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Some Observations on Dirac Measure-Preserving
Transformations and their Results
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ABSTRACT. Dirac measure is an important measure in many re-
lated branches to mathematics. The current paper characterizes
measure-preserving transformations between two Dirac measure
spaces or a Dirac measure space and a probability measure space.
Also, it studies isomorphic Dirac measure spaces, equivalence Dirac
measure algebras, and conjugate of Dirac measure spaces. The
equivalence classes of a Dirac measure space and its measure alge-
bras are presented. Then all of measure spaces that are isomorphic
with a Dirac measure space are characterized and the concept of a
Dirac measure class is introduced and its elements are character-
ized. More precisely, it is shown that every absolutely continuous
measure with respect to a Dirac measure belongs to the Dirac mea-
sure class. Finally, the relation between Dirac measure preserving
transformations and strong-mixing is studied.

1. INTRODUCTION

Ergodic theory is a property on measure preserving transformations
over probability measure spaces, for more details one may refer to [R,
g, I4]. It utilizes techniques and examples from various branches such
as mathematics, physics, probability theory, statistical mechanics and
etc. (see [B, I, 4] and reference therein). For instance the concept of
ergodicity is one of key applications of ergodic theory which describes
the long term average behaviour of systems evolving in time ([H, [7]).

The mean and pointwise ergodic theorems are respectively established

2010 Mathematics Subject Classification. 28Dxx, 28D05.
Key words and phrases. Measure-preserving transformation, Dirac measure, Mea-
sure algebra, Measure-preserving transformation.
Received: 10 April 2017, Accepted: 05 November 2017.
* Corresponding author.
117


http://scma.maragheh.ac.ir

118 A. ALIJANI AND Z. NAZARI

by Neumann and Birkhhoff in 1931 and 1932. The theorems play an im-
portant role in both mathematics and statistical mechanics, for further
details see ([I, 1, I3]).

Before starting the main contribution of the current work, we briefly
express the concept of the Dirac measure in the following paragraph.

The Dirac measure is a probability measure. In terms of probability, it
represents the almost sure outcome x in the sample space X [3, 4, [0]. In
fact, the idea of a Dirac measure is given from the well-known Dirac delta
function. We would like to comment here that one of the important and
most used probability measure spaces is a Dirac measure space and it
has some applications in physics [[2, [5]. The importance of the ergodic
theory and Dirac measure space motivate us to study the existing results
in ergodic theory with respect to the Dirac measure in more details.
During the paper, a Dirac measure concentrated on x is denoted by .

The rest of this paper is organized as follows. In the next section,
we review some basic definitions and notions of measure and Ergodic
theories. In Section B, we characterize measure-preserving transforma-
tions on two types of Dirac measure spaces. More precisely, measure-
preserving transformations are considered on two different Dirac mea-
sure spaces (X, A, i1o) and (Y, B, ug). It is shown that the set of all
measure preserving transformations 7' : (X, A, uo) — (Y, B, p) is empty,
where p is not a Dirac measure and B is a nontrivial o-algebra. In the
sequel, we present the equivalence classes of a Dirac measure space and
their measure algebras. Then all of measure spaces that are isomorphic
with a Dirac measure space are characterized. Using the established
results, we introduce the Dirac measure class.

At the end of this section, we would like to point out that one of the
main contribution of the current work is showing that every absolutely
continuous measure with respect to a Dirac measure belongs to our
defined Dirac measure class. Also, the form of Brikhoff Ergodic Theorem
for a Dirac measure space is presented.

2. PRELIMINARIES

In this section, we give a brief review on the definitions and properties
which are useful for establishing our main results.

In what follows, the triple (X, B, m) is called a measurable space if B
is a o-algebra on X and m is a measure defined on X. A measurable
space (X, B, m) is said to be a probability space if m(X) = 1.

In the rest of this section, we recall some definitions from [I4].

Definition 2.1. Let (X1,.4,m;) and (X2, B,m2) be two probability
spaces. A measurable transformation 7" : (X, A, m1) — (X2, B,ma) is
measure-preserving if mq(T~(B)) = ma(B) for all B € B.
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Some of measure-preserving transformations on a measure space are
ergodic transformations. In the following, the definition of ergodic trans-
formation is given.

Definition 2.2. Let (X, B, m) be a probability space and T : (X, B,m) —
(X, B, m) be a measure-preserving transformation. Then, T is called er-
godic if every member B of B with T~!(B) = B satisfies m(B) = 0 or
m(B) = 1.

