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A Full-NT Step Infeasible Interior-Point Algorithm for Mixed

Symmetric Cone LCPs

Ali Nakhaei Amroudi1∗, Ali Reza Shojaeifard2, and Mohammad Pirhaji3

Abstract. An infeasible interior-point algorithm for mixed sym-
metric cone linear complementarity problems is proposed. Using
the machinery of Euclidean Jordan algebras and Nesterov-Todd
search direction, the convergence analysis of the algorithm is shown
and proved. Moreover, we obtain a polynomial time complexity
bound which matches the currently best known iteration bound for
infeasible interior-point methods.

1. Introduction

Mixed symmetric cone linear complementarity problems (MSLCP) are
a general class of complementarity problems which contains some well-
known and well-studied mathematical and optimization problems such
as symmetric optimization (SO) problems, convex quadratic symmetric
cone optimization (CQSCO) problems, semidefinite optimization (SDO)
problems, linear complementarity problems (LCP), and symmetric cone
LCP (SCLCP) .

Let (U , ◦) and (V, ◦) be Euclidean Jordan algebras (EJAs) with di-
mensions m and n and ranks r1 and r2, equipped with the standard
inner product ⟨x, s⟩ = Tr(x ◦ s) and K be the symmetric cone corre-
sponding with (V, ◦). Furthermore, let J = U ×V be the cartesian EJA
with dimension m+ n and rank r = r1 + r2.

Let

M =

[
M11 M12

M21 M22

]
,
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be an (m + n)-matrix written as a 2 × 2 block matrix where M11 is a
n × n symmetric matrix, M21 = MT

12, M22 is a m ×m positive definite
symmetric matrix and so, M12 is a n × m matrix. The MSLCP is the
problem of computation a vector triple (x, s, y) ∈ K ×K × U such that

(
s

0

)
= M

(
x

y

)
+

(
q1
q2

)
, x ◦ s = 0,

where
(
q1
q2

)
∈ J and M is the Cartesian symmetric positive semidefinite

matrix. That is, for all vectors u ∈ J , ⟨u,Mu⟩ ≥ 0. Various approaches
have been proposed for solving MSLCPs. Among them, interior-point
methods (IPMs) attract more attention due to polynomial complexity
and efficient implementation.

The study of the polynomial complexity and numerical implementa-
tion for a short-step primal-dual IPM for LCPs has been presented by
Achache [1]. Mansouri et al. [8, 9] proposed some interior-point algo-
rithms for LCPs. Lin et al. [7] suggested a homogeneous model for
solving MSLCPs. Achache et al. [2] suggested a full-Newton step fea-
sible weighted primal-dual path-following interior-point algorithm for
monotone LCPs. Motivated by Achache et al. [2], a weighted-path-
following interior-point algorithm has been presented by Wang et al. [13]
for MSLCPs. Mansouri et al. [10], using the machinery of Euclidean
Jordan algebra and Nesterov-Todd (NT) search direction, suggested a
feasible path-following interior-point algorithm for MSLCPs.

In the above mentioned citations, the proposed algorithms are feasi-
ble. That is, the algorithms need to a feasible starting point and gener-
ate a set of feasible iterations during their implementations. However,
finding an initial feasible solution of MSLCPs is the main difficulty of
feasible interior-point algorithms for solving this class of mathematical
problems.

To remedy, in this paper, we propose an infeasible interior-point al-
gorithm for MSLCPs. Infeasible interior-point methods (IIPMs) start
with an arbitrary positive point and feasibility is reached as optimality
is approached. We prove the convergence analysis of the algorithm and
show that the algorithm will terminate after at most O(r2L) iterations.

The paper is organized as follows. In Section 2, we list some concepts
and results on EJAs and symmetric cones which are required in our
analysis. Section 3 is devoted to describe an infeasible interior-point
algorithm for MSLCPs in more detail. The main part of this paper, the
convergence analysis of the proposed algorithm, is presented in Section
4. Finally, the paper ends with some conclusions and remarks follow in
Section 5.
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2. Preliminaries

In this section, we outline a minimal of the foundation of the theory
of EJAs which will be used in continue of paper.

The classical EJA (V, ◦) is a finite dimensional vector space over R
equipped with the bilinear map ◦ : (x, y) → x ◦ y ∈ V and the standard
inner product ⟨x, s⟩ = Tr(x ◦ s), while the Cartesian EJA is a Carte-
sian product of a finite number (such as N) of classical EJAs with the
canonical inner product

⟨x, s⟩ =
N∑
i=1

⟨xi, si⟩.

The related cone of squares corresponding with (V, ◦) is called the
classical symmetric cone K. For each x ∈ V, L(x)y = x ◦ y and
P (x) = 2L(x)2 − L(x2), where L(x)2 = L(x)L(x), denote the linear
and quadratic representation of V, respectively.

