On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

Ahmad Zireh ${ }^{1}$ and Mohammad Mehdi Shabani ${ }^{2 *}$

Abstract

In this paper, the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-\gamma)$ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

1. Introduction

A continuous function $f=u+i v$ is a complex valued harmonic function in a complex domain $\Omega \subset \mathbb{C}$ if both u and v are real harmonic in Ω.

In any simply connected domain $\Omega \subset \mathbb{C}$, we can write $f=h+\bar{g}$, where h and g are analytic in Ω. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in Ω is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in Ω (see [Z]).

Denote by $\mathcal{S}_{\mathcal{H}}$ the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense-preserving in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H}}$, we may express the analytic functions h and g as

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad g(z)=\sum_{k=1}^{\infty} b_{k} z^{k},\left|b_{1}\right|<1, \tag{1.1}
\end{equation*}
$$

[^0]that is,
\[

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left(a_{k} z^{k}+\overline{b_{k} z^{k}}\right), \quad\left(a_{1}=1,\left|b_{1}\right|<1, z \in \mathbb{D}\right) . \tag{1.2}
\end{equation*}
$$

\]

A domain Ω is said to be convex in a direction γ, where $0 \leq \gamma<\pi$, if for all $a \in \mathbb{C}$, the set $\Omega \cap\left\{a+t e^{i \gamma}: t \in \mathbb{R}\right\}$ is either connected or empty. In particular, a domain is said to be convex in the horizontal direction (CHD) if its intersection with each horizontal lines is connected (or empty). A univalent harmonic mapping is called a CHD mapping if its range is a CHD domain.

An effective way of constructing univalent harmonic mappings with given dilatations, known as the shear construction, was introduced by Clunie and Sheil-Small [Z].
Theorem 1.1. A harmonic function $f=h+\bar{g}$ locally univalent in \mathbb{D} is a univalent mapping of \mathbb{D} onto a domain convex in the direction $\gamma(0 \leq \gamma<\pi)$ if and only if $h-e^{2 i \gamma} g$ is a conformal univalent mapping of \mathbb{D} onto a domain convex in the direction γ.

Next, there is a useful remark by Pommerenke [5] concerning analytic mappings convex in one direction. Using a particular case of this, we have the following result.

Theorem 1.2. Let $f(z)$ be an analytic function in \mathbb{D} with $f(0)=0$ and $f^{\prime}(0) \neq 0$, and let

$$
\varphi(z)=\frac{z}{\left(1+z e^{i \theta}\right)\left(1+z e^{-i \theta}\right)},
$$

where $\theta \in \mathbb{R}$. If

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{\varphi(z)}\right\}>0, \quad \forall z \in \mathbb{D}
$$

then f is a CHD mapping.
Furthermore, we investigate the linear combination of two suitable harmonic maps. Note that if $f_{1}=h_{1}+\overline{g_{1}}$ and $f_{2}=h_{2}+\overline{g_{2}}$ are two harmonic univalent mappings in \mathbb{D}, the linear combination $\lambda f_{1}+(1-\lambda) f_{2}$ need not be univalent (for details, see [4]).

Recently, Wang et al.[7] derived several sufficient conditions on harmonic univalent functions f_{1} and f_{2} so that their linear combination is univalent and convex in the direction of the real axis. In particular, they established:

Theorem 1.3. Let $f_{j}=h_{j}+\overline{g_{j}} \in \mathcal{S}_{\mathcal{H}}$ with $h_{j}(z)+g_{j}(z)=z /(1-z)$ for $j=1,2$. Then $\lambda f_{1}+(1-\lambda) f_{2}, 0 \leq \lambda \leq 1$, is univalent and convex in the direction of the real axis.

The purpose of this paper is to prove Theorem $\mathbb{L . 3}$, without the conditions $h_{j}(z)+g_{j}(z)=z /(1-z), j=1,2$, for a subclass of harmonic mappings.

