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The Existence Theorem for Contractive Mappings on

wt-distance in b-metric Spaces Endowed with a Graph and its

Application

Kamal Fallahi1∗, Dragana Savić2, and Ghasem Soleimani Rad3

Abstract. In this paper, we study the existence and uniqueness
of fixed points for mappings with respect to a wt-distance in b-
metric spaces endowed with a graph. Our results are significant,
since we replace the condition of continuity of mapping with the
condition of orbitally G-continuity of mapping and we consider b-
metric spaces with graph instead of b-metric spaces, under which
can be generalized, improved, enriched and unified a number of
recently announced results in the existing literature. Additionally,
we elicit all of our main results by a non-trivial example and pose
an interesting two open problems for the enthusiastic readers.

1. Introduction and Preliminaries

The symmetric space, as metric-like spaces lacking the triangle in-
equality is introduced by Wilson [23]. Thereinafter, b-metric spaces are
defined by Bakhtin [3] and Czerwik [11].

Definition 1.1. Let X be a nonempty set and s ≥ 1 be a real number.
Suppose that the mapping d : X ×X → [0,∞) satisfies

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) ≤ s[d(x, y) + d(y, z)] for all x, y, z ∈ X.

Then d is called a b-metric and (X, d) is called a b-metric space (or a
metric type space).
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Obviously, for s = 1, a b-metric space is a metric space. Also, for
notions such as convergent and Cauchy sequences, completeness, conti-
nuity and etc. in b-metric spaces, we refer to [1, 7, 20].

In 1996, Kada et al. [18] introduced the concept of w-distance in
metric spaces, where non-convex minimization problems were treated.
In 2014, Hussain et al. [16] defined a wt-distance on b-metric spaces
and proved some fixed point theorems under wt-distance in a partially
ordered b-metric space.

Definition 1.2 ([16]). Let (X, d) be a b-metric space and s ≥ 1 be
a given real number. A function ρ : X × X → [0,+∞) is called a
wt-distance on X if the following properties are satisfied:

(ρ1) ρ(x, z) ≤ s[ρ(x, y) + ρ(y, z)] for all x, y, z ∈ X;
(ρ2) ρ is b-lower semi-continuous in its second variable, i.e. if x ∈ X

and yn → y in X then ρ(x, y) ≤ s lim infn ρ(x, yn);
(ρ3) for each ε > 0 there exists δ > 0 such that ρ(z, x) ≤ δ and

ρ(z, y) ≤ δ imply d(x, y) ≤ ε.

Obviously, for s = 1, every wt-distance is a w-distance. But, a w-
distance is not necessary a wt-distance. Thus, each wt-distance is a
generalization of w-distance.

Lemma 1.3 ([16]). Let (X, d) be a b-metric space with parameter s ≥ 1
and ρ be a wt-distance on X. Also, let {xn} and {yn} be sequences in
X, let {αn} and {βn} be a sequences in [0,+∞) converging to zero and
x, y, z ∈ X. Then the following conditions hold:

(i) if ρ(xn, y) ≤ αn and ρ(xn, z) ≤ βn for all n ∈ N, then y = z.
In particular, if ρ(x, y) = 0 and ρ(x, z) = 0, then y = z;

(ii) if ρ(xn, yn) ≤ αn and ρ(xn, z) ≤ βn for n ∈ N, then {yn}
converges to z;

(iii) if ρ(xn, xm) ≤ αn for all m,n ∈ N with m > n, then {xn} is a
Cauchy sequence in X;

(iv) if ρ(y, xn) ≤ αn for all n ∈ N, then {xn} is a Cauchy sequence
in X.

The most important graph theory approach to metric fixed point
theory introduced so far is attributed to Jachymski [17]. In this ap-
proach, the underlying metric space is equipped with a directed graph
and the Banach contraction is formulated in a graph language (also, see
[5, 12, 14, 21]).

