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Fuzzy Best Simultaneous Approximation of a Finite Numbers

of Functions

Hossain Alizadeh Nazarkandi

Abstract. Fuzzy best simultaneous approximation of a finite num-
ber of functions is considered. For this purpose, a fuzzy norm on
C (X,Y ) and its fuzzy dual space and also the set of subgradients
of a fuzzy norm are introduced. Necessary case of a proved theo-
rem about characterization of simultaneous approximation will be
extended to the fuzzy case.

1. Introduction

In this paper, we consider fuzzy normed spaces in the sense of Cheng
and Mordeson [3].

Recently, S.M. Vaezpour and et. al. have introduced the concept
of t-best approximation and best simultaneous approximation in fuzzy
normed spaces in [4, 8] and proved several theorems pertaining to these
spaces.

Here, fuzzy best simultaneous approximation of a finite number of
functions is considered.

The organization of the paper is as follows. Section 2 comprises the
preliminaries on fuzzy normed space. In Section 3 by using of the re-
lation between seminorms and fuzzy normed spaces, some fuzzy norms
on the linear space of continuous functions and its dual space have been
made. In Section 4, we prove some results by using of the notion of
fuzzy subgradient and deduce the main Theorem of paper about fuzzy
simultaneously approximating of a finite number of functions.
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2. Preliminaries

According to [7], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a
continuous t-norm if ∗ satisfies the following conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for every a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d

whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1]. Three examples of con-
tinuous t-norms are ∧, ., ∗L(the Lukasiewicz t-norm), which are defined
by a∧ b = min {a, b} , a.b = ab, a ∗L b = max {a+ b− 1, 0} , respectively.
Recall that ∗L ≤ . ≤ ∧. In fact, ∗ ≤ ∧ for every t-norm ∗.

Definition 2.1 ([8]). Let Y be a linear space over real numbers. A
fuzzy subset N of Y ×R (R is the set of real numbers) is called a fuzzy
norm on Y if for all x, y ∈ Y and s, t > 0, the following conditions are
satisfied:

(N1) N (x, 0) = 0;
(N2) N (x, t) = 1 for all t > 0 iff x = 0;

(N3) N (sx, t) = N
(
x, t

|s|

)
if s ̸= 0;

(N4) N (x+ y, s+ t) ≥ N (x, s) ∧N (y, t) ;
(N5) N(x, .) : [0, ) → [0, 1] is continuous;
(N6) lim

t→∞
N (x, t) = 1.

The triple (Y,N, ∗), will be referred to as a fuzzy normed linear space.

If (Y,N, ∗) is a fuzzy normed space, the open ball BN (x, r, t) with
center x, radius r, 0 < r < 1 and t > 0 is defined as follows:

BN (x, r, t) = {y ∈ Y : N (y − x, t) > 1− r} .
We note that BN (x, r, t) = x + BN (0, r, t), for all x ∈ X and 0 < r <
1, t > 0. The closed ball B̄N (x, r, t) with center x, radius r, 0 < r < 1
and t > 0 is defined as follows :

B̄N (x, r, t) = {y ∈ Y : N (y − x, t) ≥ 1− r} .
If (Y,N, ∗) is a fuzzy normed space, the fuzzy set MN in Y ×Y × [0,∞)
given by MN (x, y, t) = N (y − x, t) is a fuzzy metric on Y in the sense
of Kramosil and Michálek [5]. This fuzzy metric induces a topology on Y ,
which has as a base of the collection {BN (x, r, t) : x ∈ Y, 0 < r < 1, t > 0} .
It is well known that a fuzzy normed space is a topological vector space
and Hausdorff locally convex space. We need the following propositions
which is proved by Bag and Samanta in Theorems 2.1, 2.2 of [2]:

Proposition 2.2. Let (Y,N,∧) be a fuzzy normed space and let α ∈
(0, 1) . Then the following hold:
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(a) The function ∥.∥α → [0,∞) given by

∥x∥α = inf {t > 0 : N(x, t) ≥ α} ,
is a seminorm. In fact, it is the Minkowski functional of the
ball B̄ (0, 1− α, 1) .

