Sahand Communications in Mathematical Analysis (SCMA) Vol. 14 No. 1 (2019), 107-116 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.63393.239

A Class of Hereditarily $\ell_p(c_0)$ Banach Spaces

Somayeh Shahraki¹ and Alireza Ahmadi Ledari^{2*}

ABSTRACT. We extend the class of Banach sequence spaces constructed by Ledari, as presented in "A class of hereditarily ℓ_1 Banach spaces without Schur property" and obtain a new class of hereditarily $\ell_p(c_0)$ Banach spaces for $1 \leq p < \infty$. Some other properties of this spaces are studied.

1. INTRODUCTION

We follow the same notations and terminology as in [5]. Let Y be a subspace of X. Then we say that X contains Y hereditarily if every infinite dimensional subspace of X contains an isomorphic copy of Y. Thus, if X hereditarily contains Y, then we naturally expect to have the interior properties of X to be close to those of Y. Any exception may be of interest. For example, it is well known that ℓ_1 possesses the Schur property, while there are hereditarily ℓ_1 Banach spaces without the Schur property [1, 2, 3, 4, 7].

In this paper, we use $\ell_{w,p}$ spaces to introduce and study a new class of hereditarily $\ell_p(c_0)$ spaces. Indeed, if $p_1 > p_2 > \cdots > 1$, the subspace Z_p for $p \in [1, \infty) \cup \{0\}$ of

$$X_p = \left(\sum_{n=1}^{\infty} \oplus \ell_{w, p_n}\right)_p,$$

is hereditarily $\ell_p(c_0)$. Other properties of these spaces are investigated. In this article, we show that under some conditions for $p \in [1, \infty) \cup \{0\}$,

²⁰¹⁰ Mathematics Subject Classification. 46B20, 46E30.

Key words and phrases. Banach spaces, Nowhere dual Schur property, Hereditarily $\ell_p(c_0)$ Banach spaces.

Received: 04 May 2017, Accepted: 22 November 2017.

^{*} Corresponding author.

the natural operator from $\ell_{w,p}$ to Z_p is unbounded. Also the natural operator from Z_p to $\ell_{w,p}$ is unbounded.

Let $w = (w_n)$ be a fixed nonnegative real sequence. We recall the definition of $\ell_{w,p}$ $(1 \le p < \infty)$, the weighted ℓ_p Banach sequence space. We know

$$\ell(w,p) = \left\{ x = (x_1, x_2, \ldots) : x_i \in \mathbb{R}, \sum_{i=1}^{\infty} w_i |x_i|^p < \infty \right\}.$$

For any $x \in \ell(w, p)$, define

$$||x||_{w,p} = \left(\sum_{i=1}^{\infty} w_i |x_i|^p\right)^{\frac{1}{p}}.$$

For any *i*, let $e_i = \left(\underbrace{0, \dots, 0}_{i-1}, \left(\frac{1}{w_i}\right)^{\frac{1}{p}}, 0, \dots\right)$. We know that $\{e_i : i \in \mathbb{N}\}$

is a normalized basis for $\ell(w, p)$. Now we go through the construction of the spaces X_p analogous of the space of Popov. Let $w = (w_n)$ be a fixed sequence, and $(\ell_{w,p_n})_{n=1}^{\infty}$ a sequence of Banch spaces as above with $\infty > p_1 > p_2 > \cdots > 1$. The direct sum of these spaces in the sense of ℓ_p is defined as the linear space

$$X_p = \left(\sum_{n=1}^{\infty} \oplus \ell_{w,p_n}\right)_p,$$

with $p \in [1, \infty)$ which is the space of all sequences $x = (x^1, x^2, \ldots)$, $x^n \in \ell_{w, p_n}, n = 1, 2, \ldots$, with

$$||x||_p = \left(\sum_{n=1}^{\infty} ||x^n||_{w,p_n}^p\right)^{\frac{1}{p}} < \infty.$$

