int}(\operatorname{dom}\sigma_C) \cap (\lim_0 C)^{\perp} = \emptyset$ and we can speak about differentiability of σ_C on $\operatorname{int}(\operatorname{dom}\sigma_C)$.

Corollary 2.5. Let X be a reflexive Banach space and C be a closed convex set that $C_{\infty} \neq \{0\}$. The followings are equivalent:

- (g_1) $C_{\infty}^{\#} \neq \varnothing$ and for every sequence $(x_n) \in C$ with $||x_n|| \to \infty$ and $||x_n||^{-1}x_n \stackrel{w}{\to} u$, one has $u \neq 0$.
- (g_2) int $(dom \sigma_C) \neq \emptyset$.
- (g_4) C_{∞} is well-based $(C_{\infty}^{\#} \text{ is solid}).$
- (g₅) there exists $x^* \in K^\#$ such that B_{x^*} is a weakly compact base for the cone K.
- (g_6) C_{∞} has property (π) (weak-property (π)).
- (g_7) C_{∞} has angle property.

3. Differentiability of σ_C

In this section, let X be a reflexive Banach space and C be a nonempty closed subset of X which is included in a closed convex well-based cone K (unless otherwise is stated).

Theorem 3.1. The support function σ_C is Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_C)$ if and only if

$$\forall x, y \in \partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C)), x \neq y, \forall \lambda \in (0, 1) :$$

$$(3.1) \qquad \lambda x + (1 - \lambda)y \notin \partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C)).$$

Proof. Let 3.1 hold. Consider $x^* \in \operatorname{int}(\operatorname{dom}\sigma_C)$ where σ_C is not Gateaux differentiable on x^* . From (i_2) of Theorem 2.3, σ_C is subdifferentiable on $\operatorname{int}(\operatorname{dom}\sigma_C)$ and there exist $x, y \in \partial \sigma_C$ with $x \neq y$. Therefore, the convexity of $\partial \sigma_C$ implies that $\lambda x + (1 - \lambda)y \in \partial \sigma_C(x^*)$ for all $\lambda \in (0, 1)$, which is a contradiction.

Now, let σ_C be Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_C)$. By the contrary, let $x_0, y_0 \in \partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C))$, where $x_0 \neq y_0$ and $\lambda_0 \in (0, 1)$ such that $z := \lambda_0 x_0 + (1 - \lambda_0) y_0 \in \partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C))$. So, there exists $x^* \in (\operatorname{int}(\operatorname{dom}\sigma_C))$ such that $z \in \partial \sigma_C(x^*)$ which implies that

$$x^*(z) = \sigma_C(x^*) \ge \lambda_0 x^*(x_0) + (1 - \lambda_0) x^*(y_0) = x^*(z).$$

It means that $x^*(x_0) = x^*(y_0) = \sigma_C(x^*)$ and $x_0, y_0 \in \partial \sigma_C(x^*)$. But, by (i_2) of Theorem 2.3, $\partial \sigma_C(x^*)$ is singleton for each $x^* \in \text{int}(\text{dom}\sigma_C)$, which is a contradiction.

Theorem 3.2. σ_C is Gateaux differentiable on int(dom σ_C) if

$$(3.2) \qquad \forall x, y \in C, \ x \neq y, \forall \lambda \in (0,1) : \lambda x + (1-\lambda)y \in H,$$

$$where \ H := C + (C_{\infty} \setminus \{0\}).$$

Proof. First, we show that $\partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C))$ is a subset of $C \setminus H$. Letting $y \in \partial \sigma_C(\operatorname{int}(\operatorname{dom}\sigma_C)) \cap H$ (by the contrary), there exist $y^* \in \operatorname{int}(\operatorname{dom}\sigma_C)$, $u \in C$ and $v \in C_{\infty} \setminus \{0\}$ such that $y \in \partial \sigma_C(y^*)$ and y = u + v. So,

$$\sigma_C(y^*) > y^*(u) + y^*(v) = y^*(y) = \sigma_C(y^*),$$

which is not possible. Now, it is easy to show that (3.2) implies the following condition:

$$(3.3) \qquad \forall x, y \in C \backslash H, x \neq y, \forall \lambda \in (0,1) : \lambda x + (1-\lambda)y \notin C \backslash H.$$

In fact, the implications $(3.2) \Rightarrow (3.3) \Rightarrow (3.1)$ hold. Therefore, (3.2) and (3.3) together imply that σ_C is Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_C)$.

Definition 3.3. Let K be a closed convex pointed cone and C be a nonempty set in X. The set of Pareto minimal points, S-properly points, Borwien properly minimal points, and Henig global properly minimal points of C with respect to K are shown by,

$$\begin{aligned} &Min(C,K) := \{u \in C : C \cap (u+K) = \{u\}\} = C \setminus (C + (K \setminus \{0\})), \\ &S - PMin(C,K) := \{u \in C : \exists y^* \in K^\#, \forall y \in C, y^*(u) \leq y^*(y)\}, \\ &Bo - Min(C,K) := \{u \in C : clcone(C-u) \cap (-K) = \{0\})\}, \end{aligned}$$

and

$$GHe-PMin(C,K):=\biggl\{u\in C:\exists \text{ a proper convex cone }P\text{ with}$$

$$K\backslash\{0\}\subset \mathrm{int}P\text{ such that }(C-u)\cap(-\mathrm{int}P)=\emptyset\biggr\},$$

respectively.

