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Inverse Problem for Interior Spectral Data of the Dirac

Operator with Discontinuous Conditions

Mohammad Shahriari1∗, Reza Akbari2, and Mostafa Fallahi3

Abstract. In this paper, we study the inverse problem for Dirac
differential operators with discontinuity conditions in a compact
interval. It is shown that the potential functions can be uniquely
determined by the value of the potential on some interval and parts
of two sets of eigenvalues. Also, it is shown that the potential
function can be uniquely determined by a part of a set of values of
eigenfunctions at an interior point and parts of one or two sets of
eigenvalues.

1. Introduction

In the seminal paper, direct and inverse problems for Dirac operators
with discontinuities inside an interval were investigated by Amirov in [2].
Furthermore, direct or inverse spectral problems for Dirac operators were
extensively studied in [4, 5, 11–14, 16, 18], and the references therein.

In the seminal paper, Hald motivated by the inverse problem for
the torsional modes of the earth, investigated Sturm–Liouville problems
with a discontinuity at an interior point [6]. Hald proved a Hochstadt–
Liebermann result [7] in the case of one transmission condition which was
later on extended to two transmission conditions by Willis [17]. More
recently, Shahriari and et al. [15] investigated the case with finite num-
ber of transmission conditions in Robin and eigenparameter dependent
boundary conditions. Moreover, Kobayashi [8] proved a similar result
in the case for problems with a reflection symmetry.

2010 Mathematics Subject Classification. Primary 34L40, 34A55; Secondary
34L20, 34A05.

Key words and phrases. Dirac operator, Inverse spectral theory, Discontinuous
conditions.

Received: 09 June 2018, Accepted: 12 September 2018.
∗ Corresponding author.

185

http://scma.maragheh.ac.ir


186 M. SHAHRIARI, R. AKBARI, AND M. FALLAHI

Boundary-value problems often appear in mathematics, mechanics,
physics, geophysics, and other branches of natural sciences. The inverse
problem of reconstructing the material properties of a medium from
data collected outside the medium is of major importance in disciplines
ranging from engineering to geosciences. [3, 6, 19] are well-known works
about discontinuous inverse eigenvalue problems. Direct and inverse
problems for Dirac operators with discontinuities inside an interval were
investigated in [2].

In this manuscript, we study the inverse problem for Dirac differential
operators with discontinuity conditions. It is shown that the potential
functions can be uniquely determined by the value of the potential on
some interval and parts of two sets of eigenvalues.

2. Preliminaries

Let us consider the system of differential equation

(2.1) ℓ[y(x)] := By′(x) + Ω(x)y(x) = λy(x), x ∈ I := [0, d) ∪ (d, π],

with

B =

(
0 1
−1 0

)
, Ω(x) =

(
p(x) q(x)
q(x) −p(x)

)
,

and y(x) = (y1(x), y2(x))
T subject to the boundary conditions

U(y) := y1(0) cosα+ y2(0) sinα = 0,

V (y) := y1(π) cosβ + y2(π) sinβ = 0,(2.2)

and the jump conditions

(2.3) C(y) := y(d+ 0)−Ay(d− 0) = 0,

with A =

(
a 0
0 b

)
. Throughout this paper p(x) and q(x) are real

valued functions in L2(0, π), a, b ∈ R − {0}, ab > 0, α, β ∈ [0, π)
and λ is the spectral parameter. For simplicity we use the notation
L = L(Ω(x);α;β; a; b; d) for the above system of differential equation. To
obtain a self-adjoint operator we introduce the following weight function

(2.4) w(x) =

{
1, 0 ≤ x < d,
1
ab , d < x ≤ π.

