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Fekete-Szegö Problem of Functions Associated with

Hyperbolic Domains

Sarfraz Nawaz Malik1∗ , Sidra Riaz2, Mohsan Raza3, and Saira Zainab4

Abstract. In the field of Geometric Function Theory, one can not
deny the importance of analytic and univalent functions. The char-
acteristics of these functions including their taylor series expansion,
their coefficients in these representations as well as their associated
functional inequalities have always attracted the researchers. In
particular, Fekete-Szegö inequality is one of such vastly studied and
investigated functional inequality. Our main focus in this article is
to investigate the Fekete-Szegö functional for the class of analytic
functions associated with hyperbolic regions. To further enhance
the worth of our work, we include similar problems for the inverse
functions of these discussed analytic functions.

1. Introduction and preliminaries

The class A of analytic functions f defined in the open unit disk
U = {z : |z| < 1} has its functions’ representation as

(1.1) f(z) = z +
∞∑
n=2

anz
n.

Whereas S represents the class of univalent functions in U . Related to
the coefficients an of taylor series of univalent functions, the so-called
Fekete-Szegö problem is considered to be a major result. It was intro-
duced by Fekete and Szegö [2]. It is stated as:
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If f is a univalent function and can be represented as (1.1) , then

∣∣a3 − µa22
∣∣ ≤


3 − 4µ, if µ ≤ 0,

1 + 2 exp
(

2µ
µ−1

)
, if 0 ≤ µ ≤ 1,

4µ− 3, if µ ≥ 1.

The Fekete-Szegö problem is all about maximizing the absolute value of
the functional a3 − µa22 . This result has been widely studied by many
researchers and it is sharp. Koebe function proves the sharpness of this
result. Koebe fails to be extremal for the case 0 < µ < 1 and it provides
an example of an extremal problem over S. In the similar context, a
number of results related to the maximization of the non-linear func-
tional given on left hand side of the above inequality can be found for
different classes and for subclasses of univalent functions, as well. Some
interesting studies of this functional by considering µ as complex num-
ber besides considering it as a real number can be found in literature.
Different classified techniques have been used by authors to maximize
Fekete-Szegö functional. These studies show interesting geometric char-
acteristics of image domains for different types of functions. For more
details, we refer the interested readers to [1, 2, 6, 7, 11–14, 22, 25] and
the references therein.

We define the subordination of two functions f and g symbolically
written as f ≺ g, and is defined as

(1.2) f (z) = g (w (z)) , z ∈ U ,

where w is a schwarz function such that w (0) = 0, |w (z)| < 1 for z ∈ U .
We now define another class of analytic functions p satisfying p (0) = 1
and p ≺ 1+z

1−z , z ∈ U . We denote this class with P. For details, see [4].
In the study of domains, the idea of conic domains was given by

Goodman [3] in 1991. This remarkable initiation opened a new horizon of
research. Goodman introduced the image domain of analytic functions
as parabolic regions. In the same context, he defined the class UCV of
uniformly convex functions as:

UCV =

{
f ∈ A : ℜ

(
1 + (z − ζ)

f ′′ (z)

f ′ (z)

)
> 0, z, ζ ∈ U

}
.

Independently, Rønning [23, 24], and Ma and Minda [13] defined the one
variable characterization of the above defined class. This was another
achievement in the study of domains. The characterization is given as
follows:

UCV =

{
f ∈ A : ℜ

(
1 +

zf ′′ (z)

f ′ (z)

)
>

∣∣∣∣zf ′′ (z)

f ′ (z)

∣∣∣∣ , z ∈ U
}
.
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The above given characterization introduced a domain, conic (parabolic)
domain, given as Ω = {w : ℜw > |w − 1|} , which was an absolutely
new discovery in this line. Inspired by the work going on, Kanas and
Wísniowska [10] defined k−uniformly convex functions as:

k − UCV =

{
f ∈ A : ℜ

(
1 +

zf ′′ (z)

f ′ (z)

)
> k

∣∣∣∣zf ′′ (z)

f ′ (z)

∣∣∣∣ , z ∈ U
}
.

With this, the most general conic domain Ωk, given as follows, was
introduced. This covers all types of conic regions, i.e., parabolic as well
as hyperbolic and elliptic regions.

Ωk = {w : ℜw > k |w − 1| , k ≥ 0} .