2. Main Results

Let

$$
H_{\gamma}=\left\{z \in \mathbb{C}: \mathfrak{R e}\left(e^{i \gamma} z\right)>-\frac{1}{2}\right\}
$$

where $0 \leq \gamma<2 \pi$. We denote by $\mathcal{S}_{H_{\gamma}}$ the subclass of harmonic functions f which map \mathbb{D} onto H_{γ}. To prove our result, we require the following lemma.

Lemma 2.1. If $f=h+\bar{g} \in \mathcal{S}_{H_{\gamma}}$, then

$$
\begin{equation*}
h(z)+e^{-2 i \gamma} g(z)=\frac{z}{1-z e^{i \gamma}}, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Proof. If $f=h+\bar{g} \in \mathcal{S}_{H_{\gamma}}$, then

$$
\mathfrak{R e}\left\{e^{i \gamma}(h(z)+\overline{g(z)})\right\}>-1 / 2
$$

which means that

$$
\mathfrak{R e}\left\{e^{i \gamma} h(z)+e^{-i \gamma} g(z)\right\}>-1 / 2
$$

In other words,

$$
\mathfrak{R e}\left\{e^{i \gamma}\left(h(z)+e^{-2 i \gamma} g(z)\right)\right\}>-1 / 2
$$

Since

$$
h(z)+e^{-2 i \gamma} g(z)=h(z)-e^{-2 i(\pi / 2-\gamma)} g(z)
$$

therefore, it follows from Theorem [.] that the function $h(z)+e^{-2 i \gamma} g(z)$ is convex in the direction $\left(\frac{\pi}{2}-\gamma\right)$ and so is univalent. It is also clear that $z \rightarrow h(z)+e^{-2 i \gamma} g(z)$ maps \mathbb{D} onto H_{γ} which implies the result.

Theorem 2.2. Let $f_{j}=h_{j}+\overline{g_{j}} \in \mathcal{S}_{H_{\gamma}},(j=1,2)$. Then $f_{3}=\lambda f_{1}+(1-$ $\lambda) f_{2}$, where $0 \leq \lambda \leq 1$, is univalent and convex in the direction $(-\gamma)$.

Proof. By noting that $g_{1}^{\prime}=\omega_{1} h_{1}^{\prime}, g_{2}^{\prime}=\omega_{2} h_{2}^{\prime}$, we have

$$
\begin{align*}
\omega_{3} & =\frac{\lambda g_{1}^{\prime}+(1-\lambda) g_{2}^{\prime}}{\lambda h_{1}^{\prime}+(1-\lambda) h_{2}^{\prime}} \tag{2.2}\\
& =\frac{\lambda \omega_{1} h_{1}^{\prime}+(1-\lambda) \omega_{2} h_{2}^{\prime}}{\lambda h_{1}^{\prime}+(1-\lambda) h_{2}^{\prime}}
\end{align*}
$$

Now, we divide into two cases to discuss:
(i) If $\omega_{1}=\omega_{2}$, then

$$
\omega_{3}=\frac{\lambda \omega_{1} h_{1}^{\prime}+(1-\lambda) \omega_{1} h_{2}^{\prime}}{\lambda h_{1}^{\prime}+(1-\lambda) h_{2}^{\prime}}=\omega_{1} .
$$

Therefore in this case $\left|\omega_{3}\right|=\left|\omega_{1}\right|<1$, which implies that f_{3} is locally univalent.
(ii) If $\omega_{1} \neq \omega_{2}$, then by using (ㄹ.. $)$), we have

$$
h_{j}(z)+e^{-2 i \gamma} g_{j}(z)=\frac{z}{1-z e^{i \gamma}} .
$$

Therefore

$$
h_{j}^{\prime}=\frac{1}{\left(1+\omega_{j} e^{-2 i \gamma}\right)\left(1-z e^{i \gamma}\right)^{2}}, \quad j=1,2 .
$$

