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On the Linear Combinations of Slanted Half-Plane Harmonic

Mappings

Ahmad Zireh1 and Mohammad Mehdi Shabani2∗

Abstract. In this paper, the sufficient conditions for the linear
combinations of slanted half-plane harmonic mappings to be uni-
valent and convex in the direction of (−γ) are studied. Our result
improves some recent works. Furthermore, a illustrative example
and imagine domains of the linear combinations satisfying the de-
sired conditions are enumerated.

1. Introduction

A continuous function f = u+ iv is a complex valued harmonic func-
tion in a complex domain Ω ⊂ C if both u and v are real harmonic in
Ω.

In any simply connected domain Ω ⊂ C, we can write f = h + g,
where h and g are analytic in Ω. We call h the analytic part and g the
co-analytic part of f . A necessary and sufficient condition for f to be
locally univalent and sense-preserving in Ω is that |h′

(z)| > |g′
(z)| in Ω

(see [2]).
Denote by SH the class of functions f = h + g that are harmonic

univalent and sense-preserving in D = {z ∈ C : |z| < 1} for which
f(0) = fz(0) − 1 = 0. Then for f = h + g ∈ SH, we may express the
analytic functions h and g as

(1.1) h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1,
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that is,

(1.2) f(z) =
∞∑
k=1

(
akz

k + bkzk
)
, (a1 = 1, |b1| < 1, z ∈ D).

A domain Ω is said to be convex in a direction γ, where 0 ≤ γ < π,
if for all a ∈ C, the set Ω ∩ {a + teiγ : t ∈ R} is either connected or
empty. In particular, a domain is said to be convex in the horizontal
direction (CHD) if its intersection with each horizontal lines is connected
(or empty). A univalent harmonic mapping is called a CHD mapping if
its range is a CHD domain.

An effective way of constructing univalent harmonic mappings with
given dilatations, known as the shear construction, was introduced by
Clunie and Sheil-Small [2].

Theorem 1.1. A harmonic function f = h + g locally univalent in
D is a univalent mapping of D onto a domain convex in the direction
γ (0 ≤ γ < π) if and only if h− e2iγg is a conformal univalent mapping
of D onto a domain convex in the direction γ.

Next, there is a useful remark by Pommerenke [5] concerning analytic
mappings convex in one direction. Using a particular case of this, we
have the following result.

Theorem 1.2. Let f(z) be an analytic function in D with f(0) = 0 and
f ′(0) ̸= 0, and let

φ(z) =
z

(1 + zeiθ)(1 + ze−iθ)
,

where θ ∈ R. If

Re

{
zf ′(z)

φ(z)

}
> 0, ∀z ∈ D,

then f is a CHD mapping.

Furthermore, we investigate the linear combination of two suitable
harmonic maps. Note that if f1 = h1 + g1 and f2 = h2 + g2 are two
harmonic univalent mappings in D, the linear combination λf1+(1−λ)f2
need not be univalent (for details, see [4]).

Recently, Wang et al.[7] derived several sufficient conditions on har-
monic univalent functions f1 and f2 so that their linear combination is
univalent and convex in the direction of the real axis. In particular, they
established:

Theorem 1.3. Let fj = hj + gj ∈ SH with hj(z) + gj(z) = z/(1 − z)
for j = 1, 2. Then λf1 + (1 − λ)f2, 0 ≤ λ ≤ 1, is univalent and convex
in the direction of the real axis.
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The purpose of this paper is to prove Theorem 1.3, without the con-
ditions hj(z) + gj(z) = z/(1 − z), j = 1, 2, for a subclass of harmonic
mappings.

2. Main Results

Let

Hγ =

{
z ∈ C : Re(eiγz) > −1

2

}
,

where 0 ≤ γ < 2π. We denote by SHγ the subclass of harmonic functions
f which map D onto Hγ . To prove our result, we require the following
lemma.

Lemma 2.1. If f = h+ g ∈ SHγ , then

(2.1) h(z) + e−2iγg(z) =
z

1− zeiγ
, z ∈ D.

Proof. If f = h+ g ∈ SHγ , then

Re
{
eiγ

(
h(z) + g(z)

)}
> −1/2,

which means that

Re
{
eiγh(z) + e−iγg(z)

}
> −1/2.

In other words,

Re
{
eiγ

(
h(z) + e−2iγg(z)

)}
> −1/2.

Since

h(z) + e−2iγg(z) = h(z)− e−2i(π/2−γ)g(z),

therefore, it follows from Theorem 1.1 that the function h(z)+e−2iγg(z)
is convex in the direction

(
π
2 − γ

)
and so is univalent. It is also clear

that z → h(z)+ e−2iγg(z) maps D onto Hγ which implies the result. □

Theorem 2.2. Let fj = hj+gj ∈ SHγ , (j = 1, 2). Then f3 = λf1+(1−
λ)f2, where 0 ≤ λ ≤ 1, is univalent and convex in the direction (−γ).

