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Functors Induced by Cauchy Extension of C∗-algebras

Kourosh Nourouzi1∗ and Ali Reza2

Abstract. In this paper, we give three functors P, [·]K and F
on the category of C∗- algebras. The functor P assigns to each
C∗-algebra A a pre-C∗-algebra P(A) with completion [A]K . The
functor [·]K assigns to each C∗-algebraA the Cauchy extension [A]K
of A by a non-unital C∗-algebra F(A). Some properties of these
functors are also given. In particular, we show that the functors
[·]K and F are exact and the functor P is normal exact.

1. Introduction

Given a complex C∗-algebra A, the algebra A[[Z]] consists of all se-
quences (an)

∞
n=0 in A with pointwise linear operations and Cauchy prod-

uct

((an)
∞
n=0) ((bn)

∞
n=0) = (cn)

∞
n=0,

where each cn =
∑n

k=0 akbn−k. It is natural to think of elements ofA[[Z]]
as the formal power series in one variable Z of the form

∑∞
n=0 anZ

n with
product ( ∞∑

n=0

anZ
n

)( ∞∑
n=0

bnZ
n

)
=

∞∑
n=0

cnZ
n,

where cn’s are as above. One may consider the complex subalgebra

A[Z] =

{ ∞∑
n=0

anZ
n :

∞∑
n=0

∥an∥ < ∞

}
,
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ofA[[Z]]. It is of interest to find a C∗-algebra viaA[Z] to be an extension
of A. Recall that an extension B of C by A is a short exact sequence

(1.1) 0 → A f→ B g→ C → 0,

of C∗-algebras (see, e.g., [1], [5], [6], [9]). For any subset Kof [−1, 1] such
that 0 is a limit point of K, we will define a pre-C∗-norm on A[Z]. The
completion of A[Z], denoted by [A]K , is an extension of A (Proposition
2.7 (iii)) which will be called the Cauchy extension of A.

The outline of this work is as follows. In Section 2, we introduce
pre-C∗-algebra A[Z]. In Proposition 2.5, it is shown that A[Z] is not a
C∗-algebra. Proposition 2.7 shows that the completion [A]K of pre-C∗-
algebra A[Z] is an extension of A. We also introduce the functors P,
[·]K and F on the category of C∗-algebras. The functor P assigns to each
C∗-algebra A a pre-C∗-algebra P(A) = A[Z]. The functor [·]K assigns
to each C∗-algebra A an extension [A]K of A by a non-unital C∗-algebra
F(A), where the C∗-algebra F(A) is the completion of the ideal

A1 =

{ ∞∑
n=0

anZ
n ∈ A[Z] : a0 = 0

}
,

of A[Z]. Some properties of functors P, [·]K and F are listed in Propo-
sition 2.10. In Section 3 we show that the functors [·]K and F are exact.
In Section 4, using the notion of normal exact sequence of the normed
spaces introduced by Yang [16], we prove that the functor P is normal
exact. More precisely, for any short exact sequence of C∗-algebra (1.1)
the corresponding short exact sequence

0 → A[Z]
f̃→ B[Z]

g̃→ C[Z] → 0,

is a normal exact sequence of pre-C∗-algebras. That is, B(Z)/ ker g̃ →
C[Z] is an isometry. Among other results, we also show that for any
closed ideal I of a C∗-algebra A, the pre-C∗-algebra I[Z] is a closed
ideal of A[Z] (Proposition 2.10 (iii)) and the quotient A[Z]/I[Z] is a pre-
C∗-algebra (Theorem 4.3) which is isometric ∗-isomorphic to (A/I)[Z]
(Theorem 4.4). Finally in Section 5, we show that the Cauchy exten-
sion [A]K of a C∗-algebra A can be considered as a C∗-subalgebra of
Cb(K,A), the C∗-algebra of all bounded continuous functions from K
to A (Theorem 5.1 (i)). In particular, if K is compact, then [A]K is
∗-isomorphic to C(K,A). We also give some other results in Theorem
5.1. A minimax type result is given in Corollary 5.2.

2. Cauchy Extension of C∗-algebras

LetA be a complex Banach algebra andA[[Z]] be the complex algebra
consisting of all formal power series inA. IfA has a unit, then an element
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F = F (Z) =
∑∞

n=0 anZ
n ∈ A[[Z]] is invertible if and only if a0 is an

invertible element in A. In particular, 1 +Z2 is invertible in A[[Z]] and
we have

(1 + Z2)

( ∞∑
n=0

(−1)nZ2n

)
=

( ∞∑
n=0

(−1)nZ2n

)(
1 + Z2

)
(2.1)

= 1.

