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Numerical Reckoning Fixed Points in CAT (0) Spaces

Kifayat Ullah1∗, Hikmat Nawaz Khan2, and Muhammad Arshad3

Abstract. In this paper, first we use an example to show the
efficiency of M iteration process introduced by Ullah and Arshad
[24] for approximating fixed points of Suzuki generalized nonexpan-
sive mappings. Then by using M iteration process, we prove some
strong and ∆−convergence theorems for Suzuki generalized non-
expansive mappings in the setting of CAT (0) Spaces. Our results
are the extension, improvement and generalization of many known
results in CAT (0) spaces.

1. Introduction

The well-known Banach contraction theorem uses Picard iteration
process for approximation of fixed points. Some of the other well-known
iterative processes are Mann [14], Ishikawa [12], S [2], Noor [17], Abbas
[1], SP [19], Moudafi [16], S∗ [13], CR [6], Normal-S [21], Picard Mann
[15], Picard-S [11], Thakur New [23] and so on. These iteration processes
are also used to approximate fixed point in CAT(0) spaces (see e.g.
[9, 10, 25]). Recently Ullah and Arshad [24] introduced new iteration
process known as M iteration process. They proved that M iteration
process is faster than the well-known iteration processes like Picard-S
and S iteration processes.

In [24], the authors developed an example of Suzuki generalized non-
expansive mapping which is not nonexpansive and use it to show the ef-
ficiency of M iteration process. They also proved some weak and strong
convergence theorems for Suzuki generalized nonexpansive mappings in
the setting of uniformaly convex Banach spaces.
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Motivated by above, in this paper first we develop a new example
of Suzuki generalized nonexpansive mapping and compare M iteration
process with Picard-S iteration process and S iteration process using
numerical values. Graphic representation is also given. After this we
prove some strong and ∆-convergence theorems in the setting of CAT (0)
spaces for the sequence generated by M iteration process.

2. Preliminaries

Let (X, d) be a metric space. A geodesic form x to y in X is a map
c from closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and

d(c(t), c(t
′
)) = |t − t

′ | for all t, t′ ∈ [0, l]. In particular, c is an isometry
and d(x, y) = l. The image of c is called a geodesic (or metric) segment
joining x and y. The space (X, d) is said to be geodesic space if every
two points of X are joined by a geodesic and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈
X, which we will denote by [x, y], called the segment joining x to y.

A geodesic triangle ∆(x1,x2,x3) in a geodesic metric space (X, d) con-
sists of three points x1, x2, x3 in X (the vertices of ∆) and a geodesic
segment between each pair of vertices (the edges of ∆). A comparison
triangle for the triangle ∆(x1,x2,x3) in (X, d) is a triangle ∆̄(x1,x2,x3) :=
∆(x̄1,x̄2,x̄3) in R2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be CAT (0) space if all geodesic tiangles
of appropriate size satisfy the following comparison axiom.

CAT (0): Let ∆ be a geodesic triangle in X and let ∆̄ be a comparison
triangle for ∆. Then ∆ is said to satisfy the CAT (0) inequality if for all
x, y ∈ ∆ and comparison points x̄, ȳ ∈ ∆̄, we have

d(x, y) ≤ dE2(x̄, ȳ).

If x, y1,y2 are points in CAT (0) space and if y0 is the midpoint of the
segment [y1, y2] then the CAT (0) inequality implies

(CN) d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.

This is the (CN) inequality of Burhat and Tits [4].
A CAT (0) space may be regarded as a metric version of Hilbert Space.

Following is the extended version of parallelogram law:

(2.1) d(z, αx⊕(1−α)y)2 ≤ αd(x, z)2+(1−α)d(z, y)2−α(1−α)d(x, y)2,

for any α ∈ [0, 1], x, y ∈ X.
If α = 1

2 , then the inequality (2.1) becomes the CN inequality.
In fact, a geodesic space is a CAT (0) space if and only if it satisfies

the (CN) inequality. Complete CAT (0) spaces are often called Hadmard
space. For more on these spaces, see [3, 5].
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We recall the following result of Dhompongsa and Panyanak [9].