Proof. By noting that g′1 = ω1h
′
1, g

′
2 = ω2h

′
2, we have

ω3 =
λg′1 + (1− λ)g′2
λh′1 + (1− λ)h′2

(2.2)

=
λω1h

′
1 + (1− λ)ω2h

′
2

λh′1 + (1− λ)h′2
.

Now, we divide into two cases to discuss:
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(i) If ω1 = ω2, then

ω3 =
λω1h

′
1 + (1− λ)ω1h

′
2

λh′1 + (1− λ)h′2
= ω1.

Therefore in this case |ω3| = |ω1| < 1, which implies that f3 is
locally univalent.

(ii) If ω1 ̸= ω2, then by using (2.1), we have

hj(z) + e−2iγgj(z) =
z

1− zeiγ
.

Therefore

h′j =
1

(1 + ωje−2iγ)(1− zeiγ)2
, j = 1, 2.(2.3)

By replacing (2.3) in (2.2), it follows that

|ω3| =
∣∣∣∣λω1h

′
1 + (1− λ)ω2h

′
2

λh′1 + (1− λ)h′2

∣∣∣∣
=

∣∣λω1 + (1− λ)ω2 + ω1ω2e
−2iγ

∣∣
|1 + (1− λ)ω1e−2iγ + λω2e−2iγ |

.

Next, we show that |ω3| < 1. Let

ωj = rje
iθj

= rj(cos θj + i sin θj), (0 ≤ rj < 1, j = 1, 2).

Suppose that

φ(λ) =
∣∣1 + (1− λ)ω1e

−2iγ + λω2e
−2iγ

∣∣2 − ∣∣λω1 + (1− λ)ω2 + ω1ω2e
−2iγ

∣∣2
=

∣∣∣1 + (1− λ)r1e
i(θ1−2γ) + λr2e

i(θ2−2γ)
∣∣∣2

−
∣∣∣λr1eiθ1 + (1− λ)r2e

iθ2 + r1r2e
i(θ1+θ2−2γ)

∣∣∣2
= [1 + (1− λ)r1 cos(θ1 − 2γ) + λr2 cos(θ2 − 2γ)]2

+ [(1− λ)r1 sin(θ1 − 2γ) + λr2 sin(θ2 − 2γ)]2

− [λr1 cos θ1 + (1− λ)r2 cos θ2 + r1r2 cos(θ1 + θ2 − 2γ)]2

− [λr1 sin θ1 + (1− λ)r2 sin θ2 + r1r2 sin(θ1 + θ2 − 2γ)]2

= 1 + (1− λ)2r21 cos
2(θ1 − 2γ) + λ2r22 cos

2(θ2 − 2γ)

+ 2(1− λ)r1 cos(θ1 − 2γ) + 2λr2 cos(θ2 − 2γ)

+ 2λ(1− λ)r1r2 cos(θ1 − 2γ) cos(θ2 − 2γ)(1− λ)2r21 sin
2(θ1 − 2γ)

+ λ2r22 sin
2(θ2 − 2γ) + 2λ(1− λ)r1r2 sin(θ1 − 2γ) sin(θ2 − 2γ)

−
[
λ2r21 cos

2 θ1 + (1− λ)2r22 cos
2 θ2 + r21r

2
2 cos

2(θ1 + θ2 − 2γ)
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+ 2λ(1− λ)r1r2 cos θ1 cos θ2 + 2λr21r2 cos θ1 cos(θ1 + θ2 − 2γ)

+ 2(1− λ)r1r
2
2 cos θ2 cos(θ1 + θ2 − 2γ)λ2r21 sin

2 θ1

+ (1− λ)2r22 sin
2 θ2 + r21r

2
2 sin

2(θ1 + θ2 − 2γ)

+ 2λ(1− λ)r1r2 sin θ1 sin θ2 + 2λr21r2 sin θ1 sin(θ1 + θ2 − 2γ)

+2(1− λ)r1r
2
2 sin θ2 sin(θ1 + θ2 − 2γ)

]
= 1 + r21 − r22 − r21r

2
2 + 2r1 cos(θ1 − 2γ)− 2r1r

2
2 cos(θ1 − 2γ)

+ 2λ
(
r2 cos(θ2 − 2γ)− r1 cos(θ1 − 2γ)− r21r2 cos(θ2 − 2γ)

+r1r
2
2 cos(θ1 − 2γ) + r22 − r21

)
.