The subalgebra

A[Z] =

{ ∞∑
n=0

anZ
n ∈ A[[Z]] :

∞∑
n=0

∥an∥ < ∞

}
,

can be equipped with a norm as

(2.2) ∥F∥ =
∞∑
n=0

∥an∥,

for all F (Z) =
∑∞

n=0 anZ
n ∈ A[Z].

Proposition 2.1. Let A be a Banach algebra. Then A[Z] with the norm
given in (2.2) is a Banach algebra.

Proof. To show that A[Z] is a Banach algebra, let

(Fk) =

( ∞∑
n=0

aknZ
n

)
,

be a sequence in A[Z] such that

∞∑
k=0

∥Fk∥ < ∞.

Then
∞∑
k=0

∞∑
n=0

∥akn∥ =

∞∑
n=0

∞∑
k=0

∥akn∥ < ∞.

Let

cn =
∞∑
k=0

akn, F =
∞∑
n=0

cnZ
n.

Then F ∈ A[Z]. Let ε > 0 be given. There exists a positive integer N
such that

∞∑
k=N+1

∞∑
n=0

∥akn∥ < ε.
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We have ∥∥∥∥∥
N∑
k=0

Fk − F

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=0

(
∞∑

k=N+1

akn)Z
n

∥∥∥∥∥
=

∞∑
n=0

∥∥∥∥∥
∞∑

k=N+1

akn

∥∥∥∥∥
≤

∞∑
n=0

∞∑
k=N+1

∥akn∥

=

∞∑
k=N+1

∞∑
n=0

∥akn∥

< ε.

This completes the proof. □

Proposition 2.2. Let A be a Banach algebra. If

F (Z) =

∞∑
n=0

anZ
n ∈ A[Z],

then
N∑

n=0

anZ
n → F (Z),

as N → ∞.

Proof. Since ∥∥∥∥∥F (Z)−
N∑

n=0

anZ
n

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=N+1

anZ
n

∥∥∥∥∥
=

∞∑
n=N+1

∥an∥,

we get the desired limit. □

Now one can consider any element

F (Z) =
∞∑
n=0

anZ
n ∈ A[Z],

as a convergent series in A[Z].
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If A is a C∗-algebra, we can define an involution ∗ in A[Z] by

F ∗(Z) =

∞∑
n=0

a∗nZ
n,

for any F (Z) ∈ A[Z]. In this case, A[Z] equipped with this involution
and the norm given in (2.2) is a ∗-Banach algebra.

Proposition 2.3. Let A be a C∗-algebra. There is no norm on in-
volutive algebra (A[Z], ∗) which makes it a C∗-algebra. In particular,
(A[Z], ∗) equipped with the norm given in (2.2) is not a C∗-algebra.

Proof. We suppose on the contrary that there exists a norm ∥·∥ such that
(A[Z], ∗, ∥ · ∥) is a C∗-algebra. Suppose that A is unital. By (2.1), the
element 1 + Z2 is not invertible in A[Z]. This implies that −1 ∈ σ(Z2)
which is a contradiction. Now let A be non-unital and a ∈ A be self-
adjoint with ∥a∥ > 1. Applying (2.1) for aZ we get that 1 + a2Z2 is
not invertible in (A ⊕ C)(Z). That is −1 ∈ σ(a2Z2), which is again a
contradiction. □

For a C∗-algebra (A, ∥ · ∥) if

F (Z) =

∞∑
n=0

anZ
n ∈ A[Z],

and −1 ≤ t ≤ 1 then

∞∑
n=0

∥antn∥ ≤
∞∑
n=0

∥an∥ < ∞.

Hence

F (t) =

∞∑
n=0

ant
n,

is norm-convergent in A.
For any F (Z), G(Z) ∈ A[Z] and λ ∈ C, t ∈ [−1, 1] we have

(λF (Z))(t) = λF (t),(2.3)

(F (Z) +G(Z))(t) = F (t) +G(t),(2.4)

(F (Z)G(Z))(t) = F (t)G(t).(2.5)

Note that the equalities (2.3) and (2.4) are clear and the proof of (2.5)
is similar to that of complex case (see [15, p. 74]).

The following proposition has a straightforward proof which is omitted
here.
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Proposition 2.4. Suppose that K is a subset of [−1, 1] such that 0
is a limit point of K and (an)

∞
n=0 is a sequence in C∗-algebra A. If

F (Z) =
∑∞

n=0 anZ
n with

∑∞
n=0 ∥an∥ < ∞ and F (t) = 0 for any t ∈ K,

then an = 0 for all n.

Hereafter, throughout the paper, K will denote a subset of [−1, 1]
such that 0 is a limit point of it.