With a variation in the values of k, this domain Ωk, produces different
image domains. This gives the right half plane as image domain for
k = 0, and the hyperbolic regions when 0 < k < 1. For k = 1, we obtain
parabolic region from this generalization and regions become elliptical
if k > 1. We refer to [9, 10] for more details of these domains. Noor
and Malik [20] gave a breakthrough by removing the deficiency of fixed
sizes of domains by generalizing this domain Ωk. Since the conic regions,
presented by the domain Ωk have their fixed sizes. That is, this formu-
lation does not allow these regions to be contracted or expanded. For
this, they defined the following domain
(1.3)

Ωk (a, b) =
{
u + iv : (u− a)2 > k2

[
(u− a + b− 1)2 + v2 + 2b (1 − b)

]}
.

The beauty of this domain Ωk (a, b) is that, now the conic regions can
attain any size. Related to this, the following class of functions takes
all values from the above domain Ωk (a, b) , 0 < k < 1 (The generalized
hyperbolic regions).

Definition 1.1. [20] A function p (z) is said to be in the class k−P (a, b) ,
if and only if,

(1.4) p (z) ≺ (a + b) + (1 − b) p̃k(z),

where

p̃k(z) = 1 +
2

1 − k2
sinh2

[(
2

π
arccos k

)
arctanh

√
z

]
,

0 < k < 1 and a, b must be chosen accordingly, as:

(1.5) b ∈


[

1
2k2−1

, 1
)
, when 0 < k < 1√

2
,

(−∞, 1) , when 1√
2
≤ k < 1,
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and

k2 (1 − b)

1 − k2
−

k
√

k2 (1 − b)2 + (1 − k2) (1 − b2)

k2 − 1
≤ a(1.6)

< 1 − k2 (1 − b)

k2 − 1
+

k
√

k2 (1 − b)2 + (1 − k2) (1 − b2)

k2 − 1
.

For more details about the function p̃k(z), we refer the readers to [5, 9,
10, 15–18, 21].

We may relate it with the work done before. The restriction of the
domain as Ωk (0, 0) = Ωk, gives the conic domain that was given by
Kanas and Wísniowska [9, 10]. Using this important relation, we make
an interesting observation that it connects some already known classes
of analytic functions. Some of these are:

(i) k−P (a, b) ⊂ P (β) , the class of functions with real part greater
than β, where

β = a +
k2 (1 − b) − k

√
k2 (1 − b)2 + (1 − k2) (1 − b2)

k2 − 1
.

(ii) k − P (0, 0) = P (p̃k) , which is the class introduced by Kanas
and Wísniowska [9, 10].

We proceed in our literature review and include the definitions of
the class of generalized k−uniformly convex functions, denoted by k −
UCV (a, b) and the class of corresponding k−starlike functions, denoted
by k−ST (a, b). Both of these classes will appear in next section of this
article. The definitions are given as follows.

Definition 1.2. [20] A function f ∈ A is said to be in the class k −
UCV (a, b) , where 0 < k < 1 and a and b satisfy (1.6) and (1.5) , if and
only if,[

ℜ
{

(zf ′(z))′

f ′ (z)
− a

}]2
> k2

[∣∣∣∣(zf ′(z))′

f ′ (z)
− a + b− 1

∣∣∣∣2 + 2b (1 − b)

]
,

or equivalently,

(1.7)
(zf ′(z))′

f ′ (z)
∈ k − P (a, b) .

Definition 1.3. [20] A function f ∈ A is said to be in the class k −
ST (a, b) , where 0 < k < 1 and a and b satisfy (1.6) and (1.5) , if and
only if,[

ℜ
{
zf ′(z)

f (z)
− a

}]2
> k2

[∣∣∣∣zf ′(z)

f (z)
− a + b− 1

∣∣∣∣2 + 2b (1 − b)

]
,
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or in other words,

(1.8)
zf ′(z)

f (z)
∈ k − P (a, b) .

It can easily be seen that

f (z) ∈ k − UCV (a, b) ⇔ zf ′ (z) ∈ k − ST (a, b) .

It is clear that k−UCV (0, 0) = k−UCV and k−ST (0, 0) = k−ST . The
well-known classes of k-uniformly convex and corresponding k-starlike
functions respectively, introduced by Kanas and Wísniowska [9, 10].