Now our Hilbert space will be H := L2((0, π);w) associated with the
weighted inner product

⟨f, g⟩H :=

∫ π

0
(f1ḡ1 + f2ḡ2)w,(2.5)
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where f = (f1, f2)
T and g = (g1, g2)

T ∈ L2(0, π). The corresponding

norm will be denoted by ∥f∥H = ⟨f, f⟩1/2H . In this Hilbert space, we
construct the operator

(2.6) A : H → H,

with domain

(2.7) dom (D) =

{
f ∈ H

∣∣∣∣ f, f ′ ∈ AC
(
(0, d) ∪ (d, π)

)
,

ℓf ∈ L2(0, π), C(f) = 0

}
,

by Df = ℓf with f ∈ dom (D) . Throughout this paper AC
(
(0, d) ∪

(d, π)
)
denotes the set of all functions whose restriction to (0, d) or (d, π)

is absolutely continuous. In particular, those functions will have limits
at the boundary point d. It is easy to see that the operator D is a
self-adjoint operator by weighted inner product (2.5). In particular, the
eigenvalues of D, and hence of L, are simple and real eigenvalues λn,
for n ∈ Z. From the linear differential equations we obtain the modified
Wronskian

W (u, v) = w(x)
(
u(x)v′(x)− u′(x)v(x)

)
,(2.8)

is constant on x ∈ [0, d) ∪ (d, π] for two solutions ℓu = λu, ℓv = λv
satisfying the transmission conditions (2.3). We define the characteristic
function for the operator L of the form

(2.9) ∆(λ) := w(π)V (φ(λ)).

The characteristic function ∆(λ) is independent of x.
Let the functions φ(., λ) : I → R2 be

Bφ′(x) + Ω(x)φ(x) = λφ(x),(2.10)

φ1(0) = sinα, φ2(0) = − cosα,

with the jump conditions (2.3) and φ(x, λ) = (φ1(x, λ), φ2(x, λ))
T . It is

shown in [2, 4, 11] and [14] that there exist kernelsK(x, t) =
(
Kij(x, t)

2
i,j=1

)
with entire continuously differentiable on 0 ≤ t ≤ x < d such that the
solution φ(x, λ) is

(2.11) φ(x, λ) = φ◦(x, λ) +

∫ x

0
K(x, t)φ◦(t, λ)dt.

Here

φ◦(x, λ) = (sin(λx+ α),− cos(λx+ α))T

= (φ◦1(x, λ), φ◦2(x, λ))
T .
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Using the same calculation of papers [1, 19] and [14], we find that
(2.12)

φ◦1(x, λ) =

{
sin(λx+ α), 0 ≤ x < d,

a+ sin(λx+ α) + a− sin(λ(2d− x) + α), d < x ≤ π,

and
(2.13)

φ◦2(x, λ) =

{
− cos(λx+ α), 0 ≤ x < d,

−a+ cos(λx+ α) + a− cos(λ(2d− x) + α), d < x ≤ π,

with a± = 1
2(a±b). The characteristic function for (φ◦1(x, λ), φ◦2(x, λ))

T

is

∆◦(λ) :=w(π)V (φ◦(λ))(2.14)

=
1

ab

(
a+ sin(λπ + α− β) + a− sin(λ(2d− π) + α+ β)

)
,

the roots λ◦
n of the entire function ∆◦(λ) are simple and real. The roots

of ∆◦(λ) are

λ◦
n = n+Mn,

where supnMn < M < ∞.

Lemma 2.1. The roots of the function ∆◦(λ) are in the following form

λ◦
n = n− 1

2
+

β − α

π
+ ηn,

where ηn ∈ (0, 1), α, β ∈ [0, π) and n ∈ Z.

Proof. The zeros of the entire function ∆◦(λ) are simple and real. Since
∆◦(λ) is type of “sine” [10], the number γδ > 0 exists such that for all

n, |∆̇◦(λ
◦
n)| ≥ γδ > 0, where

∆̇◦(λ
◦
n) :=

d

dλ
∆(λ)

∣∣∣∣
λ=λ◦

n

.

We restrict the domain of ∆◦(λ) to the real line. By substituting the

points n− 1
2 + β−α

π and n+ 1
2 + β−α

π into ∆◦(λ) we see that

∆◦

(
n− 1

2
+

β − α

π

)
∆◦

(
n+

1

2
+

β − α

π

)
< 0, for n ∈ Z.