The direct sum of the spaces (ℓ_{w,p_n}) in the sense of c_0 is the linear space

$$X_0 = \left(\sum_{n=1}^{\infty} \oplus \ell_{w,p_n}\right)_0,$$

of all sequences $x = (x^1, x^2, ...), x^n \in \ell_{w,p_n}, n = 1, 2, ...,$ for which $\lim_n ||x^n||_{w,p_n} = 0$ with norm

$$||x||_0 = \max_n ||x^n||_{w,p_n}.$$

The construction and idea of the proof follow from [8], but the nature of these spaces is different. So for similar results, we omit the details of the proofs.

In fact these spaces are a rich class of spaces which depend on the sequences $w = (w_i)$ and (p_n) as above. Fix a sequence $w = (w_i)$ of reals which satisfies the above conditions and a sequence (p_n) of reals with $\infty > p_1 > p_2 > \cdots > 1$. Consider the sequence space X_p as above. For each $n \ge 1$, denote by $(\overline{e_{i,n}})_{i=1}^{\infty}$ the unit vector basis of ℓ_{w,p_n} and by $(e_{i,n})_{i=1}^{\infty}$ its natural copy in X_p :

$$e_{i,n} = \left(\underbrace{0,\ldots,0}_{n-1}, \overline{e_{i,n}}, 0,\ldots\right) \in X_p.$$

Let $\delta_n > 0$ and $\Delta = (\delta_n)$ such that

$$\sum_{n=1}^{\infty} \delta_n^p = 1, \quad \text{if } p \ge 1,$$

and $\lim_{n \to \infty} \delta_n = 0$ and $\max_n \delta_n = 1$ if p = 0. For each $i \ge 1$ put

$$z_i = \sum_{n=1}^{\infty} \delta_n e_{i,n}.$$

Then

$$\begin{aligned} \|z_i\|_p &= \left(\sum_{n=1}^{\infty} \|\delta_n e_{i,n}\|_{w,p_n}^p\right)^{\frac{1}{p}} \\ &= \left(\sum_{n=1}^{\infty} \delta_n^p\right)^{\frac{1}{p}} \\ &= 1, \end{aligned}$$

since $\|e_{i,n}\|_{w,p_n} = 1$ and

$$||z_i||_0 = \max_n ||\delta_n e_{i,n}||_{w,p_n} = 1.$$

It is clear that for any sequence $(t_i)_{i=1}^m$ of scalars,

$$\left\|\sum_{i=1}^{m} t_i z_i\right\|_p^p = \sum_{n=1}^{\infty} \delta_n^p \left\|\sum_{i=1}^{m} t_i e_{i,n}\right\|_{w,p_n}^p, \quad \text{if} \quad 1 \le p < \infty,$$

and

$$\left\|\sum_{i=1}^{m} t_i z_i\right\|_0 = \max_n \delta_n \left\|\sum_{i=1}^{m} t_i e_{i,n}\right\|_{w,p_n}, \quad \text{if} \quad p = 0.$$

Let Z_p be the closed linear space of $(z_i)_{i=1}^{\infty}$. For each $I \subseteq \mathbb{N}$ the projection P_I denotes the natural projection of X_p on to $[e_{i,n} : i \in \mathbb{N}, n \in I]$. Denote also $Q_n = P_{\{n,n+1,\ldots\}}$.

We recall the main properties of $\ell_{w,p}$ $(1 \le p < \infty)$ and Z_1 spaces [4].

Theorem 1.1. For $1 \leq p < \infty$, $\ell(w, p)$ is hereditarily isometrically isomorphic to ℓp ,

$$\left\|\sum_{i=1}^{n} t_i v_i\right\|_{w,p}^{p} = \sum_{i=1}^{n} |t_i|^{p}.$$

Theorem 1.2. Let $w_i \ge 1$ for any $i \in \mathbb{N}$ and $w = (w_i)$. For $1 \le p_{n+1} \le p_n < \infty$, $\ell(w, p_{n+1}) \subseteq \ell(w, p_n)$. In particular $||x||_{w, p_n} \le ||x||_{w, p_{n+1}}$.

