Sahand Communications in Mathematical Analysis (SCMA) Vol. 14 No. 1 (2019), 89-96 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.72574.293

On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

Ahmad Zireh¹ and Mohammad Mehdi Shabani²*

ABSTRACT. In this paper, the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-\gamma)$ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

1. INTRODUCTION

A continuous function f = u + iv is a complex valued harmonic function in a complex domain $\Omega \subset \mathbb{C}$ if both u and v are real harmonic in Ω .

In any simply connected domain $\Omega \subset \mathbb{C}$, we can write $f = h + \overline{g}$, where h and g are analytic in Ω . We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in Ω is that |h'(z)| > |g'(z)| in Ω (see [2]).

Denote by $S_{\mathcal{H}}$ the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense-preserving in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ for which $f(0) = f_z(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_{\mathcal{H}}$, we may express the analytic functions h and g as

(1.1)
$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = \sum_{k=1}^{\infty} b_k z^k, \ |b_1| < 1,$$

2010 Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Harmonic univalent mappings, Linear combination, Slanted half-plane mappings.

Received: 26 September 2017, Accepted: 09 April 2018.

^{*} Corresponding author.

that is,

(1.2)
$$f(z) = \sum_{k=1}^{\infty} \left(a_k z^k + \overline{b_k z^k} \right), \quad (a_1 = 1, |b_1| < 1, \ z \in \mathbb{D}).$$

A domain Ω is said to be convex in a direction γ , where $0 \leq \gamma < \pi$, if for all $a \in \mathbb{C}$, the set $\Omega \cap \{a + te^{i\gamma} : t \in \mathbb{R}\}$ is either connected or empty. In particular, a domain is said to be convex in the horizontal direction (CHD) if its intersection with each horizontal lines is connected (or empty). A univalent harmonic mapping is called a CHD mapping if its range is a CHD domain.

An effective way of constructing univalent harmonic mappings with given dilatations, known as the shear construction, was introduced by Clunie and Sheil-Small [2].

Theorem 1.1. A harmonic function $f = h + \overline{g}$ locally univalent in \mathbb{D} is a univalent mapping of \mathbb{D} onto a domain convex in the direction γ $(0 \leq \gamma < \pi)$ if and only if $h - e^{2i\gamma}g$ is a conformal univalent mapping of \mathbb{D} onto a domain convex in the direction γ .

Next, there is a useful remark by Pommerenke [5] concerning analytic mappings convex in one direction. Using a particular case of this, we have the following result.

Theorem 1.2. Let f(z) be an analytic function in \mathbb{D} with f(0) = 0 and $f'(0) \neq 0$, and let

$$\varphi(z) = \frac{z}{(1+ze^{i\theta})(1+ze^{-i\theta})},$$

where $\theta \in \mathbb{R}$. If

$$\mathfrak{Re}\left\{\frac{zf'(z)}{\varphi(z)}\right\} > 0, \quad \forall z \in \mathbb{D},$$

then f is a CHD mapping.

Furthermore, we investigate the linear combination of two suitable harmonic maps. Note that if $f_1 = h_1 + \overline{g_1}$ and $f_2 = h_2 + \overline{g_2}$ are two harmonic univalent mappings in \mathbb{D} , the linear combination $\lambda f_1 + (1-\lambda)f_2$ need not be univalent (for details, see [4]).

Recently, Wang et al.[7] derived several sufficient conditions on harmonic univalent functions f_1 and f_2 so that their linear combination is univalent and convex in the direction of the real axis. In particular, they established:

Theorem 1.3. Let $f_j = h_j + \overline{g_j} \in S_{\mathcal{H}}$ with $h_j(z) + g_j(z) = z/(1-z)$ for j = 1, 2. Then $\lambda f_1 + (1-\lambda)f_2$, $0 \le \lambda \le 1$, is univalent and convex in the direction of the real axis.

The purpose of this paper is to prove Theorem 1.3, without the conditions $h_j(z) + g_j(z) = z/(1-z)$, j = 1, 2, for a subclass of harmonic mappings.

