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On the Linear Combinations of Slanted Half-Plane Harmonic
Mappings

Ahmad Zireh! and Mohammad Mehdi Shabani?*

ABSTRACT. In this paper, the sufficient conditions for the linear
combinations of slanted half-plane harmonic mappings to be uni-
valent and convex in the direction of (—v) are studied. Our result
improves some recent works. Furthermore, a illustrative example
and imagine domains of the linear combinations satisfying the de-
sired conditions are enumerated.

1. INTRODUCTION

A continuous function f = w4+ iv is a complex valued harmonic func-
tion in a complex domain €2 C C if both v and v are real harmonic in
Q.

In any simply connected domain 2 C C, we can write f = h + g,
where h and g are analytic in 2. We call h the analytic part and g the
co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and sense-preserving in Q is that |k’ (z)| > |¢'(z)] in Q
(see [21]).

Denote by Sy the class of functions f = h + g that are harmonic
univalent and sense-preserving in D = {z € C : |z| < 1} for which
f(0) = f.(0) =1 = 0. Then for f = h+7 € Sy, we may express the
analytic functions h and g as

(1.1) h(z)=z+ Zakzk, g(z) = Zbkzk, |b1] < 1,
k=2 k=1
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that is,
(1.2) =Y (akzk + bkzk>, (a1 =1, |by| < 1, z € D).
k=1

A domain € is said to be convex in a direction 7, where 0 < v < 7,
if for all @ € C, the set QN {a +te? : t € R} is either connected or
empty. In particular, a domain is said to be convex in the horizontal
direction (CHD) if its intersection with each horizontal lines is connected
(or empty). A univalent harmonic mapping is called a CHD mapping if
its range is a CHD domain.

An effective way of constructing univalent harmonic mappings with
given dilatations, known as the shear construction, was introduced by
Clunie and Sheil-Small [?].

Theorem 1.1. A harmonic function f = h + ¢ locally univalent in
D is a univalent mapping of D onto a domain convex in the direction
v (0 < v < ) if and only if h — e*7g is a conformal univalent mapping
of D onto a domain convex in the direction ~y.

Next, there is a useful remark by Pommerenke [6] concerning analytic
mappings convex in one direction. Using a particular case of this, we
have the following result.

Theorem 1.2. Let f(z) be an analytic function in D with f(0) =0 and
1/(0) #0, and let

z
1+ ze?)(1 + ze—0)’

me{zggiz))} >0, VzeD,

p(z) = (
where 0 € R. If

then f is a CHD mapping.

Furthermore, we investigate the linear combination of two suitable
harmonic maps. Note that if fi = h; + g1 and fo = ho + G2 are two
harmonic univalent mappings in I, the linear combination \f1+(1—M\) fo
need not be univalent (for details, see [4]).

Recently, Wang et al.[] derived several sufficient conditions on har-
monic univalent functions f; and fs so that their linear combination is
univalent and convex in the direction of the real axis. In particular, they
established:

Theorem 1.3. Let f; = hj +g; € Sy with hj(z) + gj(2) = z/(1 — 2)
for g =1,2. Then Afi + (1 — X)fa, 0 < X\ < 1, is univalent and convex
i the direction of the real axis.
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The purpose of this paper is to prove Theorem =3, without the con-
ditions h;(2) + gj(2) = 2/(1 — 2), j = 1,2, for a subclass of harmonic
mappings.

2. MAIN RESULTS
Let
. 1
H, = {z € C:Re(ez) > —2} ,

where 0 < v < 27. We denote by Sy, the subclass of harmonic functions
f which map D onto H,. To prove our result, we require the following
lemma.