A Jordan algebra has an identity element, if there exists a unique
element e ∈ V such that x o e = e o x = x for all x ∈ V. An element
c ∈ J is said to be idempotent if c2 = c. An idempotent c is primitive
if it is nonzero and can not be expressed by sum of two other nonzero
idempotents. A set consists of idempotents {c1, c2, . . . , ck} is called a

Jordan frame if ci o cj = 0 for any i ̸= j, and
∑k

i=1 ci = e. For any
x ∈ V, let r be the smallest positive integer such that {e, x, x2, . . . , xr} is
linearly dependent, r is called the degree of x and is denoted by deg(x).
The rank of V, denoted by rank (V), is defined as the maximum of
deg (x) over all x ∈ V.

The spectral decomposition theorem (Theorem III.1.2 of [3]) of an
EJA V states that for any x ∈ V there exists a Jordan frame {c1,2 , . . . , cr}
and real numbers {λ1, λ2, . . . , λr} (the eigenvalues of x) such that x =∑r

i=1 λici. For any x ∈ V, the norm induced by the standard inner prod-

uct is named as the Frobenius norm, which is given by ∥x∥F :=
√
⟨x, x⟩.

Some other norms related to absolute value of eigenvalues of x, namely
norm 1 and norm infinity, are defined as

∥x∥1 =
r∑

i=1

|λi(x)|,

and ∥x∥∞ = maxi |λi (x) |.
Here we list some key lemmas which are required in our analysis.

Lemma 2.1 (Lemma 3.2, [4]). Let intK be the interior of K. For x, s ∈
intK there exists a unique w ∈ intK such that

x = P (w) s.
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Moreover,

w = P
(
x

1
2

)(
P (x

1
2 )s
)−1

2
= P

(
s

−1
2

)(
P
(
s

1
2

)
x
) 1

2
.

The point w is called the NT-scaling point of x and s.

Lemma 2.2 (Lemma 28, [11]). Let u ∈ intK. Then

x ◦ s = µe ⇔ P (u)x ◦ P (u)−1 s = µe.

Lemma 2.3 (Lemma 30, [11]). Let x, s ∈ intK. Then∥∥∥P (x)
1
2 s− e

∥∥∥
F
≤ ∥x ◦ s− e∥F .

Lemma 2.4 (Theorem 4, [12]). Let x, s ∈ intK. Then

λmin

(
P (x)

1
2 s
)
≥ λmin (x ◦ s) .

3. Infeasible Interior-point Algorithm for MSLCPs

In this section we present an infeasible full-NT step interior-point
algorithm for MSLCPs. In contrast with feasible algorithm, in infeasible
one, the initial starting point does not belong to the feasible set of the
MSLCP. As usual for IIPMs, we suppose that an optimal solution of
MSLCP exists and assume that the algorithm starts with the following
initial infeasible point (

x0, y0, s0
)
= (ρpe, 0, ρde) ,

where ρp and ρd are some positive scaler values such that

Tr
(
x0 ◦ s0

)
= r2µ

0, µ0 = ρpρd.

The main idea of infeasible algorithms is based on a sufficiently proper
enough perturbation of the original problem MSLCP and construction of
a new problem, namely, the perturbed problem Pν . While in each iterate
of infeasible algorithm the perturbed problem Pν will be tended to the
original problem, the generated ε-solutions of the algorithm converge to
the ε-optimal solution of the original problem.

To begin the discussion, first of all, let r0 =
(r01
r02

)
denotes the initial

value of the residual vector as follows:

(3.1)

(
r01
r02

)
=

(
s0

0

)
−
[
M11 M12

M21 M22

](
x0

y0

)
−
(
q1
q2

)
.

For any ν with ν ∈ (0, 1], we consider the perturbed problem Pν as
follows:

(3.2)

(
s

0

)
−
[
M11 M12

M21 M22

](
x

y

)
−
(
q1
q2

)
= ν

(
r01
r02

)
,
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where (x, s) ∈ intK × intK and y ∈ U . Clearly, the initial point(
x0, y0, s0

)
is a strictly feasible solution of the perturbed problem Pν .

This means that the perturbed problem Pν satisfies the interior-point
condition (IPC). The following lemma completely describes the relation
between the original problem MSLCP and the perturbed problem Pν .

Lemma 3.1. If the original problem MSLCP is feasible then the per-
turbed problem Pν satisfies the IPC.

Proof. Let the original problem MSLCP be feasible and (x̄, ȳ, s̄) be its
feasible solution. For any ν ∈ (0, 1], consider

x = (1− ν) x̄+ νx0, y = (1− ν) ȳ + νy0, s = (1− ν) s̄+ νs0.

Then (
(1− ν) s̄+ νs0

0

)
−M

(
(1− ν) x̄+ νx0

(1− ν) ȳ + νy0

)
−
(
q1
q2

)
= (1− ν)

[(
s̄

0

)
−M

(
x̄

ȳ

)]
+ ν

[(
s0

0

)
−M

(
x0

y0

)]
−
(
q1
q2

)
= ν

(
r01
r02

)
.