(b) The family {∥.∥α : α ∈ (0, 1)} is separating and ascending.

This family will be called the seminorms corresponding to the fuzzy
norm (N,∧).

Proposition 2.3. Let {∥.∥α : α ∈ (0, 1)} be an ascending family of sep-
arating seminorms on a real linear space Y , and let ∥x∥0 = 0, for
all x ∈ Y. Then, the pair (N,∧) is a fuzzy norm on Y ,where N :
Y × [0,∞) → [0, 1] is given by N(x, 0) = 0, for all x ∈ Y and

N (x, t) = sup {α ∈ [0, 0) : ∥x∥α < t} ,
for all x ∈ Y and t > 0.

It is clear that ∥.∥α is the corresponding family of seminorms to the
(N,∧) . We recall that a family {∥.∥α : α ∈ (0, 1)} of seminorms is said
to be separating if ∥x∥α = 0, ∀ α ∈ (0, 1) , then x = 0.

3. Fuzzy Space of Functions

In the remainder of paper, we suppose that X be a Hausdorff compact
space and C (X,Y ) be the set of all continuous mappings from X to the
fuzzy normed space (Y,N) .

Proposition 3.1. Let X be a Hausdorff compact space. Let Y be a
fuzzy normed space with fuzzy norm N and f ∈ C (X,Y ) . Define

∥f∥Aα = max
x∈D

inf {t : N(f(x), t) > α} = max
x∈D

∥f(x)∥α,

where

D = f−1(B̄N (0, 1− α, 1)).

Then
{
∥.∥Aα : α ∈ (0, 1)

}
is an ascending family of separating seminorms

on C (X,Y ) .

Proof. Since N is a fuzzy norm on Y , by Proposition 2.2, ∥f(x)∥α is
an ascending family of seminorms on Y,∀x ∈ X, α ∈ (0, 1). Therefore
∥f∥Aα is a seminorm on C (X,Y ) . Now, if ∥f∥Aα = 0 for all α ∈ (0, 1) ,
then ∥f(x)∥α ≤ ∥f∥Aα = 0. So, for all α ∈ (0, 1); ∥f(x)∥α = 0. By
Proposition 2.2 , ∥.∥α is separating so that f(x) = 0, ∀x ∈ X. That
is the family

{
∥.∥Aα : α ∈ (0, 1)

}
is separating. If α ≤ β then 1 − β ≤

1− α and then B̄N (0, 1− α, 1) ⊆ B̄N (0, 1− β, 1), ∥f∥Aα ≤ ∥f∥Aβ . That is{
∥.∥Aα : α ∈ (0, 1)

}
is an ascending family of seminorms on C(X,Y ). □
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Corollary 3.2. The pair (NA,∧) is a fuzzy norm on C (X,Y ) , where
NA : C (X,Y )× [0,∞) → [0, 1] is given by NA (f, 0) = 0 and
NA (f, t) = sup

{
α ∈ [0, 1) : ∥f∥Aα < t

}
, ∀ f ∈ C (X,Y ) .

Proof. Corollary follows from the above Proposition and Proposition 2.3.
□

Denote by C∗ (X,Y ) the set of all continuous linear mappings from
the pair (C (X,Y ) , NA) to R.

Proposition 3.3. Let NA be the fuzzy norm on C (X,Y ) and ∥.∥Aα be
the family of seminorms on C (X,Y ) as Proposition 3.1. For each l ∈
C∗ (X,Y ), define ∥l∥∗A0 = 0 and

∥l∥∗Aα = sup
{
|l(f)| : ∥f∥Aα ≤ 1

}
,

whenever α ∈ (0, 1) . Then,
{
∥.∥∗Aα : α ∈ (0, 1)

}
is an ascending family

of separating seminorms on C∗ (X,Y ) which we call it dual seminorms.