Lemma 2.1. If f =h+g € Sy, then

(2.1) h(z) + e 2g(z) = — =

Proof. If f =h+g € S, then

Re {ei'y (h(z) —i—@)} > —1/2,
which means that

Re {h(z) +e g(z)} > —1/2.
In other words,

Re {7 (h(z) + e 2g(2))} > —1/2.
Since
h(z) + e *7g(2) = h(z) — e 272 g z),

therefore, it follows from Theorem T that the function h(z)+e~%7g(2)

is convex in the direction (g — 7) and so is univalent. It is also clear

that 2 — h(z) +e?7g(z) maps D onto H., which implies the result. [
Theorem 2.2. Let f; = hj+g; € Su,, (j =1,2). Then f3 = Af1+(1—
A) fa, where 0 < X\ <1, is univalent and convex in the direction (—v).

Proof. By noting that ¢} = wih], g5 = wahly, we have
_ 2+ (0 =Ng

M+ (1 — M)A
~Awrh + (1 = Nwahy
BBV CE

(2.2) w3

Now, we divide into two cases to discuss:
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(i) If w; = wy, then
o Awih) + (1 — Nwihh
T + (1= M)
Therefore in this case |ws| = |w1| < 1, which implies that f3 is

locally univalent.
(i) If wy # wo, then by using (1), we have

2z'y _ ?
hj(2) +egi() =

= Wi-.

Therefore
1
2. n, = =1,2.
( 3) 9 (1 + UJ e 217)(1 _ 2617)27 J )
)

By replacing (23) in (IZZ'Z , it follows that

_ ‘)\wl —|— (1 — Nwe + wlee_QiV‘
T (1 = Nwirem 2 + wge 2|
Next, we show that |ws| < 1. Let
0

wj = rje
=rj(cosfj +isinf;), (0<r;<1,j=12).

Suppose that
PN = ‘1 +(1- )\)wle—% + )\wge_QW‘z - ‘)‘Wl + (1= Nwz + W1WQ€_2i7 2
= ‘1 + (1 = A)r1 0727 4 Apyet(02—27) ‘2

— ))\rlewl +(1-— /\)7"262'92 + T1r2ei(91+92727)‘2
= [1+4 (1 = A)rycos(fy — 2) + Arg cos(fy — 27)]?
+ [(1 = N)rysin(fy — 27y) + Argsin(fy — 27))?
— [Ar1cosf; + (1 — X)rgcos by + i1 cos(01 + 03 — 2’y)]2
— [Arysinfy 4+ (1 — X)rgsin Oy + rirasin(6y + 62 — 27)]2
=14 (1= XN)?*%cos®(; — 27) + X273 cos® (6 — 27)
+2(1 — A)rycos(6r — 27) + 2Arg cos(b2 — 2y)
+ 2X(1 — \)r17rg cos(f1 — 2) cos(fz — 2)(1 — A)?r? sin?(6; — 2)
+ A2 sin?(0y — 27) 4+ 2X(1 — A)riresin(f) — 27) sin(fy — 2)
- [)\21"% cos® 01 + (1 — X\)?r2 cos? Oy + r3r2 cos? (01 + 02 — 27)
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+ 2X\(1 — A\)rire cos 0y cos by + 2)\7“%1"2 cos 61 cos(0y + O3 — 27)
4 2(1 — \)r172 cos 0 cos(01 + 0o — 27) N3 sin? 6,
+ (1 = A\)%r3sin® Oy + 33 sin?(6; + 6y — 2)
+ 2X(1 — A)rirosin 6y sin 0y + 2)\7“%7"2 sin 0y sin(0; + 02 — 27)
+2(1 = \)ri73 sin Os sin(0 + 6y — 2v)]

=14+7% —r5 —rird 4+ 2r cos(fy — 27) — 2r173 cos(fy — 27)
+ 2 (ra cos(f2 — 2v) — 1 cos(61 — 2v) — rirs cos(fy — 27)
+r175 cos(f1 — 2y) + 15 —711) .