This shows that (x, y, s) is feasible for perturbed problem. Since ν > 0
and x, s ∈ intK, thus proving that Pν satisfies the IPC. □

The most important result of the above lemma is the existence of the
central path for the perturbed problem Pν . In other words, Lemma 3.1
concludes that for any µ > 0 the following system(

s

0

)
−M

(
x

y

)
−
(
q1
q2

)
= ν

(
r01
r02

)
, x ∈ intK,

x ◦ s = µe, s ∈ intK,

has a unique solution which is denoted by (x (µ, ν) , y (µ, ν) , s (µ, ν)) and
it is so-called as a µ-center of the perturbed problem Pν . Note that since
x0◦s0 = µe,

(
x0, s0

)
is the µ0-center of the perturbed problem P1. In the

following the parameters µ and ν always satisfy the relation µ = νµ0.
To simplify, according to µ = νµ0, we can denote (x (µ) , y (µ) , s (µ))

as a µ-center of Pν . The set of all µ-centers constructs a guide line, so-
called the central path, to an ε-optimal solution of the original problem
MSLCP.

In our analysis, we need to measure the closeness of the generated
points from the central path. To this end, we use the following proximity
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measure in our analysis:

(3.3) δ (v) = δ (x, s;µ) =
∥∥e− v2

∥∥
F
,

where

v :=
P (w)

1
2 s

√
µ

=
P (w)

−1
2 x

√
µ

.

The algorithm starts from an initial arbitrary point (x, y, s) with
δ (x, s;µ) ≤ τ . Every main iteration of algorithm consist of a feasibility
step, a µ-update and a few centering steps. Feasibility step is designed
to find a new feasible point

(
xf , yf , sf

)
in the quadratic convergence

neighborhood of the new perturbed problem Pν+ with ν+ = (1− θ) ν.
However, we need the feasibility search directions

(
∆fx,∆fy,∆fs

)
to

get the new feasible solution of Pν+ . The following system, namely the
feasibility search direction system, concludes the following search direc-
tions.

M11∆
fx+M12∆

fy −∆fs = θνr01,

M21∆
fx+M22∆

fy = θνr02,(3.4)

P (w)
−1
2 x ◦ P (w)

1
2 ∆fs+ P (w)

1
2 s ◦ P (w)

−1
2 ∆fx = (1− θ)µe

− P (w)
−1
2 x ◦ P (w)

1
2 s,

where θ ∈ (0, 1) and the third equation is inspired by Lemma 2.2. Since
the parameters µ and ν will always be in one-to-one correspondence,
then after updating the parameter ν, the parameter µ will be updated
to µ+ = (1− θ)µ.

The hard part in our analysis will be to guarantee that the iterate(
xf , yf , sf

)
=
(
x+∆fx, y +∆fy, s+∆fs

)
,

is strictly feasible and it satisfies δ
(
xf , sf ; µ+

)
≤ 1

2 . After the feasi-

bility step, starting from the iterate (x, y, s) =
(
xf , yf , sf

)
, a few cen-

tering steps are applied to produce a new iterate (x+, y+, s+) such that
δ (x+, s+, µ+) ≤ τ . The centering search direction (∆cx,∆cy,∆cs) is
the usual NT-search direction defined by

M11∆
cx+M12∆

cy −∆cs = 0,

M12∆
cx+M22∆

cy = 0,(3.5)

P (w)
−1
2 x ◦ P (w)

1
2 ∆cs+ P (w)

1
2 s ◦ P (w)

−1
2 ∆cx = (1− θ)µe

− P (w)
−1
2 x ◦ P (w)

1
2 s.

A more formal description of the infeasible algorithm can be summarized
as below.
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Primal-Dual Infeasible IPM

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;(

x0, s0
)
∈ intK × intK and µ0 > 0 such that Tr

(
x0 ◦ s0

)
= r2µ

0.

begin
(x, y, µ) =

(
x0, y0, s0

)
= (ρpe, 0, ρde);

while max (r2µ, ∥r∥F ) ≥ ε do
begin

feasibility step:

(x, y, s) := (x, y, s) +
(
∆fx, ∆fy, ∆fs

)
;

µ-update:

µ := (1− θ)µ;

centering steps:

while δ (x, s; µ) ≥ τ do
begin

(x, s) := (x, y, s) + (∆cx, ∆cy, ∆cs) ;
end

end
end

Figure 1. Infeasible full-Newton-step algorithm

4. Analysis of the Method

As we mentioned before, the hard part in our analysis will be to
guarantee that the iterate

(
xf , yf , sf

)
is strictly feasible and satisfies

δ
(
xf , sf ; µ+

)
≤ 1

2
.

To simplify, let

(4.1) dfx =
P (w)

−1
2 ∆fx

√
µ

, dfs =
P (w)

1
2 ∆fs

√
µ

.
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It is easy to check that the system (3.4) which defines the search
direction

(
∆fx,∆fy,∆fs

)
can be expressed in term of the scaled search

directions dfx and dfs as follows:

M̄11d
f
x + M̄12

∆y
√
µ
− dfs =

1
√
µ
θυp(w)

1
2 r01,

M̄21d
f
x +M22

∆y
√
µ
=

1
√
µ
θυr02,(4.2)

dfx + dfs = (1− θ) v−1 − v,

where

M̄11 = P (w)
1
2 M11P (w)

1
2 , M̄12 = P (w)

1
2 M12, M̄21 = M̄T

12.