By replacing (2.3) in (L2.2), it follows that

$$
\begin{aligned}
\left|\omega_{3}\right| & =\left|\frac{\lambda \omega_{1} h_{1}^{\prime}+(1-\lambda) \omega_{2} h_{2}^{\prime}}{\lambda h_{1}^{\prime}+(1-\lambda) h_{2}^{\prime}}\right| \\
& =\frac{\left|\lambda \omega_{1}+(1-\lambda) \omega_{2}+\omega_{1} \omega_{2} e^{-2 i \gamma}\right|}{\left|1+(1-\lambda) \omega_{1} e^{-2 i \gamma}+\lambda \omega_{2} e^{-2 i \gamma}\right|} .
\end{aligned}
$$

Next, we show that $\left|\omega_{3}\right|<1$. Let

$$
\begin{aligned}
\omega_{j} & =r_{j} e^{i \theta_{j}} \\
& =r_{j}\left(\cos \theta_{j}+i \sin \theta_{j}\right), \quad\left(0 \leq r_{j}<1, j=1,2\right) .
\end{aligned}
$$

Suppose that

$$
\begin{aligned}
\varphi(\lambda)= & \left|1+(1-\lambda) \omega_{1} e^{-2 i \gamma}+\lambda \omega_{2} e^{-2 i \gamma}\right|^{2}-\left|\lambda \omega_{1}+(1-\lambda) \omega_{2}+\omega_{1} \omega_{2} e^{-2 i \gamma}\right|^{2} \\
= & \left|1+(1-\lambda) r_{1} e^{i\left(\theta_{1}-2 \gamma\right)}+\lambda r_{2} e^{i\left(\theta_{2}-2 \gamma\right)}\right|^{2} \\
& -\left|\lambda r_{1} e^{i \theta_{1}}+(1-\lambda) r_{2} e^{i \theta_{2}}+r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}-2 \gamma\right)}\right|^{2} \\
= & {\left[1+(1-\lambda) r_{1} \cos \left(\theta_{1}-2 \gamma\right)+\lambda r_{2} \cos \left(\theta_{2}-2 \gamma\right)\right]^{2} } \\
& +\left[(1-\lambda) r_{1} \sin \left(\theta_{1}-2 \gamma\right)+\lambda r_{2} \sin \left(\theta_{2}-2 \gamma\right)\right]^{2} \\
& -\left[\lambda r_{1} \cos \theta_{1}+(1-\lambda) r_{2} \cos \theta_{2}+r_{1} r_{2} \cos \left(\theta_{1}+\theta_{2}-2 \gamma\right)\right]^{2} \\
& -\left[\lambda r_{1} \sin \theta_{1}+(1-\lambda) r_{2} \sin \theta_{2}+r_{1} r_{2} \sin \left(\theta_{1}+\theta_{2}-2 \gamma\right)\right]^{2} \\
= & 1+(1-\lambda)^{2} r_{1}^{2} \cos ^{2}\left(\theta_{1}-2 \gamma\right)+\lambda^{2} r_{2}^{2} \cos ^{2}\left(\theta_{2}-2 \gamma\right) \\
& +2(1-\lambda) r_{1} \cos \left(\theta_{1}-2 \gamma\right)+2 \lambda r_{2} \cos \left(\theta_{2}-2 \gamma\right) \\
& +2 \lambda(1-\lambda) r_{1} r_{2} \cos \left(\theta_{1}-2 \gamma\right) \cos \left(\theta_{2}-2 \gamma\right)(1-\lambda)^{2} r_{1}^{2} \sin ^{2}\left(\theta_{1}-2 \gamma\right) \\
& +\lambda^{2} r_{2}^{2} \sin ^{2}\left(\theta_{2}-2 \gamma\right)+2 \lambda(1-\lambda) r_{1} r_{2} \sin \left(\theta_{1}-2 \gamma\right) \sin \left(\theta_{2}-2 \gamma\right) \\
& -\left[\lambda^{2} r_{1}^{2} \cos ^{2} \theta_{1}+(1-\lambda)^{2} r_{2}^{2} \cos ^{2} \theta_{2}+r_{1}^{2} r_{2}^{2} \cos ^{2}\left(\theta_{1}+\theta_{2}-2 \gamma\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& +2 \lambda(1-\lambda) r_{1} r_{2} \cos \theta_{1} \cos \theta_{2}+2 \lambda r_{1}^{2} r_{2} \cos \theta_{1} \cos \left(\theta_{1}+\theta_{2}-2 \gamma\right) \\
& +2(1-\lambda) r_{1} r_{2}^{2} \cos \theta_{2} \cos \left(\theta_{1}+\theta_{2}-2 \gamma\right) \lambda^{2} r_{1}^{2} \sin ^{2} \theta_{1} \\
& +(1-\lambda)^{2} r_{2}^{2} \sin ^{2} \theta_{2}+r_{1}^{2} r_{2}^{2} \sin ^{2}\left(\theta_{1}+\theta_{2}-2 \gamma\right) \\
& +2 \lambda(1-\lambda) r_{1} r_{2} \sin \theta_{1} \sin \theta_{2}+2 \lambda r_{1}^{2} r_{2} \sin \theta_{1} \sin \left(\theta_{1}+\theta_{2}-2 \gamma\right) \\
& \left.+2(1-\lambda) r_{1} r_{2}^{2} \sin \theta_{2} \sin \left(\theta_{1}+\theta_{2}-2 \gamma\right)\right] \\
& =1+r_{1}^{2}-r_{2}^{2}-r_{1}^{2} r_{2}^{2}+2 r_{1} \cos \left(\theta_{1}-2 \gamma\right)-2 r_{1} r_{2}^{2} \cos \left(\theta_{1}-2 \gamma\right) \\
& +2 \lambda\left(r_{2} \cos \left(\theta_{2}-2 \gamma\right)-r_{1} \cos \left(\theta_{1}-2 \gamma\right)-r_{1}^{2} r_{2} \cos \left(\theta_{2}-2 \gamma\right)\right. \\
& \left.+r_{1} r_{2}^{2} \cos \left(\theta_{1}-2 \gamma\right)+r_{2}^{2}-r_{1}^{2}\right)
\end{aligned}
$$