Proposition 2.5. The following statements hold:

(i) The functional ∥ · ∥K defined by

∥F∥K = sup
t∈K

∥∥∥∥∥
∞∑
n=0

ant
n

∥∥∥∥∥ ,
for all F = F (Z) =

∑∞
n=0 anZ

n ∈ A[Z], is a norm;
(ii) (A[Z], ∗, ∥ · ∥K) is a pre-C∗-algebra but not a C∗-algebra;
(iii) ∥F∥K ≤ ∥F∥ for all F ∈ A[Z];
(iv) If F (Z) =

∑∞
n=0 anZ

n, then

N∑
n=0

anZ
n → F (Z),

as N → ∞ in ∥ · ∥K .

Proof. (i) From (2.3), (2.4), (2.5) and Proposition 2.4 it is easily seen
that ∥·∥K is a norm. (ii) By the definition of ∥·∥K , we have the identity
∥F ∗F∥K = ∥F∥2K . Therefore (A[Z], ∗, ∥ · ∥K) is a pre-C∗-algebra which
by Proposition 2.3 is not a C∗-algebra. (iii) By the definition of ∥ · ∥K
is clear. (iv) The proof follows from Proposition 2.2 and Part (ii). □

We call the completion [A]K of pre-C∗-algebra (A, ∗, ∥ · ∥K) the K -
Cauchy or simply the Cauchy extension of A. It is clear that [A]K is a
C∗-algebra.

Proposition 2.6. Let A be a C∗-algebra. The following hold:

(i) If I is an ideal of A[Z] then the completion Î of (I, ∥ · ∥K) is a
closed ideal of [A]K ;

(ii) If I is a closed ideal of A then [I]K is a closed ideal of [A]K .

Proof.
(i) Let I be an ideal of A[Z]. Then the completion Î of (I, ∥ · ∥K) is a

closed ideal of [A]K . Choose any element F ∈ Î and G ∈ [A]K . Let (Fn)
and (Gk) be two sequences in I and A[Z], respectively, converging to

F ∈ Î and G ∈ [A]K . For any k, n ≥ 1 we have FnGk, GkFn ∈ I. This

implies that FGK , GkF ∈ Î, for all k ≥ 1 and so FG,GF ∈ Î. That is
Î is a closed ideal of [A]K .
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(ii) Consider F ∈ I[Z] and G ∈ A[Z]. It is clear that FG,GF ∈ I[Z],

i.e., I[Z] is an ideal of A[Z]. Now, Part (i) implies that (̂I[Z]) = [I]K
is a closed ideal of [A]K . □

For a C∗-algebra A define

A0 =

{
F (Z) =

∞∑
n=0

anZ
n ∈ A[Z] : an = 0 for n > 0

}
,

A1 =

{
F (Z) =

∞∑
n=0

anZ
n ∈ A[Z] : a0 = 0

}
.

Denote the completion of A1 by Â1. It is clear that A1 is an ideal
of A[Z] and by Proposition 2.6, Â1 is a closed ideal of [A]K . Hence

if A ̸= 0, then [A]K has a proper closed ideal Â1. Consequently no
simple C∗-algebra is a Cauchy extension of some C∗-algebra. It is worth
mentioning that there is no ideal I of A such that I[Z] = A1. Since
A0 is naturally ∗-isomorphic to A we always use A instead of A0 as a
subalgebra of A[Z].

Suppose that A,B, E are C∗-algebras such that B is an ideal of E . It
is said to be E an extension of A by B if there is a short exact sequence

0 → B i→ E p→ A → 0,

where i(B) = ker p and i, p are injective and surjective ∗-homomorphisms,
respectively (see, e.g.,[1]).

Proposition 2.7. Let A be a C∗-algebra. The following statements
hold:

(i) Every element F of [A]K has a unique representation F = a+G,

where a ∈ A and G ∈ Â1;
(ii) ∥a∥K = ∥a∥ ≤ ∥a+G∥K , for all a ∈ A and G ∈ Â1;

(iii) [A]K is an extension of A by Â1;

(iv) Â1 is not unital as a C∗-subalgebra of [A]K .

Proof. (i) Let (Fk) be a Cauchy sequence in (A[Z], ∥ · ∥K), where
Fk =

∑∞
n=0 aknZ

n ∈ A[Z]. Let ε > 0 be given. Then ∥Fk −
Fk′∥K < ε for sufficiently large k, k′. Suppose that (tm) is a
sequence in K such that tm → 0 as m → ∞. By the definition
of ∥ · ∥K we have

∥ak0 − ak′0∥ = lim
m→∞

∥∥∥∥∥
∞∑
n=0

(akn − ak′n)t
n
m

∥∥∥∥∥
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≤ sup
t∈K

∥∥∥∥∥
∞∑
n=0

(akn − ak′n)t
n

∥∥∥∥∥
= ∥Fk − Fk′∥K
< ε,

for sufficiently large k, k′. Furthermore

sup
t∈K

∥∥∥∥∥
∞∑
n=1

(akn − ak′n)t
n

∥∥∥∥∥ < 2ε.