Using (4.1), the new iterates after the feasibility step can be calculated
as follows:

xf := x+∆fx =
√
µP (w)

1
2

(
v + dfx

)
,(4.3)

sf := s+∆fs =
√
µP (w)−

1
2

(
v + dfs

)
.

Since P (w)
1
2 and P (w)−

1
2 are automorphisms of intK, xf , sf belong

to intK if and only if v+ dfx and v+ dfs belong to intK. Using (4.3) and
the third equation in (4.2), we have(

v + dfx

)
◦
(
v + dfs

)
= v2 + v ◦

(
dfx + dfs

)
+ dfx ◦ dfs(4.4)

= v2 + v ◦
(
(1− θ) v−1 − v

)
+ dfx ◦ dfs

= (1− θ) e+ dfx ◦ dfs .
The following lemma presents a sufficient condition to have strictly fea-
sible solution.

Lemma 4.1. The iterates
(
xf , yf , sf

)
are strictly feasible if (1− θ) e+

dfx ◦ dfs ∈ intK.

Proof. The proof is similar to the proof of Lemma 4.9 in [10] and is
therefor omitted. □

Corollary 4.2. The new iterates
(
xf , yf , sf

)
are strictly feasible if∥∥∥dfx ◦ dfs

∥∥∥
∞

< 1− θ.

Due to the elementary properties of norms in EJA, it is easy to verify
that

|⟨dfx, dfs ⟩| ≤
∥∥∥dfx∥∥∥

F

∥∥∥dfs∥∥∥
F
≤ 1

2

(∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F

)
,(4.5)
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∥∥∥
∞

≤
∥∥∥dfx ◦ dfs

∥∥∥
F
≤ 1

2

(∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F

)
.(4.6)

The following lemma is a direct result of Corollary 4.2 and (4.6).

Lemma 4.3. If ∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F
< 2 (1− θ) ,

then the iterates
(
xf , yf , sf

)
are strictly feasible.

In the sequel we proceed by deriving an upper bound for δ
(
vf
)
=

δ
(
xf , sf , µ+

)
, where

δ
(
vf
)
:=

∥∥∥∥e− (vf)2∥∥∥∥
F

, vf :=
P
(
wf
) 1

2 sf√
µ+

=
P
(
wf
)−1

2 xf√
µ+

.

Lemma 4.4 (Lemma 4.3, [14]). One has√
(1− θ)vf ∼

[
P
(
v + dfx

) 1
2
(
v + dfs

) ] 1
2
.

Lemma 4.5. Assuming (1− θ) e+ dfx ◦ dfs ∈ intK, one has

δ
(
vf
)
≤

∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F

2 (1− θ)
.

Proof. Let wf be the scaling point related to xf and sf . Lemma 4.4
directly results (

vf
)2

∼ P

(
v + dfx√
1− θ

) 1
2
(

v + dfx√
1− θ

)
,

hence, using Lemma 2.3 and (4.4) we have

δ
(
vf
)
=

∥∥∥∥e− (vf)2∥∥∥∥
F

=

∥∥∥∥∥∥e− P

(
v + dfx√
1− θ

) 1
2
(

v + dfx√
1− θ

)∥∥∥∥∥∥
F

≤

∥∥∥∥∥e−
(

v + dfx√
1− θ

)
◦

(
v + dfs√
1− θ

)∥∥∥∥∥
F

≤ 1

1− θ

∥∥∥(1− θ)e−
(
v + dfx

)
◦
(
v + dfs

)∥∥∥
F

=
1

1− θ

∥∥∥dfx ◦ dfs
∥∥∥
F

≤

∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F

2 (1− θ)
,
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where the last inequality follows by (4.6). This completes the proof. □

Since in our analysis, we need to have strictly feasible iterates in
quadratic convergence region, i.e, δ

(
vf
)
≤ 1

2 , this, due to Lemma 4.5,
holds only if

(4.7)
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
≤ 1− θ.

4.1. Upper Bound for
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
. Obtaining an upper bound for

the term
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
is the main goal of this section. In the sequel

this will enable us to find a default value for the update parameter θ.
The Schur complement theorem gives a characterization for the pos-

itive semi-definiteness (definiteness) of a matrix via the positive semi-
definiteness (definiteness) of the Schur-complement with respect to a
block partitioning of the matrix, which is stated as below. For more
detail, we refer the reader to [5].

Lemma 4.6. (Schur Complement Theorem) Let A ∈ Rn×n be a sym-
metric matrix, C ∈ Rm×m be a symmetric positive definite matrix and
B ∈ Rn×m. Then[

A B
BT C

]
⪰ 0 ⇔ A−BC−1BT ⪰ 0,

and [
A B
BT C

]
≻ 0 ⇔ A−BC−1BT ≻ 0.