It is clear that $\varphi(\lambda)$ is a linear function of λ, therefore it is a continuous and monotone function of λ in the interval $[0,1]$. Moreover, we observe that

$$
\begin{aligned}
\varphi(0) & =\left(1-r_{2}^{2}\right)\left(r_{1}^{2}+2 r_{1} \cos \left(\theta_{1}-2 \gamma\right)+1\right) \\
& =\left(1-r_{2}^{2}\right)\left[\left(r_{1}+\cos \left(\theta_{1}-2 \gamma\right)\right)^{2}+\sin ^{2}\left(\theta_{1}-2 \gamma\right)\right]>0
\end{aligned}
$$

and

$$
\varphi(1)=\left(1-r_{1}^{2}\right)\left[\left(r_{2}+\cos \left(\theta_{1}-2 \gamma\right)\right)^{2}+\sin ^{2}\left(\theta_{1}-2 \gamma\right)\right]>0
$$

which implies that $\varphi(\lambda)>0$ for all $[0,1]$. It follows that $\left|\omega_{3}\right|<1$, and then f_{3} is locally univalent in \mathbb{D}.

Next, we show that $f_{3}=\lambda f_{1}+(1-\lambda) f_{2}=\left[\lambda h_{1}+(1-\lambda) h_{2}\right]+\left[\lambda \overline{g_{1}}+(1-\right.$ $\left.\lambda) \overline{g_{2}}\right]=h_{3}+\overline{g_{3}}$ is convex in the direction $(-\gamma)$. Let $F:=h_{3}-e^{-2 i \gamma} g_{3}$, then we have