Therefore the sequences (ak0) and( ∞∑
n=1

aknZ
n

)
,

are Cauchy in A and A1, respectively. For F ∈ [A]K , let F =
lim
k→∞

Fk, where

Fk =

∞∑
n=0

aknZ
n ∈ A[Z].

Then F = a+G, where ak0 → a ∈ A and

∞∑
n=1

aknZ
n → G ∈ Â1

as k → ∞. Since Â1 ∩ A = 0, this representation is unique.
Hence [A]K is the internal direct sum of subspaces A and Â1,

i.e., [A]K = A⊕ Â1.
(ii) Note that if a ∈ A and

G = lim
k→∞

∞∑
n=1

aknZ
n ∈ Â1,

then ∥∥∥∥∥a+

∞∑
n=1

aknZ
n

∥∥∥∥∥
K

= sup
t∈K

∥∥∥∥∥a+

∞∑
n=1

aknt
n

∥∥∥∥∥ ,
for all k ≥ 1. A similar method to that used in Part (i)

implies that

∥a∥ ≤

∥∥∥∥∥a+

∞∑
n=1

aknZ
n

∥∥∥∥∥
K

,
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for all k ≥ 1. Therefore ∥a∥ ≤ ∥a + G∥, for all a ∈ A and

G ∈ Â1.
(iii) Define pA : [A]K → A by pA(a+G) = a, for all a ∈ A and G ∈

Â1. It is easily seen that pA is a surjective ∗-homomorphism
and ker pA = Â1. Therefore we have the short exact sequence

(2.6) 0 → Â1
i
↪→ [A]K

pA→ A → 0.

This shows that [A]K is an extension of A by Â1.

(iv) Suppose on the contrary that Â1 is unital with unit U(Z). Since
aZU(Z) = aZ for all a ∈ A, we have taU(t) = ta for any t ∈ K
and a ∈ A. This implies that aU(t) = a for all t ̸= 0 and
therefore limt→0 U(t) ̸= 0, which is a contradiction.

□
Remark 2.8. Each ∗-homomorphism f : A → B of C∗-algebras induces
a ∗-homomorphism f̃ : A[Z] → B[Z] between pre-C∗-algebras A[Z] and
B[Z] by

(2.7) f̃

( ∞∑
n=0

anZ
n

)
=

∞∑
n=0

f(an)Z
n,

where
∞∑
n=0

anZ
n ∈ A[Z].

Remark 2.9. If we define P(A) = A[Z] for any C∗-algebra A and

P(f) = f̃ , for any ∗-homomorphism f : A → B of C∗-algebras, then
P is a functor from the category of C∗-algebras to the category of pre-
C∗-algebras. Each ∗-homomorphism f̃ : A[Z] → B[Z] defined by (2.7)

induces a ∗-homomorphism f̂ : [A]K → [B]K . It is easy to see that

[·]K is a functor from the category of C∗-algebras to itself as [f ]K = f̂ .

Now, defining F (A) = Â1 and F(A f→ B) = f̂ |Â1
: Â1 → B̂1, for C∗-

algebras A, B and ∗-homomorphism f , we get a functor on the category
of C∗-algebras which assigns, by Proposition 2.7 (iv), to any C∗-algebra
a non-unital C∗-algebra.

By A ∼= B we mean that the C∗-algebras A and B are ∗-isomorphic.

Proposition 2.10. Let f : A → B be a ∗-homomorphism of C∗-algebras.
Then

(i) f̃ is a contraction;

(ii) f̃ and f̂ are isometries provided that f is an isometry;

(iii) f̃ is surjective provided that f is surjective;

(iv) If f is a ∗-isomorphism, then both f̃ and f̂ are ∗-isomorphisms;
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(v) ker f̃ = (ker f)[Z];

(vi) Imf̃ = (Imf)[Z];
(vii) If I is a closed ideal of A, then I[Z] is a closed ideal of (A[Z], ∥·

∥K). In particular,

0 → I[Z] ↪→ A[Z]
p′→ A[Z]/I[Z] → 0,

and

0 → I[Z] ↪→ A[Z]
p̃→ (A/I)[Z] → 0,

are short exact sequences;
(viii) [A⊕ B]K ∼= [A]K ⊕ [B]K ;

(ix) ̂(A⊕ B)1 ∼= Â1 ⊕ B̂1.