One can easily check that system (3.4), by eliminating ∆fy and using
(4.1) reduces to

M̃dfx − dfs =
1
√
µ
θνp (w)

1
2
(
r01 −M12M22

−1r02
)
,(4.8)

dfx + dfs = (1− θ) v−1 − v,(4.9)

where M̃ = p (w)
1
2
(
M11 −M12M22

−1M21

)
p(w)

1
2 . Since the matrix M

has the positive semidefinite property, Lemma 4.6 guarantees the matrix
M11−M12M22

−1M21 has also the positive semidefinite property. There-

fore, due to the following relations, M̃ also has the Cartesian positive
semidefinite property.⟨

u, M̃u
⟩
=
⟨
u, p (w)

1
2
(
M11 −M12M22

−1M21

)
p (w)

1
2 u
⟩

=
⟨
p (w)

1
2 u,

(
M11 −M12M22

−1M21

)
p (w)

1
2 u
⟩
.
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Since M̃ is positive semidefinite, one may easily verify that the co-
efficient matrix in the linear system (4.8) is nonsingular. Hence, this

system uniquely defines the search directions dfx and dfs . (see, e.g., [6]).
Setting

a :=
1
√
µ
θνp (w)

1
2
(
r01 −M12M22

−1r02
)
,

and b := (1− θ) v−1 − v, the following lemma gives an upper bound for

the single term
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
.

Lemma 4.7. The solution
(
dfx, d

f
s

)
of the linear system (4.8) satisfies

the following relations:∥∥∥dfx∥∥∥
F
≤ ∥a+ b∥F ,(4.10) ∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
≤ ∥b∥2F + 2 ∥a∥F ∥a+ b∥F .(4.11)

Proof. By adding the two equation of system (4.8), we deduce(
M̃ + I

)
dfx = a+ b.

Since M̃ is a positive semidefinite matrix, then (4.10) is concluded. To
prove (4.11) we have∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
=
∥∥∥dfx + dfs

∥∥∥2
F
− 2⟨dfx, dfs ⟩ = ∥b∥2F − 2⟨dfx, M̃dfx − a⟩

= ∥b∥2F − 2⟨dfx, M̃dfx⟩+ 2⟨dfx, a⟩

≤ ∥b∥2F + 2 ∥a∥F
∥∥∥dfx∥∥∥

F

≤ ∥b∥2F + 2 ∥a∥F ∥a+ b∥F ,

where the last inequality follows from (4.10). This completes the proof.
□

To compute an upper bound for the term
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
, using

Lemma 4.7 and setting r̃ =
(
r01 −M12M22

−1r02
)
, we have∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
≤
∥∥(1− θ) v−1 − v

∥∥2
F

+ 2

∥∥∥∥ θν
√
µ
p (w)

1
2 r̃

∥∥∥∥
F

∥∥∥∥ θν
√
µ
p (w)

1
2 r̃ + (1− θ) v−1 − v

∥∥∥∥
F

≤
∥∥(1− θ) v−1 − v

∥∥2
F

+ 2

∥∥∥∥ θν
√
µ
p (w)

1
2 r̃

∥∥∥∥
F

(∥∥∥∥ θν
√
µ
p(w)

1
2 r̃

∥∥∥∥
F

+
∥∥(1− θ) v−1 − v

∥∥
F

)
.



138 A. NAKHAEI AMROUDI, A.R. SHOJAEIFARD, AND M. PIRHAJI

(4.12)

In what follows, we proceed to estimate some upper bounds for the

terms
∥∥(1− θ) v−1 − v

∥∥
F
and

∥∥∥ 1√
µθνp (w)

1
2 r̃
∥∥∥
F
respectively. Using (3.3)

and Lemma 4.5 in [10], we have

∥∥(1− θ) v−1 − v
∥∥
F
=
∥∥v−1 ◦

(
(1− θ) e− v2

)∥∥
F

(4.13)

≤ 1

λmin(v)

∥∥e− v2 − θe
∥∥
F

≤ 1

q(δ)

(∥∥e− v2
∥∥
F
+ θ ∥e∥F

)
≤ 1

q (δ)
(δ + θ

√
r2) ,

where q (δ) =
√
1− δ.

Substituting (4.13) in (4.12), we have∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F
≤ 1

q2 (δ)
(δ + θ

√
r2)

2 + 2

∥∥∥∥ θν
√
µ
p(w)

1
2 r̃

∥∥∥∥
F

×
(

1

q (δ)
(δ + θ

√
r2) +

∥∥∥∥ θν
√
µ
p (w)

1
2 r̃

∥∥∥∥
F

)
.(4.14)

To proceed, we have to specify our initial iterate
(
x0, s0

)
. We assume

that ρp and ρd are such that

∥x∗∥∞ ≤ ρp,
max

{
∥s∗∥∞ , ρp

∥∥M11 −M12M
−1
22 M21

∥∥
∞
}
≤ ρd,

(4.15)

for some optimal solution (x∗, y∗, s∗), and as usual we start the algo-
rithm with

(4.16) x0 = ρp e, y0 = 0, s0 = ρd e, µ0 = ρp ρd.