Lemma 2.1. For x, y ∈ X and α ∈ [0, 1], there exists a unique point z
∈ [x, y] such that

(2.2) d(x, z) = αd(x, y) and d(y, z) = (1− α)d(x, y).

Notation (1−α)x⊕αy is used for the unique point z satisfying (2.2).
Note that a subset C of X is called convex if (1− α)x⊕ αy ∈ C for all
x, y ∈ C and α ∈ [0, 1].

Lemma 2.2. For x, y, z ∈ X and α ∈ [0, 1], we have

(2.3) d(z, ax⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y),

for all z ∈ X.

Let C be a nonempty closed convex subset of a CAT (0) space X and
let {xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C},
and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

Proposition 2.3 ([7], Proposition 5). It is known that, in a CAT (0)
space, A(C, {xn}) consists of exactly one point.

We now recall the definitions of strong and ∆-convergance in a CAT (0)
space.

Definition 2.4. A sequence {xn} in a CAT (0) space X is said to be
∆-convergence to x ∈ X if x is the unique asymptotic center of {ux}
for every subsequence {ux} of {xn}. In this case we write ∆-limnxn = x
and call x the ∆-lim of {xn}.

Recall that a bounded sequence {xn} in X is said to be regular if
r({xn}) = r{ux} for every subseuence {ux} of {xn}. Since in a CAT (0)
space every regular sequence is ∆-converges, we see that, every bounded
sequence in X has a ∆-convergence subsequence.

Definition 2.5. A CAT (0) space X is said to satisfy the Opial′s prop-
erty [9] if for each sequence {xn} in X, ∆-converges to x ∈ X, we have

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y),

for all y ∈ X such that y ̸= x.
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A point p is called a fixed point of a mapping T if T (p) = p and F (T )
represents the set of all fixed points of mapping T. Let C be a nonempty
subset of a CAT (0) space X.

A mapping T : C → C is called contraction if there exists α ∈ (0, 1)
such that

d(Tx, Ty) ≤ αd(x, y),

for all x, y ∈ C.
A mapping T : C → C is called nonexpansive if for all x, y ∈ C we

have,
d(Tx, Ty) ≤ d(x, y),

and quasi-nonexpansive if for all x ∈ C and p ∈ F (T ), we have

d(Tx, p) ≤ d(x, p).

In 2008, Suzuki [18] introduced the concept of generalized nonexpansive
mappings which is a condition on mappings called condition (C). A
mapping T : C → C is said to satisfy condition (C) if for all x, y ∈ C,
we have

(2.4)
1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y).

Suzuki [22] showed that the mapping satisfying condition (C) is weaker
than nonexpansiveness and stronger than quasi nonexpansiveness. The
mapping satisfy condition (C) is called Suzuki generalized nonexpansive
mapping.

Suzuki [22] obtained fixed point theorems and convergence theorems
for Suzuki generalized nonexpansive mappings. In 2011, Phuengrattana
[18] proved convergence theorems for Suzuki generalized nonexpansive
mappings using the Ishikawa iteration process in uniformly convex Ba-
nach spaces and CAT (0) spaces. Recently, fixed point theorems for
Suzuki generalized nonexpansive mapping have been studied by a num-
ber of authors see e.g. [23] and references therein.

We now list some properties of Suzuki generalized nonexpansive map-
pings.

Proposition 2.6. Let C be a nonempty subset of a CAT (0) space X
and T : C → C be any mapping. Then

(i) If T is nonexpansive then T is Suzuki generalized nonexpansive
mapping.

(ii) If T is Suzuki generalized nonexpansive mapping and has a fixed
point, then T is a quasi-nonexpansive mapping.

(iii) If T is Suzuki generalized nonexpansive mapping, then

d(x, Ty) ≤ 3d(Tx, x) + d(x, y)

for all x, y ∈ C [22].
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Lemma 2.7 ([8], Proposition 2.1). If C is a closed convex subset of a
complete CAT (0) space X and if {xn} is a bounded sequence in C then
the asymptotic center of {xn} is in C.