The Brikhoff Ergodic Theorem is an important result in ergodic the-
ory. We recall this theorem in the following.

Theorem 2.3 ([I4, Brikhoff Ergodic Theorem|). Suppose T : (X, B,m) —
(X, B,m) is a measure-preserving transformation (where we allow (X, B, m)
to be o-finite) and f € L*(m). Then

1 n—1 .
S TiE)
=0

converges a.e. to a function g € L'(m). Also goT = g a.e. and if
m(X) < oo, then [ gdm = [ fdm.

In the following, the concepts of weak and strong-mixing are given.
It should be commented that the ergodic transformations and strong-
mixing transformations are equivalent.

Definition 2.4. Let T be a measure-preserving transformation of a
probability space (X, 8,m). Then
i . T is weak-mixing if for all A, B € B,

lim fZ‘m T'ANB) - m(A)m(B)| = 0.

n—oo N

ii . T is strong-mixing if for all A, B € B,
lim m(T""AN B) =m(A)m(B).

n—o0

Consider the probability measure space (X,B,m) where B is a o-
algebra on X. Let A and B belong to B. We say that A and B are
equivalent if and only if m(AAB) = 0 where A stands for the well-
known symmetric difference, i.e., AAB = (A\ B)U(B\ A) and suppose
that BB consists of the collection of corresponding equivalence classes. It
is known that B is a Boolean o-algebra under the operations of comple-
mentation, union and intersection inherited from 5. Here, the measure
m induces a measure m on B, i.e., m(B) = m(B) where B is the equiv-
alence class to which B belongs. The pair (B,70) is called a measure
algebra.
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Two measure spaces are equivalent if their corresponding measure
algebras are isomorphic; see [[4] for further details. Two probability
spaces are said to be conjugate if their measure algebras are isomorphic.

3. MAIN RESULTS

In view of the earlier importance of a Dirac measure, this section
deals with scrutinizing some results of ergodic theory on Dirac measure
spaces. In addition,we introduce the concept of Dirac measure classes.
In this section, we focus on the related properties of Dirac measure,
ergodic and mixing transformations.

First, we characterize all of measure-preserving transformations be-
tween Dirac measure spaces and another probability spaces.

Theorem 3.1. Let (X, A, pq) and (X, B, ua) be two Dirac measure
spaces where a« € X, and T : (X, A, po) — (X, B, o) be a transfor-
mation. Then the following statements are valid.

i. If “a” is a fixed point for T, then T is a measure-preserving
transformation.

ii . If “a” is not a fixed point for T'; it means that 5 = Ta and
B # «, and every element of B consists both “a” and “B” or
none of them, then T is a measure-preserving transformation.

iii . If “a” is not a fived points for T'; it means that 5 = Ta and
B # « and there exists an element of B that is only contained
one of the point o or B, then T is not a measure-preserving
transformation.

Proof. i . Assume that Ta = «, and E is an arbitrary element
of B. We have the following cases.
Case 1. If a € E, then a € T7Y(E) and puo(T7HE)) = 1 = po(E).
Case 2. If a ¢ E, then a ¢ T7Y(E), and o (T H(E)) = 0 = po(E).
Therefore, T' is measure-preserving in these two cases.

ii . Let 8 = Ta # o and E be an arbitrary element of B. The
following cases are obtained.
Case 1. If {a, 3} C E, then o € T™Y(E) and puo(T71(E)) =1 =
ta(E).
Case 2. If {a, 3} N E = ¢, then a ¢ T~Y(E) and u(T"Y(E)) =
0= pa(E).
So T’ is measure-preserving in these two cases.

iii . If there exists an element E of B that E N {«a, B} = 3, then
CETUE) = palTY(E) =1 0= pa(E).
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It implies that T is not measure-preserving. Also, if there is an
element E of B that E N {«a, 8} = «, then

Q¢ THE) = pa(T(E) =0+ 1= pa(E).

It implies that 7" is not measure-preserving.
O

Now, we consider a Dirac measure-preserving transformation 7" when
two Dirac measure spaces are on different sets. The following theorem
illustrates it.

Theorem 3.2. Let (X, A, j1o) and (Y, B, ug) be two Dirac measure spaces
wherea € X ,feY, and let T : (X, A, po) = (Y,B,ug) be a measur-
able transformation. Then the following statements are valid.

i. IfTa=p, then T is measure-preserving.

ii . If Ta # B; it means that v = Ta and v # 5, and every
element of B consists both “5” and “y” or none of them, then
T 15 measure-preserving.