For such starting point, we have clearly

0 ⪯ x0 − x∗ ⪯ ρpe,
0 ⪯ s0 − s∗ ⪯ ρde.

Let (x∗, y∗, s∗) be an optimal solution of the original problem MSLCP.
Then

r̃ =
(
r01 −M12M

−1
22 r02

)
=
(
s0 −M11x

0 −M12y
0 − q1

)
−M12M

−1
22

(
−M21x

0 −M22y
0 − q2

)
=
(
s0 − s∗

)
−M11

(
x0 − x∗

)
+M12M

−1
22 M21

(
x0 − x∗

)
=
(
s0 − s∗

)
−
(
M11 −M12M

−1
22 M21

) (
x0 − x∗

)
.
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(4.17)

In order to obtain an upper bound for∥∥∥∥ θν
√
µ
p (w)

1
2 r̃

∥∥∥∥
F

=
θν
√
µ

∥∥∥p (w) 1
2 r̃
∥∥∥
F

we write, using (4.17),

∥∥∥p (w) 1
2 r̃
∥∥∥
F
=
∥∥∥p (w) 1

2
((
s0 − s∗

)
−
(
M11 −M12M

−1
22 M21

) (
x0 − x∗

))∥∥∥
F

(4.18)

≤
∥∥∥p (w) 1

2
(
s0 − s∗

)∥∥∥
F

+
∥∥∥p (w) 1

2
(
M11 −M12M

−1
22 M21

) (
x0 − x∗

)∥∥∥
F
.

We first consider the term
∥∥∥p (w) 1

2
(
s0 − s∗

)∥∥∥
F
. Using the fact that

p (w)
1
2 is self adjoint with respect to the inner product and p (w) e = w2,

we have

∥∥∥p (w) 1
2
(
s0 − s∗

)∥∥∥2
F
= ⟨p (w)

(
s0 − s∗

)
,
(
s0 − s∗

)
⟩

(4.19)

= ⟨p (w)
(
s0 − s∗

)
, ρde⟩ − ⟨p (w)

(
s0 − s∗

)
, ρde−

(
s0 − s∗

)
⟩

≤ ⟨p (w)
(
s0 − s∗

)
, ρde⟩ = ρd⟨

(
s0 − s∗

)
, p (w) e⟩

= ρd⟨p (w) e, ρde⟩ − ρd⟨p (w) e, ρde−
(
s0 − s∗

)
⟩

≤ ρ2dTr
(
w2
)
≤ ρ2dTr (w)

2
.

On the other hand to obtain an upper bound for the term∥∥∥p (w) 1
2
(
M11 −M12M

−1
22 M21

) (
x0 − x∗

)∥∥∥
F
,

by using (4.15) and (4.1), we proceed as follows

∥∥∥p (w) 1
2
(
M11 −M12M

−1
22 M21

) (
x0 − x∗

)∥∥∥
F

(4.20)

≤
∥∥∥p (w) 1

2

∥∥∥
∞

∥∥M11 −M12M
−1
22 M21

∥∥
∞
∥∥x0 − x∗

∥∥
F

≤ ρp
√
r
∥∥∥p (w) 1

2

∥∥∥
∞

∥∥M11 −M12M
−1
22 M21

∥∥
∞

≤ ρd
√
r
∥∥∥p (w) 1

2

∥∥∥
∞
.
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By the definition of the quadratic representation, we have∥∥∥p (w) 1
2

∥∥∥
∞

=

∥∥∥∥2L(w 1
2 )2 − L(w)

∥∥∥∥
∞

(4.21)

≤ 2

∥∥∥∥L(w 1
2 )

∥∥∥∥2
∞

+ ∥L(w)∥∞

≤ 3λmax (w) ≤ Tr (w) ,

where the second inequality follows because of ∥L(w)∥∞ = ∥w∥∞. Sub-
stituting (4.21) into (4.20) and then substituting the square root of (4.19)
and (4.20) into (4.18), we have

(4.22)
∥∥∥p (w) 1

2 r̃
∥∥∥
F
≤
(
1 + 3

√
r
)
ρdTr (w) .

To continue, we need an upper bound for Tr(w), which we will derive
in the following lemma.