Proof.
(i) Suppose that F (Z) =

∑∞
n=0 anZ

n ∈ A[Z]. We have

∥f̃(F )∥K =

∥∥∥∥∥
∞∑
n=0

f(an)Z
n

∥∥∥∥∥
K

= sup
t∈K

∥∥∥∥∥
∞∑
n=0

f(an)t
n

∥∥∥∥∥
= sup

t∈K

∥∥∥∥∥f
( ∞∑

n=0

ant
n

)∥∥∥∥∥
≤ sup

t∈K

∥∥∥∥∥
∞∑
n=0

ant
n

∥∥∥∥∥
= ∥F∥K .

(ii) If f is an isometry, then the proof of (i) shows that ∥f̃(F )∥K = ∥F∥K ,

for all F ∈ A[Z]. That is f̃ and consequently f̂ is an isometry.
(iii) Let f be surjective and G =

∑∞
n=0 bnZ

n ∈ B[Z]. For any integer
n ≥ 0, there exists an ∈ A such that bn = f(an). For any integer n ≥ 0
there exists a′n ∈ ker f such that

(2.8)
∥∥an + a′n

∥∥ ≤ ∥an + ker f∥+ 2−n.

Since A/ ker f ∼= B, we have

(2.9) ∥an + ker f∥ = ∥f(an)∥ = ∥bn∥.
Define a′′n = an + a′n, for all n ≥ 0. Now we see from (2.8) and (2.9)
that F (Z) =

∑∞
n=0 a

′′
nZ

n ∈ A[Z] and f(a′′n) = bn, for each n ≥ 0, and

therefore f̃(F ) = G.
(iv) The proof of (iv) follows from (ii) and (iii).
(v) The proof of (v) is straightforward.
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(vi) The proof of (vi) is straightforward.

(vii) Exactness of the first diagram is clear. Part (iii) shows that A[Z]
p̃→

(A/I)[Z] induced by the projection A p→ A/I is surjective. By (v)
ker p̃ = I[Z] is a closed ideal of A[Z]. This completes the proof.
(viii) It is easily seen that

T : A[Z]⊕ B[Z] → (A⊕ B)[Z],

defined by

T

( ∞∑
n=0

anZ
n,

∞∑
n=0

bnZ
n

)
=

∞∑
n=0

(an, bn)Z
n,

for all
∞∑
n=0

anZ
n ∈ A[Z],

∞∑
n=0

bnZ
n ∈ B[Z],

is a ∗-isomorphism.
(ix) The proof of (ix) is similar to Part (viii). □

3. Exactness of the Functor [·]K
In this section we show that [·]K is an exact functor. We first recall

some definitions of the category theory [11].

Recall that a map X
f→ Y in a category C is called an epimorphism

if for all maps Y
g→ Z and Y

h→ Z in C with g ◦ f = h ◦ f , we have
g = h. In the category of C∗-algebras, a ∗-homomorphism f : A → B is
an epimorphism if and only if it is surjective [13].

Suppose that X
f→ Y is a map in a category C with zero object. A

map Z
j→ X is a kernel of f if f ◦ j = 0 and for any map Z ′ g→ X

in C such that f ◦ g = 0, there exists a unique map Z ′ h→ Z such that

j ◦ h = g. For example, if A f→ B is a ∗-homomorphism of C∗-algebras,
then the inclusion ker f ↪→ A is a kernel of f .

Theorem 3.1. The functor [·]K is exact.

Proof. Suppose that

0 → A f→ B g→ C → 0,

is a short exact sequence of C∗-algebras. We must show that

(3.1) 0 → [A]K
f̂→ [B]K

ĝ→ [C]K → 0,

is a short exact sequence of C∗-algebras. We first show that if f : A → B
is a surjective ∗-homomorphism of C∗-algebras, then f̂ : [A]K → [B]K
is also a surjective ∗-homomorphism of C∗-algebras. To do this suppose
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that [B]K
h→ C and [B]K

g→ C are ∗-homomorphism of C∗-algebras such

that h ◦ f̂ = g ◦ f̂ . From Proposition 2.10 (iii), we have f̂(A[Z]) = B[Z].
So for any G(Z) ∈ B[Z] there exists an element F (Z) ∈ A[Z] such that

h(G(Z)) = h(f̂(F (Z)))

= (g ◦ f̂)(F (Z))

= g(G(Z)).

This implies that h|B[Z] = g|B[Z] and therefore g = h. Hence f̂ is an
epimorphism and consequently is surjective by [13].