The purpose of this paper is to prove the existence and uniqueness of
fixed points for mappings under a wt-distance in b-metric spaces endowed
with a graph. Our results are generalizations of some fixed point theo-
rems given in terms of a wt-distance on b-metric spaces to wt-distance
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from b-metric spaces equipped with a graph G. As an application, we
develop our results in the framework of a generalized c-distance on cone
b-metric spaces.

2. Main Results

Let (X, d) be a b-metric space and G be a directed graph with vertex
set V (G) = X such that the edge set E(G) contains all loops; that is,
(x, x) ∈ E(G) for all x ∈ X. Also, let the graph G has no parallel
edges. Then the graph G can be easily denoted by the ordered pair
(V (G), E(G)) and it is said that the b-metric space (X, d) is endowed
with the graph G. The b-metric space (X, d) can also be endowed with

the graphs G−1 and G̃, where the former is the conversion of G which is
obtained from G by reversing the directions of the edges, and the latter
is an undirected graph obtained from G by ignoring the directions of

the edges. In other words, V (G−1) = V (G̃) = X, E(G−1) =
{
(x, y) :

(y, x) ∈ E(G)
}
and E(G̃) = E(G) ∪ E(G−1). If x, y ∈ X, then a finite

sequence (xi)
N
i=0 consisting of N + 1 vertices is called a path in G from

x to y whenever x0 = x, xN = y and (xi−1, xi) is an edge of G for
i = 1, . . . , N . The graph G is called connected if there exists a path in
G between each two vertices of G. For more details on graphs, see [6]. In
the sequel, let (X, d) be a b-metric space endowed with a graph G with
V (G) = X and ∆(X) ⊆ E(G), where ∆(X) = {(x, x) ∈ X ×X : x ∈
X}. Also, we denote by Fix(T ) the set of all fixed points of a self-map
T on X and we use XT to denote the set of all points x ∈ X such that
(x, Tx) is an edge of G; that is, XT = {x ∈ X : (x, Tx) ∈ E(G)}.

Following the idea of Petruşel and Rus [21], we define Picard operators
in b-metric spaces.

Definition 2.1. Let (X, d) be a b-metric space. A self-map T on X
is called a Picard operator if T has a unique fixed point x∗ in X and
Tnx→ x∗ for all x ∈ X.

We also need a weaker type of continuity in b-metric spaces endowed
with a graph. The idea of this definition comes from the definition
of orbital continuity considered by Cirić [9] (also, see [2]). Following
Jachymski [17], we introduce the concept of orbitally G-continuous for
self-map f on b-metric spaces.

Definition 2.2. Let (X, d) be a b-metric space endowed with a graph
G. A mapping T : X → X is called orbitally G-continuous on X
if for all x, y ∈ X and all sequences {bn} of positive integers with
(T bnx, T bn+1x) ∈ E(G) for all n ≥ 1, the convergence T bnx → y im-
plies T (T bnx) → Ty.
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Trivially, a continuous mapping on a b-metric space is orbitally G-
continuous for all graphs G but the converse is not generally true.

Theorem 2.3. Let (X, d) be a complete b-metric space endowed with
the graph G and s ≥ 1 be a given real number. Also, let ρ be a wt-
distance and T : X → X be an orbitally G-continuous mapping. Suppose
that there exist mappings α, β, γ : X → [0, 1) such that the following
conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t4) for all x, y ∈ X with (x, y) ∈ E(G),

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),

ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then ρ(x∗, x∗) = 0. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

Proof. Because Fix(T ) ⊆ XT , it follows that if T has a fixed point, then
XT is nonempty. Now, let x0 ∈ XT . Since T preserves the edges of G,
then (xn, xn+1) ∈ E(G) for all n ∈ N, where xn = Txn−1 = Tnx0. Since
(xn−1, xn) ∈ E(G), by a simple calculation, we have

ρ(xn+1, xn) ≤ α(x0)ρ(xn, xn−1) + s(β + γ)(x0)ρ(xn, xn+1)(2.1)

+ s[β(x0)ρ(xn+1, xn) + γ(x0)ρ(xn−1, xn)].