Theorem 1.3. Z_1 is a hereditarily ℓ_1 Banach space which fails the Schur property.

2. The Result

Now, we show that Z_p is hereditarily $\ell_p(c_0)$ for $p \in [1, \infty) \cup \{0\}$. But first, we collect some basic facts about our spaces in the following lemmas.

Lemma 2.1. Let E_0 be an infinite dimensional subspace of Z_p , $n, m, j \in \mathbb{N}(n > 1)$, and $\varepsilon > 0$. Then there are $\{x_i\}_{i=1}^m \subset E_0$ and $\{u_i\}_{i=1}^m \subset Z_p$ such that the k'th component of u_i is of the form

$$u_{i,k} = \delta_k \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s,$$

where $j = j_1 < j_2 < \cdots < j_{m+1}$. The v_i 's are obtained from the proof of Theorem 1.1, for $p = p_n$ such that

$$\sum_{s=j_{i}+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} = 1, \qquad ||u_i - x_i|| < \frac{\varepsilon}{m} ||u_i||,$$

for each i = 1, ..., m.

Proof. Put $E_1 = E_0 \cap [z_i]_{i=j+1}^{\infty}$. Since E_0 is infinite dimensional and $[z_i]_{i=j+1}^{\infty}$ has finite codimension in Z_p , E_1 is infinite dimensional as well. Put $j_1 = j$ and choose any $\bar{x}_1 \in E_1 \setminus \{0\}$ such that the k'th component of \bar{x}_1 has the form

$$\overline{x_{1,k}} = \delta_k \sum_{s=j_1+1}^{\infty} \overline{a_{1,s}} v_s.$$

Take \bar{x}_1 and use Lemma 2.2 of [8] to obtain x_1 and u_1 with above properties and continue the procedure of that lemma to construct the desired sequence.

Lemma 2.2. Let E_0 be an infinite dimensional subspace of Z_p , $j, n \in \mathbb{N}$, and $\varepsilon > 0$. Then, there exist $x \in E_0$, $x \neq 0$, and $u \in Z_p$ such that

(i)
$$||Q_n u|| \ge (1-\varepsilon) ||u||_{\varepsilon}$$

(ii) $||x - u|| < \varepsilon ||u||.$

Proof. Choose $m \in \mathbb{N}$ so that

$$\frac{1}{\delta_n}m^{\frac{1}{p_{n-1}}-\frac{1}{p_n}} < \varepsilon.$$

Using Lemma 2.1, choose $\{x_i\}_{i=1}^m \subseteq E_0$ and $\{u_i\}_{i=1}^m \subseteq Z_p$ so that satisfy the claims of lemma and put

$$x = \sum_{i=1}^{m} x_i \text{ and } u = \sum_{i=1}^{m} u_i.$$

First, we prove (ii). We know that $||u_i|| \le ||u||$ for i = 1, ..., m and

$$\|x - u\| \le \sum_{i=1}^{m} \|x_i - u_i\|$$
$$< \sum_{i=1}^{m} \frac{\varepsilon \|u_i\|}{m}$$
$$\le \sum_{i=1}^{m} \frac{\varepsilon \|u\|}{m}$$
$$= \varepsilon \|u\|.$$

To prove (i), we first show that

$$||u|| - ||Q_n u|| < m^{\frac{1}{p_{n-1}}}.$$

Anyway, $\|u\|-\|Q_nu\|\leq \|p_{\{1,\dots,n-1\}}u\|.$ Hence, by Theorem 1.1 and Theorem 1.2, for $p\geq 1,$ we have

$$(\|u\| - \|Q_n u\|)^p \le \sum_{k=1}^{n-1} \delta_k^p \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_k}^p$$
$$\le \sum_{k=1}^{n-1} \delta_k^p \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_{n-1}}^p$$
$$= \sum_{k=1}^{n-1} \delta_k^p \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{\frac{p}{p_{n-1}}}$$
$$= \sum_{k=1}^{n-1} \delta_k^p \left(\sum_{i=1}^m 1 \right)^{\frac{p}{p_{n-1}}}$$

$$= m^{\frac{p}{p_{n-1}}} \sum_{k=1}^{n-1} \delta_k^p$$
$$< m^{\frac{p}{p_{n-1}}}.$$