Proof. i. Suppose that Ta = 3, and E is an arbitrary element of 5. We
have the following cases.

Case 1. If B € E, then a € T"Y(E), and puo(T1(E)) =1 = ug(E).
Case 2. If B ¢ E, then a ¢ T~HE), and po(T71(E)) =0 = ug(E).
Consequently, T' is a measure-preserving transformation.

ii. Assume that v = Ta # 3, and for E € B consider the following two
cases.

Case 1. If {8,7} C E, then a € T~Y(E) and puo(T7Y(E)) =1 = pg(E).

Case 2. If {3,7}NE = ¢, then a ¢ T~1(E) and puo(T"HE)) =0 =
pp(E).

O

Remark 3.3. In the general case, if T' is a measurable transformation
from a Dirac measure space (X, A, 11o) to a measure space (Y, B, u), it
seems that we can not characterize all of measure-preserving transfor-
mations, unless T : (X, A, no) — (Y,{®,Y}, n) where p is a probability
measure.

Now let T': (Y, {¢, Y}, u) — (X, A, 1a) be a transformation. Then T'
can not preserve measure because if E € A such that £ N Rang(T') # ¢
and a ¢ E, then

TUE) £¢ = TNE)=Y.

So pa(E) =0#1 = pu(T~1(E)).
Therefore, the following problem remains:
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“It is possible to characterize the Dirac measure-preserving of 71" is a
measurable transformation between a Dirac measure space and another
measure space that is not Dirac? ”

Now, we consider the Dirac measure algebras and their equivalence
classes. Suppose that (X, A, o) is a Dirac measure space.

For a Dirac measure space (X, A, (), there are two equivalence classes
with respect to this equivalence relation. To see this, let A, B € A. It
can be seen that

A~B uw(AAB) =0
fa(A—B) + pa(B—A) =0
pa(A = B) = pa(B —A) =0
a¢d AUB or a€ ANB.

rT e

Therefore, for A € A,

1. If a € A, then [A] = {B € A;a € B}, and this class is denoted
by X.
2. Ifa ¢ A, then [A] = {B € A;a ¢ B}, and in this case, we show
[A] = ¢.
Moreover, the measure u, induces a measure (i, on o-algebra {(Z;,X H
such that

fHa(X) = ma(X) =1, 4ia(@) = pal(¢) =0,
and it shows that (i, is a Dirac measure too. Then the measure algebra
corresponding to a Dirac measure space (X, A4, io) is Dirac measure
algebra ({6, X}, jia).
More precisely, the notion of isomorphism between measure spaces is
defined as follows ([I4]).

Definition 3.4. The probability spaces (X, B1,m1) and (Y, B, ma) are
said to be isomorphic if there exist M; € By and My € By with my(M;) =
1 = mg(Mz) and an invertible measure-preserving transformation & :
M; — My (The space M; is assumed to be equipped with the o-algebra
M;NB; ={M; N B : B € B;} and the restriction of the measure m; to
this o-algebra).

In the following results, we study all of measure spaces that are iso-
morphic with a Dirac measure space and so we characterize all of mea-
sure algebras that are equivalent with a Dirac measure algebra.

Theorem 3.5. Let (Y,B,u) be a measure space and let (X, A, pq) and
(Y, B, ug) be two Dirac measure spaces. Then the following statements
are valid.
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i. If u is a probability measure, B = {¢,Y} and there exists an
invertible transformation 6 : A — Y such that A is an element
of A containing a, then (X, A, po) and (Y, B, 1) are isomorphic.

ii. Two Dirac measure spaces (X, A, pa) and (Y, B, ug) are isomor-
phic in two following cases. Assume that A is an element of A
containing “o” and B is an element of B including “B”.

1. If there exists an invertible transformation 6 : A — B such
that 0(a) = .

2. If there exists an invertible transformation 0 : A — B such
that v := 0(«) = B and for every E € B,

{.BYSE or {v,B}NE=2¢.

iii. Suppose that Y = X, A € A and B € B such that « € AN B.
Then, the Dirac measure spaces (X, A, o) and (X, B, pq) are
isomorphic in the following states:

1. If there exists an invertible transformation 6 : A — B such
that “a” is a fixed point for 0.

2. If there exists an invertible transformation 0 : A — B such
that v = () # B and for E € B

{v.6}CE or {v,}NE=¢.