Similarly, we have

ρ(xn, xn+1) ≤ α(x0)ρ(xn−1, xn) + s(β + γ)(x0)ρ(xn+1, xn)(2.2)

+ s[β(x0)ρ(xn, xn+1) + γ(x0)ρ(xn, xn−1)].

Adding up (2.1) and (2.2), we get

ρ(xn+1, xn) + ρ(xn, xn+1) ≤ (α+ sγ)(x0)[ρ(xn, xn−1) + ρ(xn−1, xn)]

+ s(2β + γ)(x0)[ρ(xn+1, xn) + ρ(xn, xn+1)].

Let un = ρ(xn+1, xn) + ρ(xn, xn+1). Then

un ≤ (α+ sγ)(x0)un−1 + s(2β + γ)(x0)un.

Thus, we have un ≤ hun−1, where 0 ≤ h = (α+sγ)(x0)
1−s(2β+γ)(x0)

< 1
s by (t2).

By repeating the procedure, we get un ⪯ hnu0 for all n ∈ N and hence

ρ(xn, xn+1) ≤ un ≤ hn[ρ(x1, x0) + ρ(x0, x1)].(2.3)
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Let m > n. It follows from (2.3) and 0 ≤ sh < 1 that

ρ(xn, xm) ≤ s[ρ(xn, xn+1) + ρ(xn+1, xm)]

...

≤ sρ(xn, xn+1) + s2ρ(xn+1, xn+2) + · · ·+ sm−nρ(xm−1, xm)]

≤ shn

1− sh
[ρ(x1, x0) + ρ(x0, x1)].

Since shn

1−sh [ρ(x1, x0) + ρ(x0, x1)] is a sequence in [0,+∞) converging to

0, {xn} is a Cauchy sequence in X (by using (iii) of Lemma 1.3). Since
X is complete, there exists a point x∗ ∈ X such that xn = Tnx0 → x∗
as n → ∞. We are going to show that x∗ is a fixed point of T . To this
end, note that from x0 ∈ XT we have (Tnx0, T

n+1x0) ∈ E(G) for all
n ≥ 0. Thus, by orbital G-continuity of T , we get Tn+1x0 → Tx∗. Since
the limit of a sequence is unique, we conclude Tx∗ = x∗. Thus, x∗ is a
fixed point of the mapping T . Now, let Tx∗ = x∗ for x∗ ∈ X. Then (t4)
implies that

ρ(x∗, x∗) = ρ(Tx∗, Tx∗)

≤ α(x∗)ρ(x∗, x∗) + β(x∗)ρ(x∗, Tx∗) + γ(x∗)ρ(x∗, Tx∗)

= (α+ β + γ)(x∗)ρ(x∗, x∗).

Since 0 ≤ (α + β + γ)(x∗) <
(
s(α + 2β) + (s2 + s)γ

)
(x∗) and

(
s(α +

2β) + (s2 + s)γ
)
(x∗) < 1 by (t2), we get that ρ(x∗, x∗) = 0.

Next, suppose that the subgraph of G with the vertex set Fix(T ) is
connected and x∗∗ ∈ X is a fixed point of T . Then there exists a path
(xi)

N
i=0 in G from x∗ to x∗∗ such that x1, . . . , xN−1 ∈ Fix(T ); that is,

x0 = x∗, xN = x∗∗ and (xi−1, xi) ∈ E(G) for i = 1, . . . , N . Therefore,
by (t4), for each i = 1, 2, · · ·N , we have

ρ(xi, xi−1) = ρ(Txi, Txi−1)

≤ α(xi)ρ(xi, xi−1) + β(xi)ρ(xi, Txi−1) + γ(xi)ρ(xi−1, Txi)(2.4)

= (α+ β)(xi)ρ(xi, xi−1) + γ(xi)ρ(xi−1, xi),

and

ρ(xi−1, xi) = ρ(Txi−1, Txi)

≤ α(xi)ρ(xi−1, xi) + β(xi)ρ(Txi−1, xi) + γ(xi)ρ(Txi, xi−1)(2.5)

= (α+ β)(xi)ρ(xi−1, xi) + γ(xi)ρ(xi, xi−1).