According to continuity and differentiability of ∆◦(λ) there is a point,
say ηn, in the interval (0, 1) such that

∆◦

(
n− 1

2
+

β − α

π
+ ηn

)
= 0.
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We show that there exists exactly one zero in
(
n− 1

2 + β−α
π , n+ 1

2 + β−α
π

)
.

Suppose that d = p
qπ, where

p
q is a rational number in the interval (0, 1)

and ω = e
iλπ

q . By rewriting Eq. (2.14) in the form

∆◦(λ) =
1

2iab

[
b1

(
ei(λπ+α−β) − e−i(λπ+α−β)

)
(2.15)

+ b2

(
e
i(λ( 2p

q
−1)π+α+β)

+ e
−i(λ( 2p

q
−1)π+α+β)

)]
,

and substituting ω = e
iλπ

q in (2.15), we see that ∆◦(λ) is a polynomial
of degree 2q in term of ω. Since ∆◦(λ) is a periodic function with period

T = 2q, there are 2q zeros on the interval
(
1
2 + β−α

π , 2q + 1
2 + β−α

π

)
and

this shows that for each interval
(
n− 1

2 + β−α
π , n+ 1

2 + β−α
π

)
there is

exactly one zero. □

From (2.9) and (2.11) we get

(2.16) ∆(λ) = ∆◦(λ) +O

(
exp(|τ |π)

λ

)
,

where τ = Imλ. The zeros of ∆(λ) are the eigenvalues of L and
hence it has only simple and real zeros λn. We denote by yn(x) =
(y1(x, λn), y2(x, λn))

T , for n ∈ Z, the corresponding eigenfunction.

Theorem 2.2. The corresponding eigenvalues {λn} of the boundary
value problem L admit the following asymptotic form as n → ∞:

λn = n− 1

2
+

β − α

π
+ ηn +O

(
1

n

)
,

where n ∈ Z, ηn, α and β are defined in Lemma 2.1.

Proof. Let λn = λ◦
n + ϵn. Using (2.16) we obtain ϵn = O

(
1
n

)
. □

We note that, the case α = 0, β = π/2 and b = 1/a, (a > 0) the more
general proof of Lemma 2.1 and Theorem 2.2 were given in [2].

3. Inverse Problems I

Let us introduce a second Dirac operator L̃ = L̃(Ω̃(x);α;β; d) here

Ω̃(x) =

(
p̃(x) q̃(x)
q̃(x) −p̃(x)

)
,

with real valued functions p̃(x), q̃(x) ∈ L2(0, π). The eigenvalues and

the corresponding eigenfunctions of L̃ are denoted by λ̃n and ỹn(x) =
(ỹn,1(x), ỹn,2(x))

T (n ∈ Z), respectively.
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Theorem 3.1. Let d ∈ (0, π2 ] be a jump point and for each n ∈ Z, λn =

λ̃n, and Ω(x) = Ω̃(x) almost everywhere on (d, π]. Then Ω(x) = Ω̃(x)
almost everywhere on [0, π].

Proof. Let us denote by φ̃ the solution of the initial-value problems

Bφ̃′(x) + Ω̃(x)φ̃(x) = λφ̃(x),(3.1)

φ̃1(0) = sinα, φ̃2(0) = − cosα,

and the jump conditions (2.3). As the same as (2.11), there exist the

kernels K̃(x, t) = (K̃ij(x, t)
2
i,j=1) with entire continuously differentiable

on 0 ≤ t ≤ x < d such that the solution φ̃(x, λ) is

(3.2) φ̃(x, λ) = φ◦(x, λ) +

∫ x

0
K̃(x, t)φ◦(t, λ)dt.

Here φ◦(x, λ) is defined in (2.12) and (2.13). Multiplying φ̃T by (2.11),
φT by (3.2), and subtracting the result and integrating on [0, d)∪ (d, π],
we obtain∫ d

0

[
(Ω(x)− Ω̃(x))φ(x, λ)

]T
φ̃(x, λ)w(x)dx

= w(x)(φ̃2(x, λ)φ1(x, λ)− φ̃1(x, λ)φ2(x, λ))|d0|πd .