Proof. It is easy to show that ∥.∥∗Aα is a family of seminorms on C∗ (X,Y ) .
If ∥l∥∗Aα = 0 for all α ∈ (0, 1) , then |l(f)| = 0 for all f ∈ U (1− α, 1) ,
where U (1− α, 1) = {f ∈ C(X,Y ) : ∥f∥1−α ≤ 1} . Since U (1− α, 1) is
absorbent [1], for given f ∈ C (X,Y ) , there exists k > 0 such that
kf ∈ U (1− α, 1) . Then, l (kf) = kl(f) = 0 and so l (f) = 0. Thus ∥.∥∗Aα
is separating.
Since ∥.∥Aα is ascending, therefore if α ≤ β, then ∥f∥Aα ≤ ∥f∥Aβ and then

∥l∥∗α ≤ ∥l∥∗β. Therefore,
{
∥.∥∗Aα : α ∈ (0, 1)

}
is an ascending family of

seminormes on C∗ (X,Y ) . □
Similarly to the Corollary 3.2 we have:

Corollary 3.4. The pair (N∗
A,∧) is a fuzzy norm on C∗ (X,Y ) , where

N∗
A : C∗ (X,Y )× [0,∞) → [0, 1] is given by N∗

A(l, 0) = 0, and
N∗

A(l, t) = sup
{
α ∈ [0, 1) : ∥l∥∗Aα < t

}
, ∀ l ∈ C∗ (X,Y ) .

The family of seminorms corresponding to the pair (N∗
A,∧) is ∥.∥∗Aα .

Since (C (X,Y ) , NA) is a separated locally convex space then the polar
of any neighborhood in (C (X,Y ) , NA) is compact in the weak∗ topology.
So that we have:

Corollary 3.5. Let (C(X,Y ) , NA) and (C∗ (X,Y ) , N∗
A) are the above

fuzzy normed spaces. Then theorem of Alaoglu-Bourbaki be hold.

Finally, we need to the following easy remark.

Remark 3.6 ([1]). Let (Y,N,∧) be a fuzzy normed space. Let {∥.∥ : α : α ∈ (0, 1)}
be the seminorms corresponding to the fuzzy norm (N,∧) .

(a) If ∥x∥α < t, then N (x, t) ≥ α.
(b) If N (x, t) > α, then ∥x∥α < t, where x ∈ Y.
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4. Fuzzy Best Simultaneous Approximation

Here, we continue to use of notions and notations in the previous
section.

Definition 4.1 ([4]). Let (Y,N,∧) be a fuzzy normed space. A subset
A ⊆ Y is called F-bounded if there exists t > 0 and 0 < r < 1 such that
N (x, t) > 1− r for all x ∈ A.

Definition 4.2 ([4]). Let (Y,N, ∗) be a fuzzy normed space over real
numbers, W be a subset of Y and S be a F-bounded subset in Y. For
t > 0, we define,

d (S,W, t) = sup
s∈S

inf
w∈W

N (s− w, t) , d (S,w, t) = sup
s∈S

N (s− w, t) , w ∈ W.

An element w0 ∈ W is called a t-best simultaneous approximation to S
from W if for t > 0,

d (S,W, t) = sup
s∈S

N (s− w0, t) .

The set of all t-best simultaneous approximation to S from W will be
denoted by St

W (S) and we have,

St
W (S) =

{
w ∈ W : sup

s∈S
N (s− w, t) = d (S,W, t)

}
.

For any µ1, . . . , µn in (C (X,Y ) , NA) , let

Sµ =

{
n∑

i=1

aiµi : ∥a∥B = 1

}
,

where ∥.∥B is that a given norm on Rn and a = (a1, . . . , an)
T .

Now suppose that functions F1, . . . , Fn in (C (X,Y ) , NA) are given,
SF is defined as above andW is an m-dimensional subspace of (C (X,Y ) , NA) .
For t > 0,

d (SF ,W, t) = max
s∈SF

inf
w∈W

NA (s− w, t) .