Hence, by (2.4) and (2.5), we get

ρ(xi, xi−1) + ρ(xi−1, xi) ≤ (α+ β + γ)(xi)[ρ(xi, xi−1) + ρ(xi−1, xi)],
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which is a contradiction unless ρ(xi, xi−1) + ρ(xi−1, xi) = 0, since 0 ≤
(α + β + γ)(x∗) <

(
s(α + 2β) + (s2 + s)γ

)
(x∗) and

(
s(α + 2β) + (s2 +

s)γ
)
(x∗) < 1 by (t2). Hence ρ(xi, xi−1) = ρ(xi−1, xi) = 0. Now, since

ρ(xi, xi) = 0 and ρ(xi, xi−1) = 0, we have d(xi, xi−1) = 0; that is,
xi = xi−1. Thus,

x∗ = x0 = x1 = · · · = xN−1 = xN = x∗∗.

Consequently, the fixed point of T is unique and the restriction of T to
XT is a Picard operator. □
Example 2.4. Let X = [0, 1] and define a mapping d : X × X → R
by d(x, y) = (x − y)2 for all x, y ∈ X. Then (X, d) is a complete b-
metric space with s = 2. Also, let a mapping T : X → X be defined

by T (1) = 1 and Tx = x2

4 for all x ∈ X − {1}. Obviously, T is not
continuous at x = 1, and in particular, on the whole X. Now assume
that X is endowed with a graph G = (V (G), E(G)), where V (G) = X
and E(G) = {(x, x) : x ∈ X} ∪ {(0, 12), (

1
2 , 0)}. If x, y ∈ X and {bn} is a

sequence of positive integers with (T bnx, T bn+1x) ∈ E(G) for all n ≥ 1
such that T bnx → y, then {T bnx} is necessarily a constant sequence.
Thus, T bnx = y for all n ≥ 1 and T (T bnx) → Ty. Hence, T is orbitally
G-continuous on X. Now, consider ρ : X × X → [0,∞) defined by
ρ(x, y) = d(x, y) for all x, y ∈ X. Then ρ is a wt-distance. Define the

mappings α(x) = (x+1)2

9 and β(x) = γ(x) = 0 for all x ∈ X. Now, we
have

(i) α(Tx) = 1
9

(
x2

4 + 1
)2 ≤ 1

9

(
x2 + 1

)2 ≤ (x+1)2

9 = α(x) for all

x ∈ X − {1} and α(T1) = α(1) =
4

9
;

(ii) β(Tx) = 0 ≤ 0 = β(x) and γ(Tx) = 0 ≤ 0 = γ(x) for all x ∈ X;

(iii)
(
2(α+ 2β) + (22 + 2)γ

)
(x) = 2 (x+1)2

9 < 1 for all x ∈ X;
(iv) let x ∈ X. Then

ρ(Tx, Tx) = 0 = α(x)ρ(x, x) + β(x)ρ(x, Tx) + γ(x)ρ(x, Tx),

ρ(Tx, Tx) = 0 = α(x)ρ(x, x) + β(x)ρ(Tx, x) + γ(x)ρ(Tx, x).

or

ρ(T
1

2
, T0) =

1

256
≤ α(

1

2
)ρ(

1

2
, 0) + β(

1

2
)ρ(

1

2
, T0) + γ(

1

2
)ρ(0, T

1

2
),

ρ(T0, T
1

2
) =

1

256
≤ α(

1

2
)ρ(0,

1

2
) + β(

1

2
)ρ(T0,

1

2
) + γ(

1

2
)ρ(T

1

2
, 0).

Therefore, the conditions of Theorem 2.3 are satisfied and hence T has
a fixed point x = 0 with ρ(0, 0) = 0.