The above mentioned contribution by the well known researchers
proves that it has attracted the attention towards it. Before we iden-
tify the importance of work done in this paper, we would like to give a
brief review of the study of Fekete-Szegö inequality. In 1994, Ma and
Minda [13] solved the Fekete-Szegö problem for the class of uniformly
convex functions, whereas Kanas [8] found the maximum bound of the
functional

∣∣a3 − µa22
∣∣ for the functions of class P (p̃k). Later, Mishra

and Gochhayat [19] contributed by solving the same problem for the
functions of classes k−UCV and k−ST. Inspired and motivated by the
research going on in this area of research, we solve the classical Fekete-
Szegö problem for the functions of classes k−P (a, b) , k−UCV (a, b) and
k − ST (a, b) . For the main results of this paper, we need the following
useful lemmas. The proofs of these lemmas are given in the respective
references.

Lemma 1.4 ([13]). If p (z) = 1 + p1z + p2z
2 + · · · is a function with

positive real part in U , then, for any complex number µ,∣∣p2 − µp21
∣∣ ≤ 2 max {1, |2µ− 1|} ,

and the result is sharp for the functions

p0 (z) =
1 + z

1 − z
or p∗ (z) =

1 + z2

1 − z2
, (z ∈ U) .

Lemma 1.5. [13] If p (z) = 1 + p1z + p2z
2 + · · · is a function with

positive real part in U , then, for any real number v,

∣∣p2 − vp21
∣∣ ≤

 −4v + 2, v ≤ 0,
2, 0 ≤ v ≤ 1,
4v − 2, v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p (z) is 1+z
1−z or

one of its rotations. If 0 < v < 1, then, the equality holds if and only if

p (z) = 1+z2

1−z2
or one of its rotations. If v = 0, the equality holds if and
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only if,

p (z) =

(
1 + η

2

)
1 + z

1 − z
+

(
1 − η

2

)
1 − z

1 + z
, (0 ≤ η ≤ 1) ,

or one of its rotations. If v = 1, then, the equality holds if and only if
p (z) is reciprocal of one of the functions which equality holds in the case
of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it
can be improved as follows:∣∣p2 − vp21

∣∣ + |p1|2 ≤ 2,

(
0 < v ≤ 1

2

)
,

and ∣∣p2 − vp21
∣∣ + (1 − v) |p1|2 ≤ 2,

(
1

2
< v ≤ 1

)
.

2. Main Results

Theorem 2.1. Let p ∈ k−P (a, b) where 0 < k < 1, and a, b are taken
according to (1.5) and (1.6) . Also consider the form

p (z) = 1 +
∞∑
n=1

pnz
n.

Then, for a complex number µ, we have

(2.1)
∣∣p2 − µp21

∣∣ ≤ 2 |1 − b|T 2

1 − k2
.max

(
1,

∣∣∣∣ 2T 2µ

1 − k2
(1 − b) − 2 + T 2

3

∣∣∣∣) ,

and for real number µ, we have

∣∣p2 − µp21
∣∣ ≤ |1 − b|T 2

1 − k2

(2.2)

×



4
3 + 2T 2

3 − 4(1−b)T 2

1−k2
µ,

2,

−4
3 − 2T 2

3 + 4(1−b)T 2

1−k2
µ,

µ ≤ 1−k2

6(1−b)

(
1 − 1

T 2

)
,

1−k2

6(1−b)

(
1 − 1

T 2

)
≤ µ ≤ 1−k2

6(1−b)

(
5
T 2 + 1

)
,

µ ≥ 1−k2

6(1−b)

(
5
T 2 % + 1

)
.

These results are sharp and the equality in (2.1) holds for the functions

(2.3) p1 (z) = 1 + a +
2 (1 − b)

1 − k2
sinh2

[(
2

π
arccos k

)
arctanh

√
z

]
,
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or

(2.4) p2 (z) = 1 + a +
2 (1 − b)

1 − k2
sinh2

[(
2

π
arccos k

)
arctanh (z)

]
.