Lemma 2.8 ([18]). Every bounded sequence in a complete CAT (0) space
always has a ∆-convergent subsequence.

Lemma 2.9 ([18], Proposition 3.7). Let C is a closed convex subset of
a complete CAT (0) space X and let T : C → X be a Suzuki generalized
nonexpansive mapping. Then the conditions {xn} ∆-converges to x and
d(Txn, xn) → 0 implies x ∈ C and Tx = x.

Lemma 2.10 ([22]). Let T be a mapping on a subset C of a CAT (0)
space X with the Opial property. Assume that T is a Suzuki generalized
nonexpansive mapping. If {xn} ∆-converges to z and

lim
n→∞

d(Txn, xn) = 0, ⇒ Tz = z.

That is I − T is demiclosed at zero.

Lemma 2.11 ([22]). Let C be a weakly compact convex subset of a
CAT (0) space X. Let T be a mapping on C. Assume that T is a Suzuki
generalized nonexpansive mapping. Then T has a fixed point.

Lemma 2.12 ([17], Lemma 1.3). Suppose that X is a CAT (0) space
and {tn} is any real sequence such that

0 < p ≤ tn ≤ q < 1,

for all n ≥ 1. Let {xn} and {yn} be any two sequences of X such that

lim sup
n→∞

d(xn, 0) ≤ r, lim sup
n→∞

d(yn, 0) ≤ r,

and
lim sup

n→∞
d(tnxn ⊕ (1− tn)yn) = r,

hold for some r ≥ 0. Then

lim n→∞d(x, yn) = 0.

Let n ≥ 0 and {αn} and {βn} are real sequences in [0, 1]. Ullah and
Arshad [24] introduced a new three-step iteration process known as M
iteration process, defined as:

(2.5)


x0 ∈ C;
zn = (1− αn)xn + αnTxn;
yn = Tzn;
xn+1 = Tyn.

Following is the example of Suzuki generalized nonexpansive mapping
which is not nonexpansive.
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Example 2.13. Define a mapping T : [0, 1] → [0, 1] by

Tx =


1− x

x+2
3

x ∈
[
0, 1

12

)
;

x ∈
[
1
12 , 1

]
.

We need to prove that T is Suzuki generalized nonexpansive mapping
but not nonexpansive.

If x = 1
13 , y = 1

12 we see that

d(Tx, Ty) = |Tx− Ty|

=

∣∣∣∣1− 1

13
− 25

36

∣∣∣∣
=

107

468

>
1

156
= d(x, y).

Hence T is not nonexpansive mapping.
To verify that T is Suzuki generalized nonexpansive mapping, consider

the following cases:

Case I: Let x ∈
[
0, 1

12

)
, then

1

2
d(x, Tx) =

1− 2x

2
∈
(

5

12
,
1

2

]
.

For 1
2d(x, Tx) ≤ d(x, y), we must have 1−2x

2 ≤ y−x, i.e., 1
2 ≤ y,

hence y ∈
[
1
2 , 1

]
. We have

d(Tx, Ty) =

∣∣∣∣y + 2

3
− (1− x)

∣∣∣∣ = ∣∣∣∣y + 3x− 1

3

∣∣∣∣ < 1

12
,

and

d(x; y) = |x− y| >
∣∣∣∣ 112 − 1

2

∣∣∣∣ = 5

12
.

Hence

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Case II: Let x ∈
[
1
12 , 1

]
, then

1

2
d(x, Tx) =

1

2

∣∣∣∣x+ 2

3
− x

∣∣∣∣ = 2− 2x

6
∈
[
0,

11

36

]
.

For 1
2d(x, Tx) ≤ d(x, y), we must have 2−2x

6 ≤ |y − x| , which
gives two possibilities:
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(a) Let x < y, then

2− 2x

6
≤ y − x ⇒ y ≥ 2 + 4x

6

⇒ y ∈
[
7

18
, 1

]
⊂

[
1

12
, 1

]
.