Lemma 4.8. Let x, s ∈ intK and w be the scaling point of x and s.
Then

Tr (w) ≤
∥x∥1√
µq (δ)

.(4.23)

Proof. For the moment, let u =
(
P
(
x

1
2

)
s
)−1

2
. Then, by Lemma 2.1,

w = P
(
x

1
2

)
u. Using that P

(
x

1
2

)
is self-adjoint, P

(
x

1
2

)
e = x and

also Lemma 2.4 in [14], we obtain

Tr (w) = ⟨P
(
x

1
2

)
u, e⟩ = ⟨u, P

(
x

1
2

)
e⟩

≤ λmax(u)Tr(x)

= λmax

(
P
(
x

1
2

)
s
)−1

2
Tr (x) .

Due to

P
(
s

1
2

)
x ∼ P

(
x

1
2

)
s ∼

(
P
(
w

1
2

)
s
)2

∼
(
P
(
w

−1
2

)
x
)2

= µv2,

we have

Tr (w) = λmax

(
P
(
x

1
2

)
s
)−1

2
Tr (x)

=
Tr (x)

λmin

(
P
(
x

1
2

)
s
) 1

2

=
Tr (x)

√
µλmin(v)
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≤
∥x∥1√
µq (δ)

,

where the last inequality follows from Lemma 4.5 in [10]. The result is
derived. □

Substituting (4.23) into (4.22) gives∥∥∥p(w) 1
2 r̃
∥∥∥
F
≤ (1 + 3

√
r)ρd

∥x∥1√
µq (δ)

.(4.24)

To complete our computation, we need to estimate an upper bound for
∥x∥1.

Lemma 4.9. Let (x, y, s) be feasible for the perturbed problem Pν and(
x0, y0, s0

)
as defined in (4.16). Then for any optimal solution

(x∗, y∗, s∗) ,

we have

ν
(
⟨x0, s⟩+ ⟨s0, x⟩

)
≤ ν2⟨x0, s0⟩+ ⟨x, s⟩+ ν (1− ν)

(
⟨x0, s∗⟩+ ⟨s0, x∗⟩

)
− (1− ν) (⟨s, x∗⟩+ ⟨x, s∗⟩) .

Proof. From (3.2) and the definition of the perturbed problem Pν , it is
easily seen that

ν

(
s0

0

)
+ (1− ν)

(
s∗

0

)
−
(
s

0

)
= ν

[(
r01
r02

)
+M

(
x0

y0

)
+

(
q1
q2

)]
+ (1− ν)

(
s∗

0

)
−
[
ν

(
r01
r02

)
+M

(
x

y

)
+

(
q1
q2

)]
= ν

[(
r01
r02

)
+M

(
x0 − x∗

y0 − y∗

)]
−
[
ν

(
r01
r02

)
+M

(
x0 − x∗

y0 − y∗

)]
= M

[
ν

(
x0

y0

)
+ (1− ν)

(
x∗

y∗

)
−
(
x

y

)]
.

Since M has the Cartesian positive semidefinite property we obtain

0 ≤
⟨[

ν

(
x0

y0

)
+ (1− ν)

(
x∗

y∗

)
−
(
x

y

)]
,

[
ν

(
s0

0

)
+ (1− ν)

(
s∗

0

)
−
(
s

0

)]⟩
= ν2

⟨(
x0

y0

)
,

(
s0

0

)⟩
+ ν(1− ν)

⟨(
x0

y0

)
,

(
s∗

0

)⟩
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−
⟨
ν

(
x0

y0

)
,

(
s

0

)
)

⟩
+ ν(1− ν)

⟨(
x∗

y∗

)
,

(
s0

0

)⟩
+ (1− ν)2

⟨(
x∗

y∗

)
,

(
s∗

0

)⟩
−
⟨
(1− ν)

(
x∗

y∗

)
,

(
s

0

)⟩
−
⟨(

x

y

)
, ν

(
s0

0

)⟩
−
⟨(

x

y

)
, (1− ν)

(
s∗

0

)⟩
+

⟨(
x

y

)
,

(
s

0

)⟩
.

After some simple calculations, due to definition of the canonical inner
product, we have

0 ≤ ν2⟨x0, s0⟩+ ⟨x, s⟩+ ν (1− ν)
(
⟨x0, s∗⟩+ ⟨s0, x∗⟩

)
− ν

(
⟨x0, s⟩+ ⟨s0, x⟩

)
− (1− ν) (⟨s, x∗⟩+ ⟨x, s∗⟩) .

This follows the desired result. □

Lemma 4.10. Let (x, y, s) be feasible for the perturbed problem Pν and
δ(v) is defined as in (3.3) and

(
x0, y0, s0

)
as defined in (4.16). Then

we have

∥x∥1 ≤ (3 + δ (v)) r2ρp,(4.25)

∥s∥1 ≤ (3 + δ (v)) r2ρd.(4.26)

Proof. Since x, s, x∗ and s∗ belong to intK, it implies that ⟨s, x∗⟩+⟨x, s∗⟩
is positive. Therefore, Lemma 4.9 implies

⟨x0, s⟩+ ⟨s0, x⟩ ≤ ν⟨x0, s0⟩+ ⟨x, s⟩
ν

+ (1− ν)
(
⟨x0, s∗⟩+ ⟨s0, x∗⟩

)
.

On the other hand, according to (4.15) and (4.16), we have

⟨x0, s∗⟩+ ⟨s0, x∗⟩ ≤ ρd ⟨x0, e⟩+ ρp ⟨s0, e⟩ = 2 r2 ρp ρd.