And for p = 0, we have

$$\begin{aligned} \|u\| - \|Q_n u\| &\leq \max_{1 \leq k < n} \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_k} \\ &\leq \max_{1 \leq k < n} \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_{n-1}} \\ &= \max_{1 \leq k < n} \delta_k \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{\frac{1}{p_{n-1}}} \\ &= \max_{1 \leq k < n} \delta_k \left(\sum_{i=1}^m 1 \right)^{\frac{1}{p_{n-1}}} \\ &= \max_{1 \leq k < n} \delta_k m^{\frac{1}{p_{n-1}}} \\ &\leq m^{\frac{1}{p_{n-1}}}. \end{aligned}$$

On the other hand, for $p \ge 1$, we have

$$\begin{split} \|u\|^{p} &\geq \delta_{n}^{p} \left\| \sum_{i=1}^{m} \sum_{s=j_{i}+1}^{j_{i+1}} a_{i,s} v_{s} \right\|_{w,p_{n}}^{p} \\ &= \delta_{n}^{p} \left(\sum_{i=1}^{m} \sum_{s=j_{i}+1}^{j_{i+1}} |a_{i,s}|^{p_{n}} \right)^{\frac{p}{p_{n}}} \\ &\geq \delta_{n}^{p} \left(\sum_{i=1}^{m} \left(\sum_{s=j_{i}+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{\frac{p}{p_{n-1}}} \right)^{\frac{p}{p_{n}}} \\ &= \delta_{n}^{p} \left(\sum_{i=1}^{m} 1 \right)^{\frac{p}{p_{n}}} \\ &= \delta_{n}^{p} m^{\frac{p}{p_{n}}}. \end{split}$$

And for p = 0, we can write

$$\begin{aligned} |u|| &= \max_{k \in \mathbb{N}} \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_k} \\ &\geq \delta_n \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{w,p_n} \\ &= \delta_n \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_n} \right)^{\frac{1}{p_n}} \\ &\geq \delta_n \left(\sum_{i=1}^m \left(\sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{\frac{p_n}{p_{n-1}}} \right)^{\frac{1}{p_n}} \\ &= \delta_n \left(\sum_{i=1}^m 1 \right)^{\frac{1}{p_n}} \\ &= \delta_n m^{\frac{1}{p_n}}. \end{aligned}$$

Thus, anyway $||u|| \ge \delta_n m^{\frac{1}{p_n}}$, and hence,

$$1 - \frac{\|Q_n u\|}{\|u\|} \le \frac{m^{\frac{1}{p_{n-1}}}}{\delta_n m^{\frac{1}{p_n}}} = \frac{1}{\delta_n} m^{\frac{1}{p_{n-1}} - \frac{1}{p_n}} < \varepsilon,$$

and $||Q_n u|| \ge (1-\varepsilon) ||u||.$

The following theorem is the main result of this paper:

Theorem 2.3. (i) The Banach space Z_p is hereditarily ℓ_p for $1 \le p < \infty$.

(ii) The space Z_0 is hereditarily c_0 .