In Example 2.4, we consider ρ = d (because each b-metric is a wt-
distance). One can consider non-trivial examples of wt-distance and
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check the validity of Theorem 2.3 (for example, see [16, 22]). An im-
mediate consequence of Theorem 2.3 can be stated in the form of the
following theorem.

Theorem 2.5. Let (X, d) be a complete b-metric space endowed with the
graph G and s ≥ 1 be a given real number. Also, let ρ be a wt-distance
and T : X → X be an orbitally G-continuous mapping. Suppose that
there exist α, β, γ > 0 with s(α + 2β) + (s2 + s)γ < 1 such that the
following conditions hold:

(t1) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t2) for all x, y ∈ X with (x, y) ∈ E(G),

ρ(Tx, Ty) ≤ αρ(x, y) + βρ(x, Ty) + γρ(y, Tx),

ρ(Ty, Tx) ≤ αρ(y, x) + βρ(Ty, x) + γρ(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then ρ(x∗, x∗) = 0. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

Proof. We can prove this result by applying Theorem 2.3 with α(x) = α,
β(x) = β and γ(x) = γ. □

Several consequences of Theorem 2.3 follow now for particular choices
of the graph. For example, consider b-metric (X, d) endowed with the
complete graph G0 whose vertex set coincides with X; that is, V (G0) =
X and E(G0) = X × X. If we set G = G0 in Theorem 2.3, then it is
clear that the set XT related to any self-map T on X coincides with the
whole set X. Then we get the following corollary.

Corollary 2.6. Let (X, d) be a complete b-metric space endowed with the
graph G0 and s ≥ 1 be a given real number. Also, let ρ be a wt-distance
and T : X → X be continuous. Suppose that there exist mappings
α, β, γ : X → [0, 1) such that the following conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) for all x, y ∈ X,

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),

ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T is a Picard operator.

Now, suppose that (X,⊑) is a poset. Consider on the poset X the
graph G1 given by V (G1) = X and E(G1) =

{
(x, y) ∈ X ×X : x ⊑ y

}
.

Since ⊑ is reflexive, it follows that E(G1) contains all loops, too. Let
G = G1 in Theorem 2.3. Then we obtain the following fixed point
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corollary in complete b-metric spaces associated with a wt-distance ρ
and endowed with a partial order.

Corollary 2.7. Let (X, d) be a complete b-metric space endowed with
the graph G1 and s ≥ 1 be a given real number. Also, let ρ be a wt-
distance and T : X → X be a nondecreasing and orbitally G1-continuous
mapping. Suppose that there exist mappings α, β, γ : X → [0, 1) such
that the following conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) for all x, y ∈ X with x ⊑ y,

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),

ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T has a fixed point in X if and only if there exists x0 ∈ X such
that x0 ⊑ Tx0. Moreover, if Tx∗ = x∗, then ρ(x∗, x∗) = 0. Also, if
the subgraph of G1 with the vertex set Fix(T ) is connected, then the
restriction of T to the set of all points in x ∈ X such that x ⊑ Tx is a
Picard operator.

For our next consequence, consider on the poset X the graph G2

defined by V (G2) = X and E(G2) =
{
(x, y) ∈ X×X : x ⊑ y ∨ y ⊑ x

}
.

Then, an ordered pair (x, y) ∈ X×X is an edge of G2 if and only if x and
y are comparable elements of (X,⊑). If we set G = G2 in Theorem 2.3,
then we obtain another fixed point theorem in complete b-metric spaces
associated with a wt-distance ρ and endowed with a partial order.