Define

P (x) = Ω(x)− Ω̃(x), p1(x) = p(x)− p̃(x), q1(x) = q(x)− q̃(x),

and

(3.3) H(λ) :=

∫ d

0
[P (x)φ(x, λ)]T φ̃(x, λ)w(x) dx.

From the conditions of this theorem, it follows from the assumptions
that

H(λn) = 0, n ∈ Z.
We can show from (2.11) and (3.2) that

H(λ) =

∫ d

0
p1(x)

[
− cos 2(λx+ α) +

∫ x

0
R1(x, t) exp(2iλt)dt

(3.4)

+

∫ x

0
R2(x, t) exp(−2iλt)dt

]
dx+

∫ d

0
q1(x)

[
− sin 2(λx+ α)

+

∫ x

0
R3(x, t) exp(2iλt)dt+

∫ x

0
R4(x, t) exp(−2iλt)dt

]
dx,
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where Ri(x, t), i = 1, . . . , 4, are piecewise-continuously differentiable on
0 ≤ t ≤ x ≤ d. Therefore it follows that H(λ) is an entire function of
order not greater than 1. We now claim that

(3.5) H(λ) = 0,

on the whole λ-plane. Using (3.4) and the following inequality

(3.6) | cos(2λx)| ≤ exp(2x|τ |),

we see that

(3.7) |H(λ)| ≤ C exp(2d|τ |)

for |λ| large enough and some positive constant C. Fix δ > 0 and define
Gδ := {λ : |λ− λn| ≥ δ}. Then (see [2, 3])

(3.8) |∆(λ)| ≥ C1 exp(|τ |π), λ ∈ Gδ,

for some constant C1 > 0. Define

ϕ(λ) :=
H(λ)2p

∆(λ)q
,

where p and q are defined in Lemma 2.1. The definition of ∆(λ) and
H(λ) implies ϕ(λ) is an entire function of order not greater than 1. It
follows from (3.7) and (3.8) that ϕ(λ) is bounded for all λ-plan. Then
it follows from the Phragmen-Lindelöf’s and Liouville’s Theorem that
ϕ(λ) = M is constant on the whole λ-plan. We can rewrite the equation
H(λ)2p = M∆(λ)q in the form[∫ d

0
p1(x)

(
− cos 2(λx+ α) +

∫ x

0
R1(x, t) exp(2iλt)dt

+

∫ x

0
R2(x, t) exp(−2iλt)dt

)
dx+

∫ d

0
q1(x)

(
− sin 2(λx+ α)

+

∫ x

0
R3(x, t) exp(2iλt)dt+

∫ x

0
R4(x, t) exp(−2iλt)dt

)
dx

]2p

= M

[
a+ sin(λπ + α− β) + a− sin(λ(2d− π) + α+ β)

+O

(
exp(|τ |π)

λ

)]q
.

Using the Rimann–Lebesque Lemma, the left side of the above equality
tends to 0 az λ → ∞, λ ∈ R. Thus we obtain that M = 0, so H(λ) = 0
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for all λ. We are going to show that P (x) = 0 a.e. on [0, d). From
definition of H(λ) we have

H(λ) =

∫ d

0
f1(x)

[
exp(2iλx) +

∫ x

0
S11(x, t) exp(2iλt)dt

+

∫ x

0
S12(x, t) exp(−2iλt)dt

]
dx+

∫ d

0
f2(x)

[
exp(−2λix)

+

∫ x

0
S21(x, t) exp(2iλt)dt+

∫ x

0
S22(x, t) exp(−2iλt)dt

]
dx

= 0,

where

f1(x) = −exp(2iα)

2i
(q1(x)+ip1(x)), f2(x) =

exp(−2iα)

2i
(q1(x)−ip1(x)),

and S(x, t) = (Sij(x, t)), i, j = 1, 2, is a matrix which all its entries are
piecewise–continuously differentiable on 0 ≤ t ≤ x ≤ d. This can be
rewritten as∫ d

0
exp(2iλs)

[
f1(s) +

∫ d

s
(f1(x)S11(x, s) + f2(x)S21(x, s))dx

]
ds

+

∫ d

0
exp(−2iλs)

[
f2(s) +

∫ d

s
(f1(x)S12(x, s) + f2(x)S22(x, s)dx

]
ds

= 0,

or ∫ d

0
e0(λs)

T

[
f(s) +

∫ d

s
S(x, s)f(x)dx

]
ds = 0.