2. Main Results

Let

$$H_{\gamma} = \left\{ z \in \mathbb{C} : \mathfrak{Re}(e^{i\gamma}z) > -rac{1}{2}
ight\},$$

where $0 \leq \gamma < 2\pi$. We denote by $S_{H_{\gamma}}$ the subclass of harmonic functions f which map \mathbb{D} onto H_{γ} . To prove our result, we require the following lemma.

Lemma 2.1. If $f = h + \overline{g} \in S_{H_{\gamma}}$, then

(2.1)
$$h(z) + e^{-2i\gamma}g(z) = \frac{z}{1 - ze^{i\gamma}}, \quad z \in \mathbb{D}.$$

Proof. If $f = h + \overline{g} \in \mathcal{S}_{H_{\gamma}}$, then

$$\Re \left\{ e^{i\gamma} \left(h(z) + \overline{g(z)} \right) \right\} > -1/2,$$

which means that

$$\mathfrak{Re}\left\{e^{i\gamma}h(z)+e^{-i\gamma}g(z)\right\}>-1/2.$$

In other words,

$$\mathfrak{Re}\left\{e^{i\gamma}\left(h(z)+e^{-2i\gamma}g(z)\right)\right\}>-1/2.$$

Since

$$h(z) + e^{-2i\gamma}g(z) = h(z) - e^{-2i(\pi/2 - \gamma)}g(z),$$

therefore, it follows from Theorem 1.1 that the function $h(z) + e^{-2i\gamma}g(z)$ is convex in the direction $\left(\frac{\pi}{2} - \gamma\right)$ and so is univalent. It is also clear that $z \to h(z) + e^{-2i\gamma}g(z)$ maps \mathbb{D} onto H_{γ} which implies the result. \Box

Theorem 2.2. Let $f_j = h_j + \overline{g_j} \in S_{H_{\gamma}}$, (j = 1, 2). Then $f_3 = \lambda f_1 + (1 - \lambda)f_2$, where $0 \le \lambda \le 1$, is univalent and convex in the direction $(-\gamma)$.

Proof. By noting that $g'_1 = \omega_1 h'_1$, $g'_2 = \omega_2 h'_2$, we have

(2.2)
$$\omega_{3} = \frac{\lambda g_{1}' + (1 - \lambda) g_{2}'}{\lambda h_{1}' + (1 - \lambda) h_{2}'} \\ = \frac{\lambda \omega_{1} h_{1}' + (1 - \lambda) \omega_{2} h_{2}'}{\lambda h_{1}' + (1 - \lambda) h_{2}'}.$$

Now, we divide into two cases to discuss:

(i) If $\omega_1 = \omega_2$, then

$$\omega_3 = \frac{\lambda \omega_1 h_1' + (1-\lambda)\omega_1 h_2'}{\lambda h_1' + (1-\lambda)h_2'} = \omega_1.$$

Therefore in this case $|\omega_3| = |\omega_1| < 1$, which implies that f_3 is locally univalent.

(ii) If $\omega_1 \neq \omega_2$, then by using (2.1), we have

$$h_j(z) + e^{-2i\gamma}g_j(z) = \frac{z}{1 - ze^{i\gamma}}.$$

Therefore

(2.3)
$$h'_{j} = \frac{1}{(1 + \omega_{j}e^{-2i\gamma})(1 - ze^{i\gamma})^{2}}, \quad j = 1, 2.$$

By replacing (2.3) in (2.2), it follows that

$$\begin{aligned} |\omega_3| &= \left| \frac{\lambda \omega_1 h_1' + (1-\lambda)\omega_2 h_2'}{\lambda h_1' + (1-\lambda)h_2'} \right| \\ &= \frac{\left| \lambda \omega_1 + (1-\lambda)\omega_2 + \omega_1 \omega_2 e^{-2i\gamma} \right|}{\left| 1 + (1-\lambda)\omega_1 e^{-2i\gamma} + \lambda \omega_2 e^{-2i\gamma} \right|}. \end{aligned}$$