$$
\begin{aligned}
F & =h_{3}-e^{-2 i \gamma} g_{3} \\
& =\left(\lambda h_{1}+(1-\lambda) h_{2}\right)-e^{-2 i \gamma}\left(\lambda g_{1}+(1-\lambda) g_{2}\right) \\
& =\lambda\left(h_{1}-e^{-2 i \gamma} g_{1}\right)+(1-\lambda)\left(h_{2}-e^{-2 i \gamma} g_{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
F^{\prime}(z)= & \lambda\left(h_{1}^{\prime}-e^{-2 i \gamma} g_{1}^{\prime}\right)+(1-\lambda)\left(h_{2}^{\prime}-e^{-2 i \gamma} g_{2}^{\prime}\right) \\
= & \lambda\left(h_{1}^{\prime}+e^{-2 i \gamma} g_{1}^{\prime}\right)\left(\frac{h_{1}^{\prime}-e^{-2 i \gamma} g_{1}^{\prime}}{h_{1}^{\prime}+e^{-2 i \gamma} g_{1}^{\prime}}\right) \\
& +(1-\lambda)\left(h_{2}^{\prime}+e^{-2 i \gamma} g_{2}^{\prime}\right)\left(\frac{h_{2}^{\prime}-e^{-2 i \gamma} g_{2}^{\prime}}{h_{2}^{\prime}+e^{-2 i \gamma} g_{2}^{\prime}}\right) \\
= & \frac{\lambda}{\left(1-e^{i \gamma} z\right)^{2}} \cdot P_{1}(z)+\frac{(1-\lambda)}{\left(1-e^{i \gamma} z\right)^{2}} \cdot P_{2}(z),
\end{aligned}
$$

where

$$
\begin{aligned}
P_{j}(z) & =\frac{h_{j}^{\prime}-e^{-2 i \gamma} g_{j}^{\prime}}{h_{j}^{\prime}+e^{-2 i \gamma} g_{j}^{\prime}} \\
& =\frac{1-e^{-2 i \gamma} \frac{g_{j}^{\prime}}{h_{j}^{\prime}}}{1+e^{-2 i \gamma} \frac{g_{j}^{\prime}}{h_{j}^{\prime}}} \\
& =\frac{1-e^{-2 i \gamma} \omega_{j}}{1+e^{-2 i \gamma} \omega_{j}}, \quad j=1,2 .
\end{aligned}
$$

Since $\left|\omega_{j}\right|=\left|\frac{g_{j}^{\prime}}{h_{j}^{\prime}}\right|<1$ for $j=1,2, \mathfrak{R e}\left(P_{1}(z)\right)>0$ and $\mathfrak{R e}\left(P_{2}(z)\right)>0$ in \mathbb{D}.

Now for

$$
\varphi\left(e^{i \gamma} z\right)=e^{i \gamma} \frac{z}{\left(1-z e^{i \gamma}\right)^{2}},
$$

we have
$\mathfrak{R e}\left\{e^{i \gamma} \frac{z F^{\prime}(z)}{\varphi(z)}\right\}$

$$
\begin{aligned}
& =\mathfrak{R e}\left\{\left(1-z e^{i \gamma}\right)^{2}\left(\frac{\lambda}{\left(1-z e^{i \gamma}\right)^{2}} \cdot P_{1}(z)+\frac{(1-\lambda)}{\left(1-z e^{i \gamma}\right)^{2}} \cdot P_{2}(z)\right)\right\} \\
& =\lambda \mathfrak{R e}\left\{P_{1}(z)\right\}+(1-\lambda) \mathfrak{R e}\left\{P_{2}(z)\right\} \\
& =\mathfrak{R e}\left(P_{1}(z)\right)>0 .
\end{aligned}
$$

Therefore by using Theorem $\mathbb{L} .2, e^{i \gamma} F=e^{i \gamma}\left(h_{3}-e^{-2 i \gamma} g_{3}\right)$ is CHD. It means $h_{3}-e^{-2 i \gamma} g_{3}$ is convex in the direction $(-\gamma)$. Finally, by applying Theorem $\mathbb{I D}$ for $F=h_{3}-e^{-2 i \gamma} g_{3}$, we get the desired result.