Note that if a ∈ Rn, ∥a∥B = 1, then NA is attained.
We need to introduce the subdifferential or set of subgradients of NA

at any element of (C (X,Y ) , NA) . This is the set defined at the point
f ∈ (C (X,Y ) , NA) by

∂NA (f) =
{
l ∈ (C∗ (X,Y ) , N∗

A) : NA

(
f, ∥F∥Aα − l (F − f)

)
≥ α,

∀ F ∈ C (X,Y ) , ∀α ∈ (0, 1)} .
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From this, the subgradients of seminorms, corresponding to NA can be
defined as follows :

∂∥f∥Aα =
{
l ∈ C∗ (X,Y ) : l(F − f) + ∥f∥Aα ≤ ∥F∥Aα ,
∀F ∈ C(X,Y )} , α ∈ (0, 1) .

For more detail about subdifferential see, for example, Rockafellar [6].

Proposition 4.3. Let f ∈ (C (X,Y ) , NA) , α ∈ (0, 1). Then l ∈ ∂∥f∥Aα
if and only if

(i) l (f) = ∥f∥Aα .
(ii) ∥l∥∗Aα ≤ 1, where, ∥.∥∗Aα , where

∥l∥∗Aα = max{|l (f) | : ∥f∥Aα ≤ 1}.

Proof. Let l ∈ ∂∥f∥Aα , then for each F ∈ (C(X,Y ) , NA)

l (F − f) + ∥f∥Aα ≤ ∥F∥Aα .

If F = 2f, then we have l (f) ≤ ∥f∥Aα and if we get F = 1
2f then

we have ∥f∥Aα ≤ l(f). These together implies l (f) = ∥f∥Aα . So (i) is
follows. For (ii), let F ∈ (C (X,Y ) , NA) and ∥F∥Aα ≤ 1. By (i), we have
l (f) = ∥f∥Aα . Therefore

l (F ) = l (F − f + f)

= l (F − f) + l (f)

= l(F − f) + ∥f∥Aα
≤ ∥F∥Aα − ∥f∥Aα + ∥f∥Aα
≤ 1− 0

= 1.

So, max∥F∥Aα≤1 l (F ) = ∥l∥∗α ≤ 1.

Now, let (i) and (ii) hold for l ∈ (C∗ (X,Y ) , N∗
A) and f ∈ (C (X,Y ) , NA)

and F ∈ C (X,Y ) be arbitrary.
Then

l

(
F

∥F∥Aα

)
= l

(
F

∥F∥Aα
− f

∥F∥Aα
+

f

∥F∥Aα

)
= l

(
F

∥F∥Aα
− f

∥F∥Aα

)
+

1

∥F∥Aα
l (f)

=
1

∥F∥Aα
l(F − f) +

∥f∥Aα
∥F∥Aα

≤ 1.

Last inequality is holds by (ii). Therefore l(F − f) + ∥f∥Aα ≤ ∥F∥Aα . □
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Corollary 4.4. Let f ∈ (C (X,Y ) , NA) and l ∈ (C∗ (X,Y ) , N∗
A) such

that ∀α ∈ (0, 1) , ∥l∥∗α ≤ 1. Then NA (f, t) ≥ l (f) , t > 1.

Proof. Under the assumptions,definition of N (f, t) in Corollary 3.2 is
especial case of Proposition 3.3. □

For a given n-tuple µ = (µ1, . . . , µn) of functions in (C (X,Y ) , NA)
define the set

Kt (µ) =
{
(a, l) : a ∈ Rn, ∥a∥B = 1,

n∑
i=1

aiµi = d(Sµ, 0, t)v,

l ∈ ∂∥v∥Aα , ∥v∥Aα = 1
}
.

The following characterization of the directional derivatives of d(S, 0, t)
generalizes a result for functions as well for matrices given in [9, 10].

Proposition 4.5. Let µ1, . . . , µn, η1, . . . , ηn be any elements in
(C (X,Y ) , NA) . Then

lim
z→0+

d(Sµ+zη, 0, t)− d (Sµ, 0, t)

z
= max

(a,l)∈Kt(µ)
l

 n∑
j=1

ajηj

 .