When µ < 1−k2

6(1−b)

(
1 − 1

T 2

)
or µ > 1−k2

6(1−b)

(
5
T 2 + 1

)
, the equality in (2.2)

holds for the function p1 (z) or one of its rotations. If

1 − k2

6 (1 − b)

(
1 − 1

T 2

)
< µ <

1 − k2

6 (1 − b)

(
5

T 2
+ 1

)
,

then the equality in (2.2) holds for the function p2 (z) or one of its rota-

tions. If µ = 1−k2

6(1−b)

(
1 − 1

T 2

)
, the equality in (2.2) holds for the function

(2.5) p3 (z) =

(
1 + η

2

)
p1 (z) +

(
1 − η

2

)
p1 (−z) , (0 ≤ η ≤ 1) ,

or one of its rotations. If µ = 1−k2

6(1−b)

(
5
T 2 + 1

)
, then, the equality in (2.2)

holds for the function p (z) which is reciprocal of one of the functions

which equality holds in the case for µ = 1−k2

6(1−b)

(
1 − 1

T 2

)
.

Proof. For h ∈ P of the form

h (z) = 1 +

∞∑
n=1

cnz
n,

we consider

h (z) =
1 + w (z)

1 − w (z)
,

where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that

w (z) =
h (z) − 1

h (z) + 1

(2.6)

=

(
1 + c1z + c2z

2 + c3z
3 + · · ·

)
− 1

(1 + c1z + c2z2 + c3z3 + · · · ) + 1

=
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2 +

(
1

2
c3 −

1

2
c2c1 +

1

8
c31

)
z3 + · · · .

Now, if p̃k (w (z)) = 1+R1 (k)w (z)+R2 (k)w2 (z)+R3 (k)w3 (z)+ · · · ,
then from (2.6) , one may have

p̃k (w (z)) = 1 + R1 (k)w (z) + R2 (k)w2 (z) + R3 (k)w3 (z) + · · ·

= 1 + R1 (k)

(
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2

+

(
1

2
c3 −

1

2
c2c1 +

1

8
c31

)
z3 + · · ·

)
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+ R2 (k)

(
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2

+

(
1

2
c3 −

1

2
c2c1 +

1

8
c31

)
z3 + · · ·

)2

+ R3 (k)

(
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2

+

(
1

2
c3 −

1

2
c2c1 +

1

8
c31

)
z3 + · · ·

)3

+ · · · ,

where R1 (k) , R2 (k) and R3 (k) are given by

R1 (k) =
2T 2

1 − k2
,

R2 (k) =
2T 2

3 (1 − k2)

(
2 + T 2

)
,

R3 (k) =
2T 2

9 (1 − k2)

(
23

5
+ 4T 2 +

2

5
T 4

)
,

and T = T (k) = 2
π arccos (k) , 0 < k < 1, (see [8]). Using these, the

above series reduces to

p̃k (w (z)) = 1 +
T 2

1 − k2
c1z +

T 2

1 − k2

(
T 2 − 1

6
c21 + c2

)
z2 +

T 2

1 − k2

(2.7)

[(
2

45
− 1

18
T 2 +

1

90
T 4

)
c31 +

(
−1

3
+

1

3
T 2

)
c1c2 + c3

]
z3 + · · · .

Since p ∈ k − P (a, b) , 0 < k < 1, from relations (1.2), (1.4) and (2.7) ,
one may have

p (z) = (a + b) + (1 − b) p̃k (w (z)) ,

(2.8)

= 1 + a +
T 2

1 − k2
(1 − b) c1z +

T 2 (1 − b)

1 − k2

=

(
c2 +

T 2 − 1

6
c21

)
z2 +

T 2

1 − k2
(1 − b) ,[(

2

45
− 1

18
T 2 +

1

90
T 4

)
c31 +

(
−1

3
+

1

3
T 2

)
c1c2 + c3

]
z3 + . . . .

If

p (z) = 1 +

∞∑
n=1

pnz
n,
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then by equating coefficients of like powers of z, we have

p1 =
T 2

1 − k2
(1 − b) c1,

p2 =
T 2 (1 − b)

1 − k2

(
c2 +

T 2 − 1

6
c21

)
.

Now for complex number µ, consider

p2 − µp21 =
T 2 (1 − b)

1 − k2

(
c2 −

(
1 − T 2

6
+

T 2µ

1 − k2
(1 − b)

)
c21

)
.