Next, we show that $|\omega_3| < 1$. Let

$$\omega_j = r_j e^{i\theta_j}$$

= $r_j(\cos\theta_j + i\sin\theta_j), \quad (0 \le r_j < 1, j = 1, 2).$

Suppose that

$$\begin{split} \varphi(\lambda) &= \left| 1 + (1-\lambda)\omega_1 e^{-2i\gamma} + \lambda\omega_2 e^{-2i\gamma} \right|^2 - \left| \lambda\omega_1 + (1-\lambda)\omega_2 + \omega_1\omega_2 e^{-2i\gamma} \right|^2 \\ &= \left| 1 + (1-\lambda)r_1 e^{i(\theta_1 - 2\gamma)} + \lambda r_2 e^{i(\theta_2 - 2\gamma)} \right|^2 \\ &- \left| \lambda r_1 e^{i\theta_1} + (1-\lambda)r_2 e^{i\theta_2} + r_1 r_2 e^{i(\theta_1 + \theta_2 - 2\gamma)} \right|^2 \\ &= \left[1 + (1-\lambda)r_1 \cos(\theta_1 - 2\gamma) + \lambda r_2 \cos(\theta_2 - 2\gamma) \right]^2 \\ &+ \left[(1-\lambda)r_1 \sin(\theta_1 - 2\gamma) + \lambda r_2 \sin(\theta_2 - 2\gamma) \right]^2 \\ &- \left[\lambda r_1 \cos \theta_1 + (1-\lambda)r_2 \cos \theta_2 + r_1 r_2 \cos(\theta_1 + \theta_2 - 2\gamma) \right]^2 \\ &= 1 + (1-\lambda)^2 r_1^2 \cos^2(\theta_1 - 2\gamma) + \lambda^2 r_2^2 \cos^2(\theta_2 - 2\gamma) \\ &+ 2(1-\lambda)r_1 \cos(\theta_1 - 2\gamma) + 2\lambda r_2 \cos(\theta_2 - 2\gamma) \\ &+ 2\lambda(1-\lambda)r_1 r_2 \cos(\theta_1 - 2\gamma) \cos(\theta_2 - 2\gamma)(1-\lambda)^2 r_1^2 \sin^2(\theta_1 - 2\gamma) \\ &+ \lambda^2 r_2^2 \sin^2(\theta_2 - 2\gamma) + 2\lambda(1-\lambda)r_1 r_2 \sin(\theta_1 - 2\gamma) \sin(\theta_2 - 2\gamma) \\ &- \left[\lambda^2 r_1^2 \cos^2 \theta_1 + (1-\lambda)^2 r_2^2 \cos^2 \theta_2 + r_1^2 r_2^2 \cos^2(\theta_1 + \theta_2 - 2\gamma) \right] \end{split}$$

ON THE LINEAR COMBINATIONS OF SLANTED HALF-PLANE ...

$$\begin{aligned} &+ 2\lambda(1-\lambda)r_{1}r_{2}\cos\theta_{1}\cos\theta_{2} + 2\lambda r_{1}^{2}r_{2}\cos\theta_{1}\cos(\theta_{1}+\theta_{2}-2\gamma) \\ &+ 2(1-\lambda)r_{1}r_{2}^{2}\cos\theta_{2}\cos(\theta_{1}+\theta_{2}-2\gamma)\lambda^{2}r_{1}^{2}\sin^{2}\theta_{1} \\ &+ (1-\lambda)^{2}r_{2}^{2}\sin^{2}\theta_{2} + r_{1}^{2}r_{2}^{2}\sin^{2}(\theta_{1}+\theta_{2}-2\gamma) \\ &+ 2\lambda(1-\lambda)r_{1}r_{2}\sin\theta_{1}\sin\theta_{2} + 2\lambda r_{1}^{2}r_{2}\sin\theta_{1}\sin(\theta_{1}+\theta_{2}-2\gamma) \\ &+ 2(1-\lambda)r_{1}r_{2}^{2}\sin\theta_{2}\sin(\theta_{1}+\theta_{2}-2\gamma)] \\ &= 1 + r_{1}^{2} - r_{2}^{2} - r_{1}^{2}r_{2}^{2} + 2r_{1}\cos(\theta_{1}-2\gamma) - 2r_{1}r_{2}^{2}\cos(\theta_{1}-2\gamma) \\ &+ 2\lambda\left(r_{2}\cos(\theta_{2}-2\gamma) - r_{1}\cos(\theta_{1}-2\gamma) - r_{1}^{2}r_{2}\cos(\theta_{2}-2\gamma) \\ &+ r_{1}r_{2}^{2}\cos(\theta_{1}-2\gamma) + r_{2}^{2} - r_{1}^{2}\right). \end{aligned}$$