Proof. i. According to Definition B4, it is enough to find an invertible
measure-preserving transformation. By Remark B3, § : A — Y is a
measure-preserving transformation. Also pa(A) =1 = pu(Y). Then the
conditions of Definition B2 are valid and two measure spaces (X, A, iq)
and (Y, B, u) are isomorphic. For proof of (ii) and (iii), let 6 be an
invertible transformation that has one of properties in “1” and “2”.
Then Theorems B and B2 conclude that 6 is measure-preserving. [

Theorem 3.6. If (Y, B,m) is a measure space which is conjugate with a
Dirac measure space (X, A, po), then (Y, B,m) is a probability measure
space and B, the measue algebra of B, is {¢,Y}.

Proof. If (X, A, uo) is conjugate with (Y, B, m), then there exists a bi-
jective 6 : B — A such that

1. B((E)°) = 0(E)¢, VE € B,

2. (UR E;) = UX,0(F;), VE; €B, ieN,

3. pa(0(E)) = m(E), VE € B.
Also, since 6 is bijective, two possible cases for 6 are as follows:

L oY) =, 0(d) =X,
i. 0Y)=X, 60(¢) =o.
By the first property of 8, the item (i) can not be true and by the third
property of 6, (Y, B, m) is a probability measure space. O
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In the above proof, if 8 : A — B, then the same result is given.
Here, we recall a Dirac measure class for every measure space that is
conjugate with a Dirac measure space. It means that every measure
function p : (Y,B) — {0,1} belongs to the Dirac measure class. The
equivalence relation between the sets of a g-algebra gives an interesting
result for a class of measures that are absolutely continuous with respect
to a Dirac measure.

Proposition 3.7. Let (X, A, o) be a Dirac measure space and X\ be
a probability measure which is absolutely continuous with respect to .
Then not only X\ is a Dirac measure class, but also X = pg.

Proof. Suppose that Ate = {X Hor | ggua} is the o-algebras of equivalence
classes corresponding to measure spaces (X, A, i1o). Now, let A be an
arbitrary element of A. The following cases are satisfied.

Case 1. If a € A, then o ¢ A° and po(A°) = 0. By A < g, we have
A(A°) = 0. Since A is a probability measure, so A(A) = 1.

Case 2. If a ¢ A, then p,(A) = 0. Since A < fin, we have A(A) = 0. So
A(A%) =1

Case 1 and case 2 show that A = u, and A is a Dirac measure class. O

By the above results, it is well-known that every measure-preserving
transformation for a Dirac measure space is ergodic. In the following,
the Brikhoff Ergodic Theorem for a Dirac measure space is given.

Proposition 3.8. If T is a measure-preserving transformation on a
Dirac measure space (X, A, pia), then for f € L' (ua),

n—1
i S T @) = £
=1

Proposition 3.9. A nontrivial measure space (X, A, po) is a Dirac
measure class if and only if every measure-preserving transformation
on it is ergodic.

Proof. 1t is not difficult to verify the validity of “if” part. For converse,
suppose that every measure-preserving transformation is ergodic. Let
A be an arbitrary element of A. Since the identity transformation on
(X, A, 11a) is measure-preserving and then it is ergodic, then

I''(A)=4 — pwA)=0 or pld) =1

So, the range of u is {0,1} and the measure space is a Dirac measure
class. 0

One of the interesting subjects strong-mixing and weak-mixing trans-
formation. It is well-known that every strong-mixing transformation is
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weak-mixing and every weak-mixing transformation is an ergodic trans-
formations. But the converse is not true, it means that there exists a
probability measure space that has an ergodic transformation such that
it is not weak-mixing ([I4]).

There is a useful property for a Dirac measure space about the con-
verse of the above relation. The following proposition illustrates this

property.

Proposition 3.10. Every measure-preserving transformation T on a
Dirac measure space (X, A, pio,) is a strong-mizing transformation.

Proof. Let T' be measure-preserving on (X, A, u,) and A,B € A. If
a ¢ B, then the result is clear. We must consider two cases in Theorem
B,

1. “a” is a fixed point for T and if o ¢ A, then a ¢ T "(A), for
all n € N, and

nh—>r20 /’La(T_n(A) N B) =0= Na(A) N /«La(B)'

2. “a” is not fixed point for 7" and T'(«a) = f # «, then § ¢ A by
Theorem B, o ¢ T7™(A), and we have

h_>m Ma(T_n(A)mB) :O:MQ(A)QMQ(B), Vn € N.
O
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