Also ⟨x0, s0⟩ = r2 ρp ρd. Hence, we get

⟨x0, s⟩+ ⟨s0, x⟩ ≤ ⟨x, s⟩
ν

+ 2 r2 ρp ρd − ν r2 ρp ρd

≤ ⟨x, s⟩
ν

+ 2 r2 ρp ρd

=
µ⟨v, v⟩

ν
+ 2 r2 ρp ρd

= µ0λ2
max(v)⟨e, e⟩+ 2 r2 ρp ρd

≤ (2 + q2(δ))r2 ρp ρd

= (3 + δ)r2 ρp ρd.
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Since x0, s0, x, s ∈ intK, we obtain

⟨x0, s⟩ ≤ (3 + δ)r2 ρp ρd,

⟨s0, x⟩ ≤ (3 + δ)r2 ρp ρd.

On the other hand, since x0 = ρpe and s0 = ρde, we have

∥x∥1 ≤ (3 + δ) r2 ρp, ∥s∥1 ≤ (3 + δ) r2 ρd,

which proves the lemma. □

By substituting the result of Lemma 4.10 into (4.24), we derive an

upper bound for
∥∥∥p (w) 1

2 r̃
∥∥∥
F
as follows.

∥∥∥p (w) 1
2 r̃
∥∥∥
F
≤ (1 + 3

√
r2) r2 ρpρd

(
2 + q2 (δ)

)
√
µq(δ)

.(4.27)

Now, we are ready to obtain an upper bound for
∥∥∥dfx∥∥∥2

F
+
∥∥∥dfs∥∥∥2

F
. Sub-

stituting (4.27) into (4.14) we conclude∥∥∥dfx∥∥∥2
F
+
∥∥∥dfs∥∥∥2

F
≤ 1

q2 (δ)

[
(δ + θ

√
r2)

2(4.28)

+ 2 (θr2 (1 + 3
√
r2) (3 + δ))

(
(δ + θ

√
r2)

+ (θr2(1 + 3
√
r2)(3 + δ))

)]
.

4.2. Value for θ. As we mentioned before, if (4.7) is satisfied then
δ
(
vf
)
≤ 1

2 certainly holds. Then, according to (4.28), inequality (4.7)
holds if

1

q2 (δ)

[
(δ + θ

√
r2)

2 + 2 (θr2 (1 + 3
√
r2) (3 + δ))

(
(δ + θ

√
r2)

+ (θr2 (1 + 3
√
r2) (3 + δ))

)]
≤ 1− θ.

Obviously, the left hand side of the above inequality is monotonically
increasing with respect to δ. Using this, one may easily verify that the
above inequality is satisfied if

δ =
1

16
, θ =

1

66r2
.(4.29)
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4.3. Complexity Analysis. We have found values for the parameters
in the algorithm such that if at the start of an iteration the iterates
satisfy δ (x, s;µ) ≤ τ = 1

16 , then after the feasibility step the iterates

satisfy δ(xf , sf ;µ) ≤ 1
2 . However, after k centering steps we will have

iterates (x+, y+, s+) which are still feasible and δ (x+, y+;µ+) ≤
(
1
2

)2k
.

So, k should satisfy
(
1
2

)2k ≤ τ , which gives k ≥ log2
(
log2

1
τ

)
. Then,

we can easily find at most 2 centering steps suffice to get iterates that
satisfy δ (x+, y+;µ+) ≤ τ .

However, each iteration of algorithm consists of at most 3 so-called
inner iterations. It has become a custom to measure the complexity of
an IPM by the required number of inner iterations. In each iteration
both the duality gap and the norms of the residual vectors are reduced
by the factor 1 − θ. Hence, the total number of the main iterations is
bounded above by

1

θ
log

max
{
Tr
(
x0 ◦ s0

)
,
∥∥∥(r01

r02

)∥∥∥}
ε

.

Due to (4.29) we may take

θ =
1

66 r2
.

Hence the total number of the inner iterations is bounded above by

188 r2 log
max

{
Tr
(
x0 ◦ s0

)
,
∥∥∥(r01

r02

)∥∥∥}
ε

.

Thus we may state without further proof the main result of the paper.

Theorem 4.11. If the original problem MSLCP has the optimal solution
(x∗, y∗, s∗) such that ∥x∗∥∞ ≤ ρp and ∥s∗∥∞ ≤ ρd, then after at most

188 r2 log
max

{
Tr
(
x0 ◦ s0

)
,
∥∥∥(r01

r02

)∥∥∥}
ε

,

iterations the algorithm finds an ε-solution of MSLCP.

5. Concluding Remarks

In this paper, we proposed an infeasible algorithm for MSLCPs and
derived the currently best known iteration bound for the algorithm with
small-update method. Indeed, based on using the proximity measure,
we presented a simple convergence analysis for MSLCPs which are a
general class of complementarity problems. Each main iteration of our
algorithm consists of a feasibility step and at most 2 centering steps.
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The obtained iteration bound for this algorithm, coincides with the best
known bound for IIPMs.
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