By induction we can get the following result.
Corollary 2.3. Let $f_{j}=h_{j}+g_{j} \in \mathcal{S}_{H_{\gamma}},(j=1,2, \ldots, n)$. Then $\lambda_{1} f_{1}+$ $\cdots+\lambda_{n} f_{n}$ is univalent and convex in the direction $(-\gamma)$, where $0 \leq \lambda_{j} \leq$ $1(j=1,2, \ldots, n)$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1$.

Finally, we give an example to illuminate our main result.
Example 2.4. Let $f_{1}=h_{1}+\overline{g_{1}}$, where

$$
h_{1}(z)+e^{-2 i \gamma} g_{1}(z)=\frac{z}{1-z e^{i \gamma}},
$$

and $\omega_{1}=-e^{3 i \gamma} z$. Then by using shearing technique of Clunie and ShielSmall [2], we obtain

$$
h_{1}(z)=\frac{z-\frac{1}{2} z^{2} e^{i \gamma}}{\left(1-z e^{i \gamma}\right)^{2}}
$$

and

$$
g_{1}(z)=\frac{-\frac{1}{2} z^{2} e^{3 i \gamma}}{\left(1-z e^{i \gamma}\right)^{2}}
$$

Also, we suppose that $f_{2}=h_{2}+\overline{g_{2}}$, where

$$
h_{2}(z)+e^{-2 i \gamma} g_{2}(z)=\frac{z}{1-z e^{i \gamma}}
$$

and $\omega_{2}=e^{3 i \gamma} z$. Then with similar way as above, we get

$$
h_{2}(z)=\frac{1}{4 e^{i \gamma}}\left[\log \left(\frac{1+z e^{i \gamma}}{1-z e^{i \gamma}}\right)+\frac{2}{1-z e^{i \gamma}}\right]-\frac{1}{2 e^{i \gamma}}
$$

and

$$
g_{2}(z)=\frac{e^{i \gamma}}{2}\left(\frac{2 z e^{i \gamma}-1}{1-z e^{i \gamma}}\right)-\frac{e^{i \gamma}}{4} \log \left(\frac{1+z e^{i \gamma}}{1-z e^{i \gamma}}\right)+\frac{e^{i \gamma}}{2}
$$

If we take $\gamma=\frac{\pi}{4}$, then f_{1} and f_{2} belong to $\mathcal{S}_{H_{\pi / 4}}$. The images of \mathbb{D} under f_{1}, f_{2}, and $f_{3}=\lambda f_{1}+(1-\lambda) f_{2}$ with $\lambda=1 / 2$ are shown in Fig.四.

Figure 1. Images of \mathbb{D} under f_{1}, f_{2} and f_{3} with $\lambda=1 / 2$

We see that f_{3} is convex in the direction $(-\pi / 4)$, it means that Theorem [2.2 is true.

Acknowledgment. The authors are grateful to the referees, for the careful reading of the paper and for the helpful suggestions and comments.

References

1. D.M. Campbell, A survey of properties of the convex combination of univalent functions, Rocky Mountain J. Math., 5 (1975), pp. 475-492.
2. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), pp. 3-25.
3. M. Dorff, M. Nowak, and M. Wooszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 57 (2012), pp. 489-503.
4. T.H. MacGregor, The univalence of a linear combination of convex mappings, J. London Math. Soc., 44 (1969), pp. 210-212.
5. C. Pommerenke, On starlike and close-to-convex functions, Proc. Lond. Math. Soc., 13 (1963), pp. 290-304.
6. S.Y. Trimble, The convex sum of convex functions, Math. Z., 109 (1969), pp. 112-114.
7. Z.G. Wang, Z.H. Liu, and Y.C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400 (2013), pp. 452-459.
${ }^{1}$ Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran.

E-mail address: azireh@gmail.com
${ }^{2}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.

E-mail address: Mohammadmehdishabani@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Harmonic univalent mappings, Linear combination, Slanted half-plane mappings.

 Received: 26 September 2017, Accepted: 09 April 2018.

 * Corresponding author.