Proof. For any real z, and for any (a(z), l(z)) ∈ Kt(µ+ zη),

d (Sµ, 0, t) = max
s∈Sµ

NA (s, t)

= max
∥a∥B=1

NA

 n∑
j=1

ajµj , t


≥ NA

 n∑
j=1

aj(z)µj , t


≥ l (z) (

n∑
j=1

aj(z)µj)

= l (z)

 n∑
j=1

aj (z) (µj + zηj)− z
n∑

j=1

aj (z) ηj


= d (Sµ+zη, 0, t)− zl (z)

 n∑
j=1

aj (z) ηj

 ,

where second inequality is holds by Corollary 4.4.
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Also, for any (a, l) ∈ Kt (µ)

d (Sµ+zη, 0, t) = max
s∈Sµ+zη

NA (s, t)

= max
∥a∥B=1

NA

 n∑
j=1

aj (µj + zηj) , t


≥ NA

 n∑
j=1

aj (µj + zηj) , t


≥ l
(
Σn
j=1aj(µj + zηj

)
= d (Sµ, 0, t) + zl

 n∑
j=1

ajηj

 .

It follows that for all z > 0, and all (a, l) ∈ Kt (µ) , (a (z) , l (z)) ∈
Kt (µ+ zη) ,

l

 n∑
j=1

ajηj

 ≤ d (Sµ+zη, 0, t)− d (Sµ, 0, t)

z

≤ l (z)

 n∑
j=1

aj (z) ηj

 .

If z tends to zero, and uses the weak∗ compactness of the polar U0 in
the dual space by Corollary 3.5, the result follows. □

Let
µ (w) = (µ1 (w) , . . . , µn (w)) ,

where
µi (w) = Fi − w, i = 1, . . . , n, for all w ∈ W,

and let L(w) denote the set of n-tuples {(g1, . . . , gn)} of elements in
(C∗ (X,Y ) , N∗

A) defined by

L (w) = conv{(a1l, . . . , anl) , (a, l) ∈ Kt (µ (w))},
where “conv” is used to denotes the convex hull. Note that

n∑
i=1

gi (µi (w)) =
n∑

i=1

ail (Fi − w)(4.1)

= l

(
n∑

i=1

aiFi − w

)
= d

(
Sµ(w), 0, t

)
, ∀g ∈ L (w) .
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The following Proposition is true, in both cases :“if and only if”. “if”
case is holds by Proposition 4.5 and Corollary 3.5 (Alaoglu-Bourbaki
theorem) and no need to change in fuzzy case (see [9]).

Proposition 4.6. Let there exists g = (g1, . . . , gn) ∈ L (w0) such that

n∑
i=1

gi (w) = l

(
n∑

i=1

ai (Fi − w)

)
(4.2)

= 0, for all w ∈ W.

Then w0 ∈ St
W (SF ).

Proof. Let the conditions be satisfied at w0 and let w be any element of
W. Then

d (SF , w, t) = d
(
Sµ(w), 0, t

)
= max

∥a∥B=1
NA

(
n∑

i=1

ai (Fi − w) , t

)

≥ NA

(
n∑

i=1

ai (Fi − w) , t

)

≥ l

(
n∑

i=1

ai (Fi − w)

)
, ∀ (a, l) ∈ Kt (µ (w0)) .

Suppose that g ∈ L (w0) satisfies (4.2). Then, by (4.1)

d (SF , w, t) ≥ max
∥a∥B=1

NA

(
n∑

i=1

ai (Fi − w) , t

)

≥ NA

(
n∑

i=1

ai (Fi − w) , t

)

≥
n∑

i=1

gi (Fi − w − w0 + w0)

=

n∑
i=1

gi (Fi − w0) +

n∑
i=1

gi (Fi − w + w0)

= d (SF , w0, t) .

The proof is compelete. □
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