Corollary 2.8. Let (X, d) be a complete b-metric space endowed with the
graph G2 and s ≥ 1 be a given real number. Also, let ρ be a wt-distance
and T : X → X be an orbitally G2-continuous mapping which maps
comparable elements of X onto comparable elements. Suppose that there
exist mappings α, β, γ : X → [0, 1) such that the following conditions
hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) for all x, y ∈ X where x and y are comparable,

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),

ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T has a fixed point in X if and only if there exists x0 ∈ X such that
x0 and Tx0 are comparable. Moreover, if Tx∗ = x∗, then ρ(x∗, x∗) = 0.
Also, if the subgraph of G2 with the vertex set Fix(f) is connected, then
the restriction of f to the set of all points x ∈ X such that x and Tx
are comparable is a Picard operator.
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Let ε > 0 be a fixed number. Recall that two elements x, y ∈ X are
said to be ε-close if d(x, y) < ε. Define the ε-graph G3 by V (G3) = X
and E(G3) =

{
(x, y) ∈ X × X : d(x, y) < ε

}
. We see that E(G3)

contains all loops. Finally, if we set G = G3 in Theorem 2.3, then we
get the following consequence of our fixed point theorem in complete
b-metric spaces associated with a wt-distance ρ.

Corollary 2.9. Let (X, d) be a complete b-metric space endowed with
the graph G3 and s ≥ 1 be a given real number. Also, let ρ be a wt-
distance and T : X → X orbitally G3-continuous mapping which maps
e-close elements of X onto e-close elements. Suppose that there exist
mappings α, β, γ : X → [0, 1) such that the following conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) for all x, y ∈ X where x and y are ε-close elements,

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),

ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T has a fixed point in X if and only if there exists x0 ∈ X such
that x0 and Tx0 are ε-close. Moreover, if Tx∗ = x∗, then ρ(x∗, x∗) = 0.
Also, if the subgraph of G3 with the vertex set Fix(T ) is connected, then
the restriction of T to the set of all points x ∈ X such that x and Tx
are ε-close is a Picard operator.

In Corollaries 2.6, 2.7, 2.8 and 2.9, consider α(x) = α, β(x) = β and
γ(x) = γ. Then we have the same result similar to Theorem 2.5.

Remark 2.10. For Banach-type fixed point result with respect to a wt-
distance on b-metric spaces with parameter s ≥ 1, we use the condition

ρ(Tx, Ty) ≤ αρ(x, y), α ∈ [0,
1

s
).

In Theorem 2.3, set s = 1. Then we obtain the following theorem in
the framework of a w-distance in metric spaces endowed with a graph.

Theorem 2.11. Let (X, d) be a complete metric space endowed with the
graph G, ρ be a w-distance and T : X → X be an orbitally G-continuous
mapping. Suppose that there exist mappings α, β, γ : X → [0, 1) such
that the following conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
α+ 2β + 2γ

)
(x) < 1 for all x ∈ X;

(t3) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t4) for all x, y ∈ X with (x, y) ∈ E(G),

ρ(Tx, Ty) ≤ α(x)ρ(x, y) + β(x)ρ(x, Ty) + γ(x)ρ(y, Tx),
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ρ(Ty, Tx) ≤ α(x)ρ(y, x) + β(x)ρ(Ty, x) + γ(x)ρ(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then ρ(x∗, x∗) = 0. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

An immediate consequence of Theorems 2.5 and 2.11 can be stated
in the form of the following theorem.

Theorem 2.12. Let (X, d) be a complete metric space endowed with
the graph G and ρ be a w-distance and T : X → X be an orbitally G-
continuous mapping. Suppose that there exist α, β, γ > 0 with α+ 2β +
2γ < 1 such that the following conditions hold:

(t1) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t2) for all x, y ∈ X with (x, y) ∈ E(G),

ρ(Tx, Ty) ≤ αρ(x, y) + βρ(x, Ty) + γρ(y, Tx),

ρ(Ty, Tx) ≤ αρ(y, x) + βρ(Ty, x) + γρ(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then ρ(x∗, x∗) = 0. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

In Theorem 2.11, consider G0, G1, G2 and G3 instead of G. Then we
have the same results in Corollaries 2.6, 2.7, 2.8 and 2.9 in the framework
of a w-distance in metric spaces endowed with a graph. Also, in Remark
2.10, set s = 1. Then for Banach-type fixed point result with respect to a
w-distance on metric spaces, we use the condition ρ(Tx, Ty) ≤ αρ(x, y)
for all x, y ∈ X, where α ∈ [0, 1).