This implies that

(2.9)
∣∣p2 − µp21

∣∣ =
T 2 |1 − b|

1 − k2

∣∣∣∣c2 − (
1 − T 2

6
+

T 2µ

1 − k2
(1 − b)

)
c21

∣∣∣∣ .
Now by using Lemma 1.4, we have∣∣p2 − µp21

∣∣ ≤ T 2 |1 − b|
1 − k2

.2 max (1, |2v − 1|) ,

where

v =
1 − T 2

6
+

T 2µ

1 − k2
(1 − b) .

This leads us to the required inequality (2.1) and applying Lemma 1.5
to the expression (2.9) for real number µ, we get the required inequality
(2.2). □

For a = 0, b = 0, the above result reduces to the following form.

Corollary 2.2. Let p ∈ k − P (0, 0) = P (p̃k) , 0 < k < 1, and of the
form p (z) = 1 +

∑∞
n=1 pnz

n. Then, for a complex number µ, we have

(2.10)
∣∣p2 − µp21

∣∣ ≤ 2T 2

1 − k2
.max

(
1,

∣∣∣∣µ 2T 2

(1 − k2)
− T 2

3
− 2

3

∣∣∣∣) ,

and for real number µ, we have

∣∣p2 − µp21
∣∣ ≤ T 2

1 − k2

(2.11)

×



4
3 + 2

3T
2 − 4µT 2

1−k2
,

2,

−4
3 − 2

3T
2 + 4µT 2

1−k2
,

µ ≤ −1−k2

6T 2 + 1−k2

6 ,

−1−k2

6T 2 + 1−k2%
6 ≤ µ ≤ 5(1−k2)

6T 2 + 1−k2

6 ,

µ ≥ 5(1−k2)
6T 2 + 1−k2

6 .
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These results are sharp.

In [7, 8], Kanas studied the class P (p̃k) which consists of functions
taking all the values from the conic domain Ωk. Kanas [8] found the
bound of Fekete-Szegö functional for the class P (p̃k) whose particular
case for 0 < k < 1 is as follows:
Let p (z) = 1 + b1z + b2z

2 + b3z
3 + · · · ∈ P (p̃k) , 0 < k < 1. Then, for a

real number µ, we have

(2.12)
∣∣b2 − µb21

∣∣ ≤ 2T 2

1 − k2


1 − µ 2T 2

1−k2
,

1,

1 + (µ− 1) 2T 2

1−k2
,

µ ≤ 0,
µ ≤ 0,
µ ≥ 1.

We observe that Corollary 2.2 gives more refined bounds of Fekete-Szegö
functional

∣∣p2 − µp21
∣∣ for the functions of class P (p̃k) , 0 < k < 1 as

compared to that from (2.12) .

Theorem 2.3. Let f ∈ k − UCV (a, b) where 0 < k < 1, and a, b are
taken according to (1.5) and (1.6) . Also consider the form

f (z) = z +

∞∑
n=2

anz
n.

Then, for a real number µ, we have

∣∣a3 − µa22
∣∣ ≤ T 2 |1 − b|

6 (1 − k2)

(2.13)

×



4
3 + 2

3T
2 + (2 − 3µ) 2T 2(1−b)

1−k2 ,

2,

− 4
3 − 2

3T
2 − (2 − 3µ) 2T 2(1−b)

1−k2 ,

µ ≤ 2
3 − 1−k2

9(1−b)

(
1

T 2% − 1
)
,

2
3 − 1−k2

9(1−b)

(
1
T 2 − 1

)
≤ µ ≤ 2

3 + 1−k2

9(1−b)

(
5
T 2 + 1

)
,

µ ≥ 2
3 + 1−k2

9(1−b)

(
5
T 2 + 1

)
.

Proof. If f (z) ∈ k − UCV (a, b) , 0 ≤ k < 1, then it follows from (1.2),
(1.4) and (1.7) that

(zf ′ (z))′

f ′ (z)
= (a + b) + (1 − b) p̃k (w (z)) .

This implies by using (2.8) that

(zf ′ (z))′

f ′ (z)
= 1 + a +

T 2 (1 − b)

1 − k2
c1z

(2.14)
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+
T 2 (1 − b)

1 − k2

(
c2 +

T 2 − 1

6
c21

)
z2 +

T 2

1 − k2
(1 − b)[(

2

45
− 1

18
T 2 +

1

90
T 4

)
c31 +

(
−1

3
+

1

3
T 2

)
c1c2 + c3

]
z3 + · · · .