Now we show that if A f→ B is a ∗-homomorphism of C∗-algebras,

then ker f̂ = [ker f ]K . To prove this, suppose that C g→ [A]K is a ∗-
homomorphism of C∗-algebras such that f̂ ◦ g = 0. If ĝC = p̂A ◦ ĝ and

C
iC
↪→ [C]K is the injection, then ĝC ◦ iC = g. Since ker f

j
↪→ A is a kernel

of f , there exists a unique ∗-homomorphism C h→ ker f such that the
diagram

ker f A B

C

h

f

gC

is commutative. Since [·]K is a functor, we have the following commu-
tative diagram:

[ker f ]K [A]K [B]K

[C]K

ĥ

j f̂

ĝC

Putting h′ = ĥ ◦ iC we get j ◦h′ = g, since j ◦ ĥ = ĝC . Now we show that

h′ is unique. Suppose that there is a ∗-homomorphism C k→ [ker f ]K
such that j ◦k = g = j ◦h′. Since j is an injection, we have k = h′ which
proves the uniqueness of h′. It is clear that ker f̂ = [ker f ]K . Now the
Parts (ii), (v) and (vi) of Proposition 2.10 imply that (3.1) is a short
exact sequence of C∗-algebras, or equivalently [·]K is an exact functor.
The diagram
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[ker f ]K [A]K [B]K

[C]K

C

j

iC

k

ĝC

g

f̂

ĥ

shows the detials above. □

Corollary 3.2. If I is a closed ideal of a C∗-algebra A, then [A/I]K ∼=
[A]K/[I]K .

Proof. By Theorem 3.1, the short exact sequence

0 → I ↪→ A → A/I → 0,

induces the short exact sequence

0 → [I]K ↪→ [A]K → [A/I]K → 0,

which implies that [A]K/[I]K ∼= [A/I]K . □

In the following corollary we use 3× 3 lemma in homological algebra
for the C∗-algebras as complex vector spaces (see, e.g., [14]).

Corollary 3.3. If

0 → A f→ B g→ C → 0,

is a short exact sequence of C∗-algebras, then

0 → Â1

f̂ |Â1→ B̂1

ĝ|B̂1→ Ĉ1 → 0,

is also a short exact sequence of C∗-algebras, i.e., F is an exact func-
tor (see Remark 2.9). Furthermore, if I is a closed ideal of A, then(
Â/I

)
1

∼= Â1/Î1.

Proof. In the following commutative diagram
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0 0 0

0 Â1 B̂1 Ĉ1 0

0 [A]K [B]K [C]K 0

0 A B C 0

0 0 0

f̂ ĝ

pA pB pC

f g

f̂ |Â1
ĝ|B̂1

the middle row is exact by Theorem 3.1 and all the columns are exact
by (2.6). Now 3 × 3 Lemma [14] shows that the top row is also exact.
By a similar argument as in Corollary 3.2, we get(

Â/I
)
1

∼= Â1/Î1.

□

Recall that an ideal I of a C∗-algebra A is called modular if there is
an element u ∈ A such that ua − a, au − a ∈ A, for all element a ∈ A.
Note that I is modular if and only if A/I is unital [12].

Corollary 3.4. Let I be a closed ideal of a C∗-algebra A. Then I is a
modular ideal of A if and only if [I]K is a modular ideal of [A]K .

Proof. We first show that a C∗-algebra B is unital if and only if [B]K is
unital. It can be easily seen that if B is unital, then [B]K is also unital.
Now, by Proposition 2.7 (i), suppose that [B]K is unital with unit a+G

for some a ∈ B and G ∈ B̂1. Consider an arbitrary element b+F ∈ [B]K
with b ∈ B and F ∈ B̂1. Then (b + F )(a + G) = b + F or equivalently

ba+FG+Fa+bG = b+F . It follows that ba−b = H, for some H ∈ B̂1.
Since B ∩ B̂1 = 0, we have ba = b. Similarly, ab = b. This shows that a
is the unit of B. Now let I be a closed ideal of A. Then by Corollary
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3.2, I is modular if and only if [A/I]K ∼= [A]K/[I]K is unital. Hence I
is modular if and only if [I]K is modular. □

4. Normal Exactness of the Functor P

Suppose that A is a C∗-algebra and I is a closed ideal of A. It follows
from Proposition 2.10 (vii) that A[Z]/I[Z] is a normed algebra with
the usual quotient norm. In this section, we show that A[Z]/I[Z] is
a pre-C∗-algebra. Also using Five Lemma and Theorem 4.2 below, we
will show that A[Z]/I[Z] is isometric ∗-isomorphic to (A/I)[Z]. This
implies that the functor P is, in fact, normal exact.