It is clear that $\varphi(\lambda)$ is a linear function of λ , therefore it is a continuous and monotone function of λ in the interval [0, 1]. Moreover, we observe that

$$\begin{aligned} \varphi(0) &= (1 - r_2^2)(r_1^2 + 2r_1\cos(\theta_1 - 2\gamma) + 1) \\ &= (1 - r_2^2) \big[(r_1 + \cos(\theta_1 - 2\gamma))^2 + \sin^2(\theta_1 - 2\gamma) \big] > 0, \end{aligned}$$

and

$$\varphi(1) = (1 - r_1^2) \left[(r_2 + \cos(\theta_1 - 2\gamma))^2 + \sin^2(\theta_1 - 2\gamma) \right] > 0,$$

which implies that $\varphi(\lambda) > 0$ for all [0,1]. It follows that $|\omega_3| < 1$, and then f_3 is locally univalent in \mathbb{D} .

Next, we show that $f_3 = \lambda f_1 + (1-\lambda)f_2 = [\lambda h_1 + (1-\lambda)h_2] + [\lambda \overline{g_1} + (1-\lambda)\overline{g_2}] = h_3 + \overline{g_3}$ is convex in the direction $(-\gamma)$. Let $F := h_3 - e^{-2i\gamma}g_3$, then we have

$$F = h_3 - e^{-2i\gamma}g_3$$

= $(\lambda h_1 + (1 - \lambda)h_2) - e^{-2i\gamma}(\lambda g_1 + (1 - \lambda)g_2)$
= $\lambda (h_1 - e^{-2i\gamma}g_1) + (1 - \lambda) (h_2 - e^{-2i\gamma}g_2).$

Hence

$$\begin{split} F'(z) &= \lambda \left(h_1' - e^{-2i\gamma} g_1' \right) + (1 - \lambda) \left(h_2' - e^{-2i\gamma} g_2' \right) \\ &= \lambda \left(h_1' + e^{-2i\gamma} g_1' \right) \left(\frac{h_1' - e^{-2i\gamma} g_1'}{h_1' + e^{-2i\gamma} g_1'} \right) \\ &+ (1 - \lambda) \left(h_2' + e^{-2i\gamma} g_2' \right) \left(\frac{h_2' - e^{-2i\gamma} g_2'}{h_2' + e^{-2i\gamma} g_2'} \right) \\ &= \frac{\lambda}{(1 - e^{i\gamma} z)^2} \cdot P_1(z) + \frac{(1 - \lambda)}{(1 - e^{i\gamma} z)^2} \cdot P_2(z), \end{split}$$

where

$$P_{j}(z) = \frac{h'_{j} - e^{-2i\gamma}g'_{j}}{h'_{j} + e^{-2i\gamma}g'_{j}}$$
$$= \frac{1 - e^{-2i\gamma}\frac{g'_{j}}{h'_{j}}}{1 + e^{-2i\gamma}\frac{g'_{j}}{h'_{j}}}$$
$$= \frac{1 - e^{-2i\gamma}\omega_{j}}{1 + e^{-2i\gamma}\omega_{j}}, \quad j = 1, 2.$$

Since $|\omega_j| = \left|\frac{g'_j}{h'_j}\right| < 1$ for j = 1, 2, $\Re \mathfrak{e}(P_1(z)) > 0$ and $\Re \mathfrak{e}(P_2(z)) > 0$ in \mathbb{D} .

Now for

$$\varphi(e^{i\gamma}z) = e^{i\gamma} \frac{z}{(1 - ze^{i\gamma})^2},$$

we have

$$\begin{aligned} \mathfrak{Re} \left\{ e^{i\gamma} \frac{zF'(z)}{\varphi(z)} \right\} \\ &= \mathfrak{Re} \left\{ (1 - ze^{i\gamma})^2 \left(\frac{\lambda}{(1 - ze^{i\gamma})^2} \cdot P_1(z) + \frac{(1 - \lambda)}{(1 - ze^{i\gamma})^2} \cdot P_2(z) \right) \right\} \\ &= \lambda \mathfrak{Re} \left\{ P_1(z) \right\} + (1 - \lambda) \mathfrak{Re} \left\{ P_2(z) \right\} \\ &= \mathfrak{Re}(P_1(z)) > 0. \end{aligned}$$

Therefore by using Theorem 1.2, $e^{i\gamma}F = e^{i\gamma}(h_3 - e^{-2i\gamma}g_3)$ is CHD. It means $h_3 - e^{-2i\gamma}g_3$ is convex in the direction $(-\gamma)$. Finally, by applying Theorem 1.1 for $F = h_3 - e^{-2i\gamma}g_3$, we get the desired result. \Box

By induction we can get the following result.