It is clear that () is a linear function of A, therefore it is a continuous

and monotone function of A in the interval [0, 1]. Moreover, we observe
that

©(0) = (1 —73)(r? + 2ry cos(fy — 27v) + 1)
=(1- r%) [(7"1 + cos(0; — 27))2 + sin2(91 — 2’y)] >0,
and
@(1) = (1 —17)[(r2 + cos(61 — 2v))* + sin®(6; — 27)] > 0,
which implies that ¢(A) > 0 for all [0,1]. It follows that |ws| < 1, and

then fs is locally univalent in D.

Next, we show that f3 = Afi+(1-X) fa = [Ah+(1=A)ha |+ [Agi+(1—
A)gz] = hs + g3 is convex in the direction (—v). Let F := hg — e 2" gs,
then we have

F=hy—e gy
= (Ah1 + (1= A)ho) — e 27 (Agr + (1 — N)ga)
=\ (h1 — e*2i7g1) +(1-=2X) (hz - 672”92) .
Hence

F'(z) =X (h] — e 27g}) + (1= \) (hy — e > gh)

. h — 6—21'79/
= AR +e g (A—_2L
( 1 +e gl) h/l + e_gwgi

. hl — 6—21'79/
1=\ (R, + e 27y, <22)
+ ( ) ( 2 e 92) h/Q + e_gwgé
A (1- )
=" _.P SIS AVA
(1—e2)2 1(2) + (1 —eirz)? 2(2),
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where
I =21y )
Pj(z) = Z; e_zwgi
j ey,
/
1 —21'7&
/
9;
14+ e*Qth—i
j
1—e 2w
= — > J=12
1+ e 2w
9;
Since |wj| = # < 1for j =1,2, Re(Pi(z)) > 0 and Re(Pz(z)) > 0 in
J
D.
Now for
. . z
WL\ — o
(/0(6 Z) =€ (1 . Zeify)Q)
we have
!
Re {e” 2F(z) }
p(2)

= NRe {(1 — ze")? <(1—>z\e”)2 - Pi(z) + (1(1_227))2 . Pz(z)) }
= MRe{Pi(2)} + (1 — N)Re{P(2)}
= Re(Pi(z)) > 0.

Therefore by using Theorem [, ¢V F = e (h3 — 6_2”93) is CHD. It
means hz — e~ 27 g3 is convex in the direction (—~). Finally, by applying
Theorem [T for F = hz — e 2" g3, we get the desired result. O

By induction we can get the following result.

Corollary 2.3. Let fj = hj +g; € Sg,,(j = 1,2,...,n). Then A1 f1 +
-+ A fn is univalent and convex in the direction (—v), where 0 < \; <
1(j=1,2,....,n) and Ay + Ao+ - -+ X\, = 1.

Finally, we give an example to illuminate our main result.

Example 2.4. Let f; = h1 + g1, where

. z
h —2 ="
1) + e 0(2) =
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and w; = —e*7z. Then by using shearing technique of Clunie and Shiel-
Small [2], we obtain
_ 1.2,y
z—sz%
h =27
1(2) (1 _ 2627)27
and
_1,2.3iy
_ —gpz%e
91(z) = (1 — ze)2’

Also, we suppose that fo = ho + gz, where

; z
h —21y -~
2(2) + e g2(2) = T,

and wy = €37z, Then with similar way as above, we get

ha(2) 1[log<1+zem>+ 2 } !

© 4e™y 1 — ze™ 1 — ze™ e’

()_€i7 2z¢" — 1 6”1 1+ ze® +ei7
PE =\ 1= 2ed 4 ®\1-zen ) T2

If we take v = 7, then f; and f belong to SHW/4' The images of D
under f1, fo, and f3 = Afi + (1 — A) fo with A = 1/2 are shown in Fig.
m.

and

() fa=Afi+(1=A)fe

FIGURE 1. Images of D under f1, fo and f3 with A =1/2

We see that f3 is convex in the direction (—m/4), it means that The-
orem P2 is true.
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