3. Application to Nonlinear Analysis

In 2011, Cvetković et al. [10] defined cone metric type spaces as an
extension of cone metric spaces introduced by Huang and Zhang [15].
On the other hand, Bao et al. [4] defined a generalized c-distance in cone
b-metric spaces as a generalization of both wt-distance and c-distance
introduced by Hussain et al. [16] and Cho et al. [8] (also, see [13, 19, 22]
and references therein).

Let E be a real Banach space. Then a subset P of E is called a cone
if and only if

(a) P is closed, non-empty and P ̸= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
(c) if x,−x ∈ P , then x = θ.

Given a cone P ⊂ E, we define a partial ordering ⪯ with respect to
P by x ⪯ y if and only if y − x ∈ P . We shall write x ≺ y if x ⪯ y and
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x ̸= y. Moreover, we denote x ≪ y if and only if y − x ∈ intP where
intP is the interior of P . If intP ̸= ∅, then the cone P is called solid.
The cone P is named normal if there is a number k > 0 such that for
all x, y ∈ E, θ ⪯ x ⪯ y implies that ∥x∥ ≤ k∥y∥.

Definition 3.1 ([10]). LetX be a nonempty set, s ≥ 1 be a real number,
E be a real Banach space with zero element θ, and P be a cone in E.
Suppose that d : X × X → P is a mapping satisfying the following
conditions:

(d1) θ ⪯ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) ⪯ s[d(x, y) + d(y, z)] for all x, y, z ∈ X.

Then the pair (X, d) is called cone metric type space (or cone b-metric
space).

For notions such as convergent and Cauchy sequences, completeness,
continuity and etc. in cone b-metric spaces, we refer to [10].

Definition 3.2 ([4]). Let (X, d) be a cone b-metric space with parameter
s ≥ 1. A function q : X ×X → E is called a generalized c-distance on
X if the following properties are satisfied:

(q1) θ ⪯ q(x, y) for all x, y ∈ X;
(q2) q(x, z) ⪯ s[q(x, y) + q(y, z)] for all x, y, z ∈ X;
(q3) for x ∈ X, if q(x, yn) ⪯ u for some u = ux and all n ≥ 1, then

q(x, y) ⪯ su whenever {yn} is a sequence in X converging to a
point y ∈ X;

(q4) for all c ∈ E with θ ≪ c, there exists e ∈ E with θ ≪ e such
that q(z, x) ≪ e and q(z, y) ≪ e imply d(x, y) ≪ c.

Example 3.3. [4, 22] Let E = C1([0, 1],R) with the norm ∥x∥ =
∥x∥∞ + ∥x′∥∞ and consider the non-normal cone P = {x ∈ E : x(t) ≥
0 for all t ∈ [0, 1]}. Also, let X = [0,∞) and define a mapping d :
X ×X → E by d(x, y) = |x− y|sψ for all x, y ∈ X, where ψ : [0, 1] → R
is defined by ψ(t) = 2t for all t ∈ [0, 1]. Then (X, d) is a cone b-metric
space with s ∈ {1, 2}. Define a mapping q : X×X → E by q(x, y) = ysψ
for all x, y ∈ X and s ∈ {1, 2}. Then q is a generalized c-distance.

Note that for a generalized c-distance in cone b-metric space

• q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X;
• q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Lemma 3.4. Let (X, d) be a cone b-metric space with parameter s ≥ 1
and q be a generalized c-distance on X. Also, let {xn} and {yn} be
sequences in X and x, y, z ∈ X, and {un} and {vn} be two sequences in
P converging to θ. Then the following conditions hold:
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(i) if q(xn, y) ⪯ un and q(xn, z) ⪯ vn for n ∈ N, then y = z. In
particular, if q(x, y) = θ and q(x, z) = θ, then y = z;

(ii) if q(xn, yn) ⪯ un and q(xn, z) ⪯ vn for n ∈ N, then {yn} con-
verges to z;

(iii) if q(xn, xm) ⪯ un for m,n ∈ N with m > n, then {xn} is a
Cauchy sequence in X;

(iv) if q(y, xn) ⪯ un for n ∈ N, then {xn} is a Cauchy sequence in
X.