Corollary 2.3. Let $f_j = h_j + g_j \in S_{H_{\gamma}}, (j = 1, 2, ..., n)$. Then $\lambda_1 f_1 + \cdots + \lambda_n f_n$ is univalent and convex in the direction $(-\gamma)$, where $0 \le \lambda_j \le 1(j = 1, 2, ..., n)$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$.

Finally, we give an example to illuminate our main result.

Example 2.4. Let $f_1 = h_1 + \overline{g_1}$, where

$$h_1(z) + e^{-2i\gamma}g_1(z) = \frac{z}{1 - ze^{i\gamma}},$$

and $\omega_1 = -e^{3i\gamma}z$. Then by using shearing technique of Clunie and Shiel-Small [2], we obtain

$$h_1(z) = \frac{z - \frac{1}{2}z^2 e^{i\gamma}}{(1 - ze^{i\gamma})^2},$$

and

$$g_1(z) = \frac{-\frac{1}{2}z^2 e^{3i\gamma}}{(1 - ze^{i\gamma})^2}$$

Also, we suppose that $f_2 = h_2 + \overline{g_2}$, where

$$h_2(z) + e^{-2i\gamma}g_2(z) = \frac{z}{1 - ze^{i\gamma}},$$

and $\omega_2 = e^{3i\gamma}z$. Then with similar way as above, we get

$$h_2(z) = \frac{1}{4e^{i\gamma}} \left[\log\left(\frac{1+ze^{i\gamma}}{1-ze^{i\gamma}}\right) + \frac{2}{1-ze^{i\gamma}} \right] - \frac{1}{2e^{i\gamma}},$$

and

$$g_2(z) = \frac{e^{i\gamma}}{2} \left(\frac{2ze^{i\gamma} - 1}{1 - ze^{i\gamma}}\right) - \frac{e^{i\gamma}}{4} \log\left(\frac{1 + ze^{i\gamma}}{1 - ze^{i\gamma}}\right) + \frac{e^{i\gamma}}{2}.$$

If we take $\gamma = \frac{\pi}{4}$, then f_1 and f_2 belong to $S_{H_{\pi/4}}$. The images of \mathbb{D} under f_1 , f_2 , and $f_3 = \lambda f_1 + (1 - \lambda) f_2$ with $\lambda = 1/2$ are shown in Fig. 1.

FIGURE 1. Images of \mathbb{D} under f_1 , f_2 and f_3 with $\lambda = 1/2$

We see that f_3 is convex in the direction $(-\pi/4)$, it means that Theorem 2.2 is true.

Acknowledgment. The authors are grateful to the referees, for the careful reading of the paper and for the helpful suggestions and comments.

A. ZIREH AND M. M. SHABANI

References

- D.M. Campbell, A survey of properties of the convex combination of univalent functions, Rocky Mountain J. Math., 5 (1975), pp. 475-492.
- J. Clunie and T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), pp. 3-25.
- M. Dorff, M. Nowak, and M. Wooszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 57 (2012), pp. 489-503.
- 4. T.H. MacGregor, *The univalence of a linear combination of convex mappings*, J. London Math. Soc., 44 (1969), pp. 210-212.
- C. Pommerenke, On starlike and close-to-convex functions, Proc. Lond. Math. Soc., 13 (1963), pp. 290-304.
- S.Y. Trimble, The convex sum of convex functions, Math. Z., 109 (1969), pp. 112-114.
- Z.G. Wang, Z.H. Liu, and Y.C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400 (2013), pp. 452-459.
- ¹ Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran.

E-mail address: azireh@gmail.com

 2 Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.

 $E\text{-}mail\ address:$ Mohammadmehdishabani@yahoo.com