So

d(Tx, Ty) =

∣∣∣∣x+ 2

3
− y + 2

3

∣∣∣∣ = 1

2
d(x, y) ≤ d(x, y).

Hence

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

(b) Let x > y, then

2− 2x

6
≤ x− y ⇒ y ≤ x− 2− 2x

6
=

8x− 2

6

⇒ y ∈
[
− 4

18
, 1

]
.

Since y ∈ [0, 1], so

y ≤ 8x− 2

6
⇒ x ∈

[
1

4
, 1

]
.

So the case is x ∈
[
1
4 , 1

]
and y ∈ [0, 1] .

Now x ∈
[
1
4 , 1

]
and y ∈

[
1
12 , 1

]
is already included in (a).

So let x ∈
[
1
4 , 1

]
and y ∈

[
0, 1

12

)
, then

d(Tx, Ty) =

∣∣∣∣x+ 2

3
− (1− y)

∣∣∣∣
=

∣∣∣∣x+ 3y − 1

3

∣∣∣∣ .
For convenience, first we consider x ∈

[
1
4 ,

1
2

]
and y ∈[

0, 1
12

)
, then d(Tx, Ty) ≤ 1

12 and d(x, y) > 2
12 . Hence

d(Tx, Ty) ≤ d(x, y).
Next consider x ∈

[
1
2 , 1

]
and y ∈

[
0, 1

12

)
, then d(Tx, Ty) ≤

1
12 and d(x, y) > 5

12 . Hence d(Tx, Ty) ≤ d(x, y). So

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Hence T is Suzuki generalized nonexpansive mapping.
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In Table 1, some of the values of the sequences generated by M ,
Picard-S and S iteration processes are given. We can easily see the
efficiency of M iteration process. Graphic representation is given in
Figure 1.

Table 1. Sequences generated by M , Picard-S and S
iteration processes

M Picard-S S
x0 0.9 0.9 0.9
x1 0.991688625725994 0.988888888888889 0.966666666666667
x2 0.999514134612753 0.998895566981943 0.990060102837099
x3 0.999980464268334 0.999896209964084 0.997197669030279
x4 0.999999512143476 0.999990573260599 0.999236434108505
x5 0.999999994342934 0.999999163272635 0.999796675250441
x6 1 0.999999926951357 0.999946747538955
x7 1 0.999999993701947 0.999986226158885
x8 1 0.999999999462288 0.999996472072917
x9 1 0.999999999954451 0.999999103464931
x10 1 0.999999999996166 0.999999773635541

0.975 0.980 0.985 0.990 0.995 1.000

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

xn

x n
+

1

Figure 1. Convergence of iterative sequences generated
by M (red line), Picard-S (blue line) and S (green line)
iteration processes to the fixed point 1 of mapping T
defined in Example 2.13.
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3. Convergence Results for Suzuki Generalized
Nonexpansive Mappings

In this section, we prove some strong and ∆-convergence theorems for
the sequence generated by M iteration process in the setting of CAT (0)
spaces. M iteration process in the launguge of CAT (0) spaces is given
by

(3.1)


x0 ∈ C;
zn = (1− αn)xn ⊕ αnTxn;
yn = Tzn;
xn+1 = Tyn.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and let T : C → C be a Suzuki generalized nonex-
pansive mapping with F (T ) ̸= ∅. For arbitrary chosen x0 ∈ C, let the
sequence {xn} be generated by (3.1), then limn→∞ d(xn, p) exists for any
p ∈ F (T ).

Proof. Let p ∈ F (T ) and z ∈ C. Since T is Suzuki generalized nonex-
pansive mapping, so

1

2
d(p, Tp) = 0 ≤ d(p, z),

implies that d(Tp, Tz) ≤ d(p, z).
So by Proposition 2.6 (ii), we have

d(zn, p) = d((1− βn)xn⊕βnTxn, p)(3.2)

≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p).