Proof. The proof is similar to a c-distance and a wt-distance in [8, 16].
□

Note that Definition 2.1, Definition 2.2 and other preliminaries on b-
metric spaces can be introduced in the framework of cone b-metric
spaces. Now, we obtain the following results in the framework of a
generalized c-distance in cone b-metric spaces endowed with a graph.
Since the procedure of proofs are similar to b-metric version, we remove
them.

Theorem 3.5. Let (X, d) be a complete cone b-metric space endowed
with the graph G and s ≥ 1 be a given real number. Also, let q be a
generalized c-distance and T : X → X be an orbitally G-continuous
mapping. Suppose that there exist mappings α, β, γ : X → [0, 1) such
that the following conditions hold:

(t1) α(Tx) ≤ α(x), β(Tx) ≤ β(x) and γ(Tx) ≤ γ(x) for all x ∈ X;
(t2)

(
s(α+ 2β) + (s2 + s)γ

)
(x) < 1 for all x ∈ X;

(t3) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t4) for all x, y ∈ X with (x, y) ∈ E(G),

q(Tx, Ty) ⪯ α(x)q(x, y) + β(x)q(x, Ty) + γ(x)q(y, Tx),

q(Ty, Tx) ⪯ α(x)q(y, x) + β(x)q(Ty, x) + γ(x)q(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then q(x∗, x∗) = θ. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

An immediate consequence of Theorem 3.5 can be stated in the form
of the following theorem.

Theorem 3.6. Let (X, d) be a complete cone b-metric space endowed
with the graph G and s ≥ 1 be a given real number. Also, let q be
a generalized c-distance and T : X → X be an orbitally G-continuous
mapping. Suppose that there exist α, β, γ > 0 with s(α+2β)+(s2+s)γ <
1 such that the following conditions hold:
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(t1) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(t2) for all x, y ∈ X with (x, y) ∈ E(G),

q(Tx, Ty) ⪯ αq(x, y) + βq(x, Ty) + γq(y, Tx),

q(Ty, Tx) ⪯ αq(y, x) + βq(Ty, x) + γq(Tx, y).

Then T has a fixed point if and only if XT ̸= ∅. Moreover, if Tx∗ = x∗,
then q(x∗, x∗) = θ. Also, if the subgraph of G with the vertex set Fix(T )
is connected, then the restriction of T to XT is a Picard operator.

In Theorem 3.5, consider G0, G1, G2 and G3 instead of G. Then we
have the same results in Corollaries 2.6, 2.7, 2.8 and 2.9 in the framework
of a generalized c-distance in cone b-metric spaces endowed with a graph.
Also, for Banach-type fixed point result with respect to a generalized c-
distance on cone b-metric spaces with parameter s ≥ 1, we use the
condition q(Tx, Ty) ⪯ αq(x, y) with α ∈ [0, 1s ). Now, set s = 1. Then
we get Theorem 3.5 and its consequents with respect to a c-distance in
cone metric spaces.

4. Conclusion

In this paper, we replace the condition of continuity of mapping with
the condition of orbitally G-continuity of mapping and we consider b-
metric spaces endowed with graph instead of b-metric spaces, under
which can be unified some theorems of the existing literature. Now, we
finish this paper with some questions.

Question 4.1. Can one obtain the same results of this paper by consid-
ering some another conditions instead of the continuity of the mapping
T?

Question 4.2. Can one prove main theorem and its corollaries by con-
sidering one contractive-type relation instead of two contractive-type
relations?
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