Remark 3.4. Let K be a closed convex well-based cone and $C \subset K$ be closed and convex with $C_{\infty} \neq \{0\}$.

$$(j_1)$$
 $S - PMin(C, K) = \partial \sigma_C(-K^{\#}) = \bigcup_{x^* \in K^{\#}} \partial \sigma_C(-x^*).$

 (j_2) Since C + K is closed, we get the following results (see [9] for more details)

$$S - PMin(C, K) = S - PMin(C + K, K)$$
$$= GHe - PMin(C, K)$$
$$= Bo - Min(C, K)$$
$$\subset Min(C, K).$$

Theorem 3.5. σ_C is Gateaux differentiable on $-K^{\#}$ if and only if σ_{C+K} is Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_{C+K})$.

Proof. By the assumption, we get $C_{\infty} \subset K$ and $(C+K)_{\infty} = K_{\infty} = K$. Moreover, $\sigma_{C+K} = \sigma_C + \sigma_K = \sigma_C + \iota_K$. Since the space is reflexive, we have

$$-K^{\#} = \operatorname{int} K^{-} \subset \operatorname{dom} \sigma_{C+K} = K^{-} \cap \operatorname{dom} \sigma_{C} \subset K^{-} \cap C_{\infty}^{-} = K^{-}.$$

By taking the interior of the both sides, we have $\operatorname{int}(\operatorname{dom}\sigma_{C+K}) = -K^{\#}$ and

$$\partial \sigma_{C+K}[\operatorname{int}(\operatorname{dom}\sigma_{C+K})] = \partial \sigma_{C+K}(-K^{\#})$$

$$= S - PMin(C+K,K)$$

$$= S - PMin(C,K)$$

$$= \partial \sigma_{C}(-K^{\#}).$$

So $\partial \sigma_C$ is singleton on $-K^{\#}$ if and only if $\partial \sigma_{C+K}$ is singleton on $\operatorname{int}(\operatorname{dom}\sigma_{C+K})$ which means that σ_C is Gateaux differentiable on $-K^{\#}$ if and only if σ_{C+K} is Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_{C+K})$.

Theorem 3.6. σ_C is Gateaux differentiable on $-K^{\#}$ if and only if

$$(3.4) \qquad \forall x, y \in S - PMin(C, K), \ x \neq y,$$

$$\forall \lambda \in (0, 1) : \lambda x + (1 - \lambda)y \notin S - PMin(C, K).$$

Proof. By Theorem 3.5, σ_C is Gateaux differentiable on $-K^{\#}$ if and only if σ_{C+K} is Gateaux differentiable on $\operatorname{int}(\operatorname{dom}\sigma_{C+K})$. Now, one obtains the result by using Theorem 3.1 for $\operatorname{int}(\operatorname{dom}\sigma_{C+K})$.

Corollary 3.7. (h_1) Since S-PMin(C, K) is a subset of Min(C, K), considering the following condition,

(3.5)
$$\forall x, y \in Min(C, K), \ x \neq y,$$
$$\forall \lambda \in (0, 1) : \lambda x + (1 - \lambda)y \notin Min(C, K),$$

we have the implication $3.5 \Rightarrow 3.4$. Hence, 3.5 implies that σ_C is differentiable on $-K^{\#}$. Moreover, from the equalities in (j_2) of Remark 3.4, we could replace S-properly minimal points in

condition 3.4, by Borwien properly minimal points and Henig global properly minimal points of C with respect to K.

(h₂) By taking $K := C_{\infty}$ in Theorem 3.6, we get $K^{\#} = -\text{int}(\text{dom}\sigma_C)$. So, Theorem 3.1 is a consequence of Theorem 3.6.

References

- 1. C.D. Aliprantis and K.C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, 3rd Edition, Springer-Verlag, Berlin, 2006.
- J.M. Borwein and J.D. Vanderwerff, Convex functions: constructions, characterizations and counterexamples, Encyclopedia of Mathematics and its Applications, 109. Cambridge. Univ. Press, Cambridge, 2010.
- 3. E. Casini and E. Miglierina, Cones with bounded and unbounded bases and reflexivity, Nonlinear Anal., 72 (2010), pp. 2356-2366.
- M. Fabian, P. Habala, P. Hajek, V. Montesinos, and V. Zizler, Banach space theory, the basis for linear and unlinear analysis, CMS Books in Math, Springer, Canada, 2011.
- Z.Q. Han, Relationship between solid cones and cones with bases, Optim. Theory Appl., 90 (1996), pp. 457-463.
- Z.Q. Han, Remarks on the angle poperty and solid cones, J. Optim. Theory Appl. 82 (1994), pp. 149-157.
- G. Isac, Pareto optimization in infinite-dimensional spaces, the importance of nuclear cones, J. Math. Anal. Appl., 182 (1994), pp. 393-404.
- 8. J. Jahn, Vector optimization theorem, theory, application and existence, Springer, Verlag Berlin Heidelberg, 2011.
- 9. A. Khan, Ch. Christiane, and C. Zalinescu, Set-valued Optimization, An introduction with application, Springer, Verlag Berlin Heidelberg, 2015.
- I.A. Polyrakis, Demand functions and reflexivity, J. Math. Anal. Appl., 338 (2008), pp. 695-704.
- J.H. Qiu, On Solidness of Polar Cones, J. Optim. Theory Appl., 109 (2001), pp. 199214.

 $E ext{-}mail\ address: esadeqi@sut.ac.ir}$

E-mail address: s_hassankhali@sut.ac.ir

 $^{^{\}rm 1}$ Department of Mathematics, Faculty of Science, Sahand University of Technology, Tabriz, Iran.

² Department of Mathematics, Faculty of Science, Sahand University of Technology, Tabriz, Iran.