Here e0(x) = (exp(2ix), exp(−2ix))T and f(x) = (f1(x), f2(x))
T . From

the completeness of e0(λs) in {L2(0, d)}2, it follows that

f(s) +

∫ d

s
S(x, s)f(x)dx = 0, 0 < s < b.

But this equation is a homogeneous Volterra integral equation and there-
fore it has only the zero solution. Thus f(x) = (f1(x), f2(x))

T = 0 on
0 < x < d, that is, p1(x) = q1(x) = 0 a.e. on [0, d]. □

Let l(n) be a subsequence of natural numbers such that

l(n) =
n

σ
(1 + ϵn), 0 < σ ≤ 1, ϵn → 0,

and let µn be the eigenvalues of the problem (2.10) and (3.9) and µ̃n be
the eigenvalues of the problem (3.1) and (3.9) with the jump conditions
(2.3) such that

(3.9) y1(π) cos γ + y2(π) sin γ = 0,
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where γ ∈ [0, π), β − γ ̸= kπ, and k ∈ Z.

Theorem 3.2. Let d ∈ (π2 , π] be a jump point and σ > 2d
π − 1. Let

λn = λ̃n and µl(n) = µ̃l(n) for each n ∈ Z, Ω(x) = Ω̃(x) a.e. on (d, π].

Then Ω(x) = Ω̃(x) a.e. on [0, π].

Proof. From (3.3) and assumptions we get

H(λn) = 0, H(µl(n)) = 0.

Now, we show that H(λ) = 0, for all λ ∈ C. From (3.3) and (3.7) we
see that the entire function H(λ) is a function of exponential type and

(3.10) |H(λ)| ≤ Me2dr| sin θ|,

where M is a positive number and λ = reiθ. Define the indicator of
function H(λ) by

(3.11) h(θ) = lim sup
λ→+∞

ln |H(reiθ)|
r

.

Since |Imλ| = r| sin θ| and θ = arg λ, from (3.10) and (3.11), we obtain

(3.12) h(θ) = 2d| sin θ|.
Let n(r) be the number of zeros of H(λ) in the disk |λ| ≤ r. From
Lemma 2.1 and Theorem 2.2 we see that there are 1+2r[1+ o(1)] of λn

and 1+2rσ[1+o(1)] of µl(n) located inside the disc of radius r. Therefore

n(r) = 2 + 2r[1 + σ + o(1)].

Hence

lim
n→∞

n(r)

r
= 2(σ + 1).

Using the condition σ > 2d
π − 1 and from (3.12), we get

(3.13) lim
n→∞

n(r)

r
≥ 2(σ + 1) >

4d

π
≥ 1

2π

∫ 2π

0
h(θ)dθ.

According to [9], for any entire function H(λ) of exponential type, not
identically zero, we see that the following inequality holds:

(3.14) lim inf
n→∞

n(r)

r
≤ 1

2π

∫ 2π

0
h(θ)dθ.

From the inequalities (3.13) and (3.14), the relation (3.5) holds. By
applying the similar method of the proof of Theorem 3.1, we obtain
Ω(x) = Ω̃(x) a.e. on [0, π]. □

Let m(n) be a subsequence of natural numbers such that

(3.15) m(n) =
n

σ1
(1 + ϵ1n), 0 < σ1 ≤ 1, ϵ1n → 0.
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Corollary 3.3. Let d ∈ (0, π2 ] be a jump point and σ1 >
2d
π . Let λm(n) =

λ̃m(n) for each n ∈ Z, Ω(x) = Ω̃(x) almost everywhere on (d, π]. Then

Ω(x) = Ω̃(x) a.e. on [0, π].