Proof. For the proof of our main results we need the following Lemma an Theorem from Popov [8] (see Lemma 2.4 and Theorem 2.5). \Box

Lemma 2.4. Suppose $\varepsilon > 0$ and ε_s for $s \in \mathbb{N}$ are such that

(i) $2\varepsilon_s \le \varepsilon$ if p = 1, (ii) $\sum_{s=1}^{\infty} (2\varepsilon_s)^q \le \varepsilon^q$ if $1 \le p < \infty$ where $\frac{1}{p} + \frac{1}{q} = 1$, (iii) $\sum_{s=1}^{\infty} (2\varepsilon_s) \le \varepsilon$ if p = 0. If for given vectors $\{u_s\}_{s=1}^{\infty} \subset S(Z_p)$, where $Z_p = Z_p(P)$, there is a sequence of integers $1 \leq n_1 < n_2 < \cdots$ such that, for each $s \in \mathbb{N}$, one has

- (i) $||u_s Q_{n_s} u_s|| \leq \varepsilon_s$,
- (ii) $\left\|Q_{n_{s+1}}u_s\right\| \leq \varepsilon_s,$

then $\{u_s\}_{s=1}^{\infty}$ is $(1+\varepsilon)(1-3\varepsilon)^{-1}$ -equivalent to the unit vector basis of ℓ_p (respectively, c_0).

Theorem 2.5. The Banach space $Z_p = Z_p(P)$ is hereditarily ℓ_p if $1 \le p < \infty$ and is hereditarily c_0 if p = 0.

The proof Lemma 2.4 and Theorem 2.5 are based on the definition of Q_i and the norm on Z_p . In fact by the conditions of this lemma and for any sequence $(a_s)_{s=1}^m$ of scalars, it follows that

$$(1-3\varepsilon)\left(\sum_{s=1}^{m}|a_s|^p\right)^{\frac{1}{p}} \le \left\|\sum_{s=1}^{m}a_su_s\right\| \le (1+\varepsilon)\left(\sum_{s=1}^{m}|a_s|^p\right)^{\frac{1}{p}},$$

for $1 \leq p < \infty$, and

$$(1 - 3\varepsilon) \max_{1 \le s < m} |a_s| \le \left\| \sum_{s=1}^m a_s u_s \right\| \le (1 + \varepsilon) \max_{1 \le s < m} |a_s|,$$

for p = 0. Then by using the stability properties of the bases ([5], p. 5) and Lemma 2.2, we conclude the proofs.

Definition 2.6. Let X be an arbitrary Banach space. Then

- a) X has the nowhere Schur property if X contains no infinite dimensional closed subspace with the Schur property.
- b) X has the nowhere dual Schur property if X contains no infinite dimensional closed subspace such that its dual has the Schur property.

Definition 2.7. A Banach space X has the Schur property if every weak convergent sequence is norm convergent.

Theorem 1.3 in this paper and Theorem 1.3 of [6] have the following consequence.

Theorem 2.8. Z_1 possesses the nowhere dual Schur property.

3. Operators

Definition 3.1. Let X and Y be any of the spaces $\ell_{w,p}$ $(1 \le p < \infty)$, or Z_p $(1 \le p < \infty)$ with their natural bases $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$, respectively. The formal (possibly unbounded) operator $T: X \longrightarrow Y$ which extends by linearity and continuity the equality $Tx_n = y_n$ is called the natural operator from X to Y.

Theorem 3.2. Let $p \in [1, \infty)$ and $p_1 > p_2 > \cdots > 1$.

- (i) If $\inf_n p_n < p$, then the natural operator from $\ell_{w,p}$ to Z_p is unbounded.
- (ii) If $\inf_{n} p_n \ge p$, then the natural operator from Z_p to $\ell_{w,p}$ is unbounded.

Proof. For constant scalars $a_1 = a_2 = \cdots = a_m = 1$, we have

$$\left\|\sum_{i=1}^{m} z_{i}\right\|_{p}^{p} = \sum_{n=1}^{\infty} \delta_{n}^{p} \left\|\sum_{i=1}^{m} e_{i,n}\right\|_{w,p_{n}}^{p} = \sum_{n=1}^{\infty} \delta_{n}^{p} m^{\frac{p}{p_{n}}},$$

if $1 \leq p < \infty$.