If

f (z) = z +

∞∑
n=2

anz
n,

then one may have
(2.15)
(zf ′ (z))′

f ′ (z)
= 1 + 2a2z +

(
6a3 − 4a22

)
z2 +

(
12a4 − 18a2a3 + 8a32

)
z3 + · · · .

From (2.14) and (2.15) , comparison of like powers of z gives

(2.16) a2 =
T 2 (1 − b)

2 (1 − k2)
c1,

and

(2.17) a3 =
T 2 (1 − b)

6 (1 − k2)

(
c2 −

(
1 − T 2

6
− T 2 (1 − b)

1 − k2

)
c21

)
.

Now, for a real number µ, we consider∣∣a3 − µa22
∣∣ =

T 2 |1 − b|
6 (1 − k2)

∣∣∣∣c2 − (
1 − T 2

6
− T 2 (1 − b)

1 − k2
+

3T 2µ

2 (1 − k2)
(1 − b)

)
c21

∣∣∣∣
=

T 2 |1 − b|
6 (1 − k2)

∣∣∣∣c2 − (
1 − T 2

6
−

(
1 − 3

2
µ

)
T 2 (1 − b)

1 − k2

)
c21

∣∣∣∣ .
By applying Lemma 1.5, we have the required result. The inequality
(2.13) is sharp and equality holds for

µ <
2

3
− 1 − k2

9 (1 − b)

(
1

T 2
− 1

)
,

or

µ >
2

3
+

1 − k2

9 (1 − b)

(
5

T 2
+ 1

)
,

when f (z) is f1 (z) or one of its rotations, where f1 (z) is defined such

that
(zf ′

1(z))
′

f ′
1(z)

= p1 (z) . If

2

3
− 1 − k2

9 (1 − b)

(
1

T 2
− 1

)
< µ <

2

3
+

1 − k2

9 (1 − b)

(
5

T 2
+ 1

)
,
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then, the equality holds for the function f2 (z) or one of its rotations,

where f2 (z) is defined such that
(zf ′

2(z))
′

f ′
2(z)

= p2 (z) . If

µ =
2

3
− 1 − k2

9 (1 − b)

(
1

T 2
− 1

)
,

the equality holds for the function f3 (z) or one of its rotations, where

f3 (z) is defined such that
(zf ′

3(z))
′

f ′
3(z)

= p3 (z) . If

µ =
2

3
+

1 − k2

9 (1 − b)

(
5

T 2
+ 1

)
,

then, the equality holds for f (z), which is such that (zf ′(z))′

f ′(z) is reciprocal

of one of the function such that equality holds in the case of

µ =
2

3
− 1 − k2

9 (1 − b)

(
1

T 2
− 1

)
.

□

By taking a = 0 and b = 0 in Theorem 2.3, we have the following
corollary which is proved by Mishra and Gochhayat [19].

Corollary 2.4. Let f ∈ k − UCV (0, 0) = k − UCV, 0 ≤ k < 1 and of
the form (1.1). Then∣∣a3 − µa22

∣∣ ≤ T 2

6 (1 − k2)

×



4
3 + 2T 2

3 + (2 − 3µ) 2T 2

1−k2 ,

2,

− 4
3 − 2T 2

3 − (2 − 3µ) 2T 2

1−k2 ,

µ ≤ 2
3 − 1−k2

9T 2 + 1−k2

9 ,

2
3 − 1−k2

9T 2 + 1−k2

9 ≤ µ ≤ 2
3 +

5(1−k2)
9T 2 + 1−k2

9 ,

µ ≥ 2
3 +

5(1−k2)
9T 2 + 1−k2

9 .

Theorem 2.5. If f (z) ∈ k − ST (a, b) where 0 < k < 1, and a, b are
taken according to (1.5) and (1.6) . Also consider the form

f (z) = z +

∞∑
n=2

anz
n.