It is clear that φ(λ) is a linear function of λ, therefore it is a continuous
and monotone function of λ in the interval [0, 1]. Moreover, we observe
that

φ(0) = (1− r22)(r
2
1 + 2r1 cos(θ1 − 2γ) + 1)

= (1− r22)
[
(r1 + cos(θ1 − 2γ))2 + sin2(θ1 − 2γ)

]
> 0,

and

φ(1) = (1− r21)
[
(r2 + cos(θ1 − 2γ))2 + sin2(θ1 − 2γ)

]
> 0,

which implies that φ(λ) > 0 for all [0, 1]. It follows that |ω3| < 1, and
then f3 is locally univalent in D.

Next, we show that f3 = λf1+(1−λ)f2 =
[
λh1+(1−λ)h2

]
+
[
λg1+(1−

λ)g2
]
= h3 + g3 is convex in the direction (−γ). Let F := h3 − e−2iγg3,

then we have

F = h3 − e−2iγg3

= (λh1 + (1− λ)h2)− e−2iγ (λg1 + (1− λ)g2)

= λ
(
h1 − e−2iγg1

)
+ (1− λ)

(
h2 − e−2iγg2

)
.

Hence

F ′(z) = λ
(
h′1 − e−2iγg′1

)
+ (1− λ)

(
h′2 − e−2iγg′2

)
= λ

(
h′1 + e−2iγg′1

)(h′1 − e−2iγg′1
h′1 + e−2iγg′1

)
+ (1− λ)

(
h′2 + e−2iγg′2

)(h′2 − e−2iγg′2
h′2 + e−2iγg′2

)
=

λ

(1− eiγz)2
· P1(z) +

(1− λ)

(1− eiγz)2
· P2(z),
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where

Pj(z) =
h′j − e−2iγg′j
h′j + e−2iγg′j

=

1− e−2iγ
g′j
h′j

1 + e−2iγ
g′j
h′j

=
1− e−2iγωj

1 + e−2iγωj
, j = 1, 2.

Since |ωj | =

∣∣∣∣∣ g′jh′j
∣∣∣∣∣ < 1 for j = 1, 2, Re(P1(z)) > 0 and Re(P2(z)) > 0 in

D.
Now for

φ(eiγz) = eiγ
z

(1− zeiγ)2
,

we have

Re

{
eiγ

zF ′(z)

φ(z)

}
= Re

{
(1− zeiγ)2

(
λ

(1− zeiγ)2
· P1(z) +

(1− λ)

(1− zeiγ)2
· P2(z)

)}
= λRe {P1(z)}+ (1− λ)Re {P2(z)}
= Re(P1(z)) > 0.

Therefore by using Theorem 1.2, eiγF = eiγ
(
h3 − e−2iγg3

)
is CHD. It

means h3− e−2iγg3 is convex in the direction (−γ). Finally, by applying
Theorem 1.1 for F = h3 − e−2iγg3, we get the desired result. □

By induction we can get the following result.

Corollary 2.3. Let fj = hj + gj ∈ SHγ , (j = 1, 2, . . . , n). Then λ1f1 +
· · ·+λnfn is univalent and convex in the direction (−γ), where 0 ≤ λj ≤
1(j = 1, 2, . . . , n) and λ1 + λ2 + · · ·+ λn = 1.

Finally, we give an example to illuminate our main result.

Example 2.4. Let f1 = h1 + g1, where

h1(z) + e−2iγg1(z) =
z

1− zeiγ
,
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and ω1 = −e3iγz. Then by using shearing technique of Clunie and Shiel-
Small [2], we obtain

h1(z) =
z − 1

2z
2eiγ

(1− zeiγ)2
,

and

g1(z) =
−1

2z
2e3iγ

(1− zeiγ)2
.

Also, we suppose that f2 = h2 + g2, where

h2(z) + e−2iγg2(z) =
z

1− zeiγ
,

and ω2 = e3iγz. Then with similar way as above, we get

h2(z) =
1

4eiγ

[
log

(
1 + zeiγ

1− zeiγ

)
+

2

1− zeiγ

]
− 1

2eiγ
,

and

g2(z) =
eiγ

2

(
2zeiγ − 1

1− zeiγ

)
− eiγ

4
log

(
1 + zeiγ

1− zeiγ

)
+

eiγ

2
.

If we take γ = π
4 , then f1 and f2 belong to SHπ/4

. The images of D
under f1, f2, and f3 = λf1 + (1 − λ)f2 with λ = 1/2 are shown in Fig.
1.

(a) f1 (b) f2 (c) f3 = λf1 + (1− λ)f2

Figure 1. Images of D under f1, f2 and f3 with λ = 1/2

We see that f3 is convex in the direction (−π/4), it means that The-
orem 2.2 is true.
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