We remind that the Five Lemma in homological algebra (see, e.g.,
[14]) says that in the commutative diagram

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

t1 t2 t3 t4 t5

of commutative R-modules with exact rows if t1, t2, t4 and t5 are isomor-
phisms, so is t3.

Definition 4.1. [16] The exact sequence

· · · → An
fn→ An+1

fn+1→ An+2 → · · · ,
of normed spaces with contraction fn (∥fn∥ ≤ 1 for any n) is called
normal exact if the induced map An/ ker fn → fn(An) defined by x +
ker fn 7−→ fn(x), is an isometry. Note that any short exact sequence of
C∗-algebras is normal exact.

The following theorem is the main one in [16].

Theorem 4.2. Suppose that

0 → Y
i→ X

p→ Z → 0,

is a normal exact sequence of normed spaces. Then

0 → Ŷ
î→ X̂

p̂→ Ẑ → 0,

is a normal exact sequence of corresponding completion Banach spaces.

Theorem 4.3. Let I be a closed ideal of a C∗-algebra A. Then A[Z]/I[Z]
is a pre-C∗-algebra.

Proof. We first show that
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(i) If (uλ)λ∈Λ is an approximate unit for A then (uλ)λ∈Λ is also an
approximate unit for A[Z];

(ii) If (uλ)λ∈Λ is an approximate unit for I then for any F (Z) ∈
A[Z] we have

∥F (Z) + I[Z]∥ = lim
λ

∥F (Z)− uλF (Z)∥K
= lim

λ
∥F (Z)− F (Z)uλ∥K .

To prove (i), let

F (Z) =

∞∑
n=0

anZ
n ∈ A[Z],

and ε > 0 be given. Since

∞∑
n=0

∥an∥ < ∞,

there is a positive integer N such that

∞∑
n=N+1

2∥an∥ < ε.

Now for any λ ∈ Λ we have

∥F (Z)− uλF (Z)∥K =

∥∥∥∥∥
∞∑
n=0

(an − uλan)Z
n

∥∥∥∥∥
K

≤
∞∑
n=0

∥an − uλan∥

=

N∑
n=0

∥an − uλan∥+
∞∑

n=N+1

∥an − uλan∥

<

N∑
n=0

∥an − uλan∥+ ε.

Therefore

lim
λ

sup ∥F (Z)− uλF (Z)∥K ≤ ε.

Since ε > 0 is arbitrary, we have

lim
λ

∥F (Z)− uλF (Z)∥K = 0.
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Similarly, we get

lim
λ

∥F (Z)− F (Z)uλ∥K = 0.

To prove (ii) let

α = ∥F (Z) + I[Z]∥ = inf {∥F (Z) +H(Z)∥K : H(Z) ∈ I[Z]} .

Let ε > 0 be given. There exists an element G(Z) ∈ I[Z] such that
∥F (Z)−G(Z)∥K < α+ ε. We have

α ≤ ∥F (Z)− F (Z)uλ∥K
≤ ∥(F (Z)−G(Z))− (F (Z)−G(Z))uλ∥K + ∥G(Z)−G(Z)uλ∥K
= ∥(F (Z)−G(Z))(1− uλ)∥K + ∥G(Z)−G(Z)uλ∥K
≤ ∥F (Z)−G(Z)∥K + ∥G(Z)−G(Z)uλ∥K
< α+ ε+ ∥G(Z)−G(Z)uλ∥K .

Since ε > 0 is arbitrary, we have α = limλ ∥F (Z)−F (Z)uλ∥K . Similarly,
α = limλ ∥F (Z)− uλF (Z)∥K .

To prove the theorem, let (uλ)λ∈Λ be an approximate unit for I. If
F (Z) ∈ A[Z] and G(Z) ∈ I[Z], by Parts (i), (ii) and Proposition 2.5 (i)
we have

∥F (Z) + I[Z]∥2 = lim
λ

∥F (Z)− F (Z)uλ∥2K
= lim

λ
∥(1− uλ)F

∗(Z)F (Z)(1− uλ)∥K

≤ lim
λ

∥(1− uλ)(F
∗(Z)F (Z) +G(Z))(1− uλ)∥K

+ lim
λ

∥(1− uλ)G(Z)(1− uλ)∥K

≤ ∥F ∗(Z)F (Z) +G(Z)∥K .

Therefore

∥F (Z) + I[Z]∥2 ≤ ∥F ∗(Z)F (Z) + I[Z]∥,

and consequently we get the equality

∥F (Z) + I[Z]∥2 = ∥F ∗(Z)F (Z) + I[Z]∥,

which completes the proof. □

Now we are ready to show that the functor P is normal exact.