Then for a real number µ, we have∣∣a3 − µa22
∣∣ ≤ T 2 |1 − b|

2 (1 − k2)
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×



4
3 + 2

3T
2 + (1 − 2µ) 4T 2(1−b)

1−k2 ,

2,

− 4
3 − 2

3T
2 − (1 − 2µ) 4T 2(1−b)

1−k2 ,

µ ≤ 1
2 +

(T 2−1)(1−k2)
12T 2(1−b) ,

1
2 +

(T 2−1)(1−k2)
12T 2(1−b) ≤ µ ≤ 1

2 +
(5+T 2)(1−k2)

12T 2(1−b) ,

µ ≤ 1
2 +

(T 2−1)(1−k2)
12T 2(1−b) .

This result is sharp.

Proof. The proof follows similarly as in Theorem 2.3. □

By taking a = 0 and b = 0 in Theorem 2.5, we have the following
corollary which is proved by Mishra and Gochhayat [19].

Corollary 2.6. Let f ∈ k − ST (0, 0) = k − ST, 0 < k < 1 and of the
form (1.1) . Then, for a real number µ,∣∣a3 − µa22

∣∣ ≤ T 2

1 − k2

×



2+T 2

3 + (1 − 2µ) 2T 2

1−k2
,

1,

−2+T 2

3 − (1 − 2µ) 2T 2

1−k2
,

µ ≤ 1
2 +

(T 2−1)(1−k2)
%12T 2 ,

1
2 +

(T 2−1)(1−k2)
12T 2 ≤ µ ≤ 1

2 +
(5+T 2)(1−k2)

12T 2 ,

µ ≥ 1
2 +

(5+T 2)(1−k2)
12T 2 .

Now we consider the inverse function F which maps regions presented
by (1.3) to the open unit disk U , defined as F (w) = F (f (z)) = z, z ∈ U
and we find the following coefficient bound for inverse functions.

Theorem 2.7. Let w = f (z) ∈ k − UCV (a, b) where 0 < k < 1, and
a, b are taken according to (1.5) and (1.6) . Also let

F (w) = f−1 (w) = w +
∞∑
n=2

dnw
n.

Then,

|dn| ≤
2 |1 − b|T 2

n (n− 1) (1 − k2)
, (n = 2, 3) .

Proof. Since F (w) = F (f (z)) = z, so it is easy to see that

d2 = −a2, d3 = 2a22 − a3, d4 = −a4 + 5a2a3 − 5a32.

By using (2.16) and (2.17) , one can have

(2.18) d2 = −T 2 (1 − b)

2 (1 − k2)
c1,
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and

(2.19) d3 =
T 2 (1 − b)

6 (1 − k2)

[(
2T 2 (1 − b)

1 − k2
+

1 − T 2

6

)
c21 − c2

]
.

Now, from (2.18) and (2.19) , one can have

|d2| ≤
|1 − b|T 2

1 − k2
,

and

|d3| ≤
|1 − b|T 2

6 (1 − k2)

∣∣∣∣16 − T 2

6
+

2 (1 − b)T 2

1 − k2

∣∣∣∣ ∣∣c2 − c21
∣∣

+
|1 − b|T 2

6 (1 − k2)

∣∣∣∣56 +
T 2

6
− 2 (1 − b)T 2

1 − k2

∣∣∣∣ |c2| .
Application of the bounds

∣∣c2 − c21
∣∣ ≤ 2 and |c2| ≤ 2 (see Lemma 1.5 for

v = 1 and v = 0) gives |d3| ≤ |1−b|T 2

3(1−k2)
. □

Theorem 2.8. Let w = f (z) ∈ k − UCV (a, b) where 0 < k < 1, and
a, b are taken according to (1.5) and (1.6) . Also let

F (w) = f−1 (w) = w +

∞∑
n=2

dnw
n.

Then, for a real number µ, we have∣∣d3 − µd22
∣∣ ≤ |1 − b|T 2

3 (1 − k2)

×



2
3 + 1

3T
2 − (4 − 3µ) T 2(1−b)

1−k2 ,

1,

− 2
3 − 1

3T
2 + (4 − 3µ) T 2(1−b)

1−k2 ,

µ ≥ 4
3 +

(1−k2)(1−T 2)
9T 2(1−b) ,

4
3 − (1−k2)(5+T 2)

9T 2(1−b) ≤ µ ≤ 4
3 +

(1−k2)(1−T 2)
9T 2(1−b) ,

µ ≤ 4
3 − (1−k2)(5+T 2)

9T 2(1−b) .

This result is sharp.

Proof. The proof follows directly from (2.18) , (2.19) and Lemma 1.5.
□
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