Proof. By using Theorems 3.1 and 3.2 we can easily prove this corollary.
□

Corollary 3.4. Let d ∈ (0, π) be a jump point, σ1 >
2d
π , and σ > 2d

π −1.

Let λm(n) = λ̃m(n) and µl(n) = µ̃l(n) for each n ∈ N, q(x) = q̃(x) a.e. on
(d, π]. Then q(x) = q̃(x) a.e. on [0, π].

Proof. Using Theorems 3.1, 3.2 and Corollary 3.3 we can easily prove
Corollary 4.7. □

4. Inverse Problem II

In this section, by the similar definition of Section 3, we consider the
second Dirac operator L̃ = L̃(Ω̃(x);α;β; d). So we have the new inverse
problem of the following form:

Theorem 4.1. If

λn = λ̃n, W (yn, ỹn)d−0 = 0,

for any n ∈ Z and d ≤ π
2 then p(x) = p̃(x), q(x) = q̃(x) a.e. on the

[0, d).

Proof. Using the similar proof of Theorem 3.1 we obtain this result. □
Remark 4.2. We can easily obtain if y and z are the solutions of
(2.1) and satisfy the jump conditions (2.3) and W (y, z)(d−0) = 0 then
W (y, z)(d+0) = 0.

Corollary 4.3. Let d ∈ (π2 , π) be a jump point. Let λn = λ̃n, and

W (yn, ỹn)(d−0) = 0, for each n ∈ Z. Then Ω(x) = Ω̃(x) a.e. on (d, π].

Proof. To prove that Ω(x) = Ω̃(x) a.e. on (d, π], we will consider the

supplementary problem L̂ by changing x by π− x. By using the similar
proof of Theorem 4.1 we prove this theorem.

□
Remark 4.4. For d = π

2 from Theorems 4.1 and Corollary 4.3, we get

Ω(x) = Ω̃(x) a.e. on [0, π].

Theorem 4.5. Let d ∈ (π2 , π] be a jump point and σ > 2a
π − 1. Let

λn = λ̃n, µl(n) = µ̃l(n), W (yn, ỹn)(d−0) = 0,

for each n ∈ Z. Then Ω(x) = Ω̃(x) a.e. on [0, d)∪ (d, π]. Note that l(n)
is defined in (4.1).
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Proof. By using the similar proof of Theorem 3.2 we obtain this result.
□

Corollary 4.6. Let d ∈ (0, π2 ] be a jump point and σ1 >
2d
π . Let λm(n) =

λ̃m(n) W (yn, ỹn)d−0 = 0, for each n ∈ Z. Then Ω(x) = Ω̃(x) a.e. on
[0, π].

Proof. By using Theorems 4.1 and 4.5, we can easily prove this corollary.
□

Let r(n) be a subsequence of natural numbers such that

(4.1) r(n) =
n

σ2
(1 + ϵ2n), 0 < σ2 ≤ 1, ϵ2n → 0.

Corollary 4.7. Let a ∈ (π2 , π) be a jump point, fix σ > 2a
π − 1 and

σ2 > 2− 2a
π . If for each n ∈ N

λn = λ̃n, µl(n) = µ̃l(n), W (yr(n), ỹr(n))(a−0) = 0,

then Ω(x) = Ω̃(x) a.e. on [0, π].

Proof. Using the similar proof of Theorems 4.1, 4.5, and Corollary 4.6
we obtain easily the result of this corollary. □

5. Conclusion

In this paper, the inverse Dirac differential operator with a trans-
mission and Robin boundary conditions was studied. For this purpose,
a new Hilbert space by defining a new inner product for obtaining a
self–adjoint operator was defined. So, the asymptotic form of solutions,
eigenvalues and eigenfunctions of this problem was obtained. Finally,
we formulated two types of inverse problems for Dirac operator based
on [6, 7, 18].
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