By using (3.2), we get

d(yn, p) = d(Tzn, p)(3.3)

≤ d(zn, p)

≤ d(xn, p).

Similarly by using (3.3), we have

d(xn+1, p) = d(Tyn, p)(3.4)

≤ d(yn, p)

≤ d(xn, p).

This implies that {d(xn, p)} is bounded and non-increasing for all
p ∈ F (T ). Hence lim

n→∞
(xn, p) exists, as required. □



106 K. ULLAH, H. NAWAZ, AND M. ARSHAD

Theorem 3.2. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and let T : C → C be a Suzuki generalized nonexpan-
sive mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn} be
generated by (3.1) for all n ≥ 1, where {αn} and {βn} are sequence of
real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then F (T ) ̸= ∅
if and only if {xn} is bounded and limn→∞ d(Txn, xn) = 0.

Proof. Suppose F (T ) ̸= ∅ and let p ∈ F (T ). Then, by Theorem 3.1,
limn→∞ d(xn, p) exists and {xn} is bounded. Put

(3.5) lim
n→∞

(xn, p) = r.

From (3.2) and (3.5), we have

(3.6) lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = r.

By Proposition 2.6 (ii) we have

(3.7) lim sup
n→∞

d(Txn, p) ≤ lim sup
n→∞

d(xn, p) = r.

On the other hand by using S Iteration Process, we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

= d(Tzn, p)

≤ d(zn, p).

Therefore

(3.8) r ≤ lim inf
n→∞

d(zn, p).

By (3.6) and (3.8) we get

r = lim
n→∞

d(zn, p)(3.9)

= lim
n→∞

d(((1− βn)xn ⊕ βnTxn), p).

We have that lim
n→∞

d(Txn, xn) = 0.

Conversely, suppose that {xn} is bounded and lim
n→∞

d (Txn, xn) = 0.

Let p ∈ A(C, {xn}). By Proposition 2.6 (iii), we have

r (Tp, {xn}) = lim sup
n→∞

d(xn, Tp)

≤ lim sup
n→∞

(3d(Txn, xn) + d(xn, p))

≤ lim sup
n→∞

d(xn, p)

= r(p, {xn}).
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This implies that Tp ∈ A(C, {xn}). So by Proposition 2.3, A(C, {xn})
is singleton, and we have Tp = p. Hence F (T ) ̸= ∅. □

Now we are in the position to prove ∆-convergence theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and let T : C → C be a Suzuki generalized nonex-
pansive mapping with F (T ) ̸= ∅. For arbitrary chosen x0 ∈ C, let the
sequence {xn} be generated by (3.1) for all n ≥ 1, where {αn} and {βn}
are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1.
Then {xn} ∆-converges to a fixed point of T .

Proof. Since F (T ) ̸= ∅, by Theorem 3.2 we have that {xn} is bounded
and limn→∞ d(Txn, xn) = 0. We now let ww{xn} :=

∪
A({un}) where

the union is taken over all subsequences {un} of {xn}. We claim that
ww{xn} ⊂ F (T ). Let u ∈ ww{xn}, then there exists a subsequence
{un} of {xn} such that A({un}) = {u}. By Lemma 2.7 and Lemma 2.8
there exists a subsequence {vn} of {un} such that ∆-limn {vn} = v ∈ C.
Since limn→∞ d(vn, T vn) = 0, then v ∈ F (T ) by Lemma 2.9. We claim
that u = v. Suppose not, since T is a Suzuki generalized nonexpansive
mapping and v ∈ F (T ), limn d(xn, v) exists by Theorem 3.1. Then by
uniqueness of asymptotic centers,

lim
n

supd(vn, v) < lim
n

supd(vn, u)

≤ lim
n

sup d(un, u)

< lim
n

sup d(un, v)

= lim
n

sup d(xn, v))