On the other hand,

$$\left\|\sum_{i=1}^{m} e_i\right\|_{w,p}^p = m,$$

if $1 \leq p < \infty$.

Therefore, for $1 \leq p < \infty$, we have

$$||T||^{p} \geq \frac{\left\|\sum_{i=1}^{m} Te_{i}\right\|_{p}^{p}}{\left\|\sum_{i=1}^{m} e_{i}\right\|_{w,p}^{p}} = \frac{\left\|\sum_{i=1}^{m} z_{i}\right\|_{p}^{p}}{\left\|\sum_{i=1}^{m} e_{i}\right\|_{w,p}^{p}} = \sum_{n=1}^{\infty} \delta_{n}^{p} m^{\frac{p}{p_{n}}-1}.$$

If $\inf_{n} p_n < p$, then there exists n_0 such that $p_{n_0} < p$, and hence,

$$\|T\|^{p} \geq \sum_{n=1}^{\infty} \delta_{n}^{p} m^{\frac{p}{p_{n}}-1} \geq \delta_{n_{0}}^{p} m^{\frac{p}{p_{n_{0}}}-1} \to \infty,$$

as $m \to \infty$.

Now assume that $\inf_{n} p_n \ge p$. In this case, we have $\frac{p}{p_n} - 1 < 0$ for each n. Given $\varepsilon > 0$, we choose n_o so that

$$\sum_{n=n_0}^{\infty} \delta_n^p < \frac{\varepsilon}{2}.$$

Then we choose m_0 such that

$$\left(\max_{1\le n\le n_0}\delta_n\right)^p m^{\frac{p}{pn_0}-1} < \frac{\varepsilon}{2n_0},$$

for $m \ge m_0$. So, for such m, we have

$$||T||^p \ge \frac{1}{\sum\limits_{n=1}^{\infty} \delta_n^p m^{\frac{p}{p_n}-1}}$$

$$= \frac{1}{\sum\limits_{n=1}^{n_0} \delta_n^p m^{\frac{p}{p_n}-1} + \sum\limits_{n=n_0+1}^{\infty} \delta_n^p m^{\frac{p}{p_n}-1}}$$

$$\geq \frac{1}{\sum\limits_{n=1}^{n_0} \left(\max_{1 \le n < n_0}\right)^p m^{\frac{p}{p_n}-1} + \sum\limits_{n=n_0+1}^{\infty} \delta_n^p m^{\frac{p}{p_n}-1}}$$

$$\geq \frac{1}{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \to \infty,$$

as $m \to \infty$.

Acknowledgment. The authors are greatful to the referees for their useful comments.

References

- P. Azimi and J. Hagler, Examples of hereditarily l₁ Banach spaces failing the Schur property, Pacific J. of Math., 122 (1986), pp. 287-297.
- P. Azimi and A.A. Ledari, A class of Banach sequence spaces analogous to the space of Popov, Czech. Math. J., 59 (2009), pp. 573-582.
- 3. J. Bourgain, $\ell_1\text{-}$ subspace of Banach spaces, Lecture notes, Free University of Brussels.
- 4. A.A. Ledari, A class of hereditarily ℓ_p Banach spaces without Schur property, Iranian Journal of Science and Technology, 42 (2018), pp. 1-4.
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces, Springer Verlag, Berlin, 1977.
- S.M. Moshtaghioun, Nowhere Schur property in some Operator spaces, Int. Journal of Math. Analysis, 4 (2010), pp. 1929-1936.
- M.M. Popov, A hereditarily l₁ subspace of L₁ without the Schur property, Proc. Amer. Math. Soc., 133 (2005), pp. 2023-2028.
- M.M. Popov, More examples of hereditarily l_p Banach spaces, Ukrainian Math. Bull., 2 (2005), pp. 95-111.

 1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

E-mail address: somayehshahraki@yahoo.com

 2 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

E-mail address: ahmadi@hamoon.usb.ac.ir

116