= lim
n

sup d(vn, v),

which is a contradiction, and hence u = v ∈ F (T ). To show that {xn}
∆-converges to a fixed point of T , it is sufices to show that ww{xn}
consists of exactly one point. Let {un} be a subsequence of {xn}. By
Lemma 2.7 and Lemma 2.8 there exists a subsequence {vn} of {un} such
that ∆-limn vn = v ∈ C. Let A({un}) = {u} and A({xn}) = {x}. We
have seen that c ∈ F (T ). We can complete the proof by showing x = v.
Suppose not, since {d(xn, v)} is convergent, then by the uniqueness of
asymptotic centers,

lim
n

supd(vn, v) < lim
n

sup d(vn, x)

≤ lim
n

sup d(xn, x)

< lim
n

sup d(xn, v)

= lim
n

sup d(vn, v)
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which is a contradiction, and hence the conclusion follows. □
Next we prove the strong convergence theorem.

Theorem 3.4. Let C be a nonempty compact convex subset of a com-
plete CAT (0) space X, and let T : C → C be a Suzuki generalized
nonexpansive mapping. For arbitrary chosen x0 ∈ C, let the sequence
{xn} be generated by (3.1) for all n ≥ 1, where {αn} and {βn} are se-
quences of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then
{xn} converges strongly to a fixed point of T .

Proof. By Lemma 2.11, we have that F (T ) ̸= ∅ so by Theorem 3.1
we have limn→∞ d(Txn, xn) = 0. Since C is compact, so there exists a
subsequence {xnk

} of {xn} such that {xnk
} converges strongly to p for

some p ∈ C. By Proposition 2.6(iii), we have

d(xnk
, Tp) ≤ 3d(Txnk

, xnk
) + d(xnk

, p), for all n ≥ 1.

Letting k → ∞, we get Tp = p, i.e., p ∈ F (T ). By Theorem 3.1,
lim
n→∞

d(xn, p) exists for every p ∈ F (T ), so xn converges strongly to

p. □
Senter and Dotson [20] introduced the notion of condition (I) as fol-

lows:
A mapping T : C → C is said to satisfy condition (I), if there exists a

nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ C, where
d(x, F (T )) = infp∈F (T ) d(x, p).

Now we prove the strong convergence theorem using condition (I).

Theorem 3.5. Let C be a nonempty closed convex subset of a complete
CAT (0) space X, and let T : C → C be a Suzuki generalized nonex-
pansive mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn}
be generated by (3.1) for all n ≥ 1, where {αn} and {βn} are sequences
of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1 such that
F (T ) ̸= ∅. If T satisfy condition (I), then {xn} converges strongly to a
fixed point of T .

Proof. By Theorem 3.1, we have limn→∞ d(xn, p) exists for all p ∈ F (T )
and so limn→∞ d(xn, F (T )) exists. Assume that limn→∞ d(xn, p) = r for
some r ≥ 0. If r = 0 then the result follows. Suppose r > 0, from the
hypothesis and condition (I), we have

(3.10) f(d(xn, F (T ))) ≤ d(Txn, xn).

Since F (T ) ̸= ∅, so by Theorem 3.2, we have limn→∞ d(Txn, xn) = 0.
So (3.10) implies that

(3.11) lim
n→∞

f(d(xn, F (T ))) = 0.
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Since f is nondecreasing function, so from (3.11) we have

lim
n→∞

d(xn, F (T )) = 0.

Thus, we have a subsequence {xnk
} of {xn} and a sequence {yk} ⊂ F (T )

such that

d(xnk
, yk) <

1

2k
, for all k ∈ N.

So by using (3.4), we get

d(xnk+1
, yk) ≤ d(xnk

, yk) <
1

2k
.

Hence

d(yk+1, yk) ≤ d(yk+1, xk+1) + d(xk+1, yk)

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0, as k → ∞.

This shows that {yk} is a Cauchy sequence in F (T ) and so it converges
to a point p. Since F (T ) is closed, therefore p ∈ F (T ) and then {xnk

}
converges strongly to p. Since lim

n→∞
d(xn, p) exists, we have that xn →

p ∈ F (T ) and the proof is complete. □
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