Theorem 4.4. The functor P is normal exact.
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Proof. Let I be a closed ideal of a C∗-algebraA. First we show that there
exists an isometric ∗-isomorphism between A[Z]/I[Z] and (A/I) [Z].
Define T : A[Z]/I[Z] → (A/I)[Z] by

T

( ∞∑
n=0

anZ
n + I[Z]

)
=

∞∑
n=0

(an + I)Zn,

for all
∞∑
n=0

anZ
n ∈ A[Z].

It is clear that T is well defined, linear and preserves the involution. We
are going to show that

(a) T is injective,
(b) T is surjective,
(c) T is a contraction, and
(d) T is an isometry.

We proceed as follows:
(a) If F (Z) =

∑∞
n=0 anZ

n ∈ A[Z], with T (F ) = I, then
∞∑
n=0

(an + I)Zn = I,

i.e. an ∈ I for n = 0, 1, 2, . . .. Therefore F (Z) ∈ I[Z] and so T is
injective.
(b) Let

G =

∞∑
n=0

(an + I)Zn ∈ (A/I)[Z].

For each n = 0, 1, 2, . . . there is an element bn ∈ I such that ∥an+ bn∥ <
∥an + I∥ + 2−n. Consider

∑∞
n=0 cnZ

n, where cn = an + bn for each
n = 0, 1, 2, . . .. Since

∞∑
n=0

∥an + I∥ < ∞,

we have F (Z) ∈ A[Z]. Therefore

T (F (Z) + I[Z]) =

∞∑
n=0

(cn + I)Zn

=
∞∑
n=0

(an + I)Zn

= G,

that is T is surjective.
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(c) Let F (Z) =
∑∞

n=0 anZ
n ∈ A[Z]. Then

∥T (F (Z) + I[Z]) ∥ =

∥∥∥∥∥
∞∑
n=0

(an + I)Zn

∥∥∥∥∥
K

= sup
t∈K

∥∥∥∥∥
∞∑
n=0

(an + I)tn
∥∥∥∥∥

= sup
t∈K

∥∥∥∥∥
∞∑
n=0

ant
n + I

∥∥∥∥∥
= sup

t∈K
inf
b∈I

∥∥∥∥∥
∞∑
n=0

ant
n + b

∥∥∥∥∥
≤ inf

b∈I
sup
t∈K

∥∥∥∥∥
∞∑
n=0

ant
n + b

∥∥∥∥∥
= inf

G(Z)∈I[Z]
sup
t∈K

∥∥∥∥∥
∞∑
n=0

ant
n +G(t)

∥∥∥∥∥
= inf

G
∥F (Z) +G(Z)∥K

= ∥F (Z) + I[Z]∥,

that is T is a contraction (Note that sup inf f ≤ inf sup f for every real
valued function f in two variables).

(d) Suppose that ̂(A[Z]/I[Z]) is the completion of A[Z]/I[Z] with re-
spect to the quotient norm and

T̂ : ( ̂A[Z]/I[Z]) → [A/I]K ,

is the extension of T . By Theorem 4.3, T̂ is a ∗-homomorphism of
C∗-algebras. Now we show that T̂ is a ∗-isomorphism. The diagram

∑∞
n=0 anZ

n
∑∞

n=0 anZ
n + I[Z]

∑∞
n=0 anZ

n
∑∞

n=0(an + I)Zn

T

p̃

p′

shows that the diagram
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0 I[Z] A[Z] A[Z]/I[Z] 0

0 I[Z] A[Z] (A/I)[Z] 0

T

p′

p̃

of pre-C∗-algebras is commutative, where p′ is the quotient map and p̃

is the map induced by the projection A p→ A/I (see Definition 2.8).
The exactness of two rows follow from Proposition 2.10 (vii). Now, the
commutative diagram

0 [I]K [A]K ( ̂A[Z]/I[Z]) 0

0 [I]K [A]K [A/I]K 0

T̂

p̂′

p̂

of C∗-algebras has exact rows. In fact, the exactness of the first row is a
consequence of Theorem 4.2 and the second one follows from Theorem
3.1. Applying Five Lemma for commutative diagram

[I]K [A]K ( ̂A[Z]/I[Z]) 0 0

[I]K [A]K [A/I]K 0 0

t1 t2 t3 = T̂ t4 t5

p̂′

p̂

with exact rows shows that T̂ is a ∗-isomorphism. This implies, partic-
ularly, that T is an isometry. Now consider the short exact sequence of
C∗-algebras

0 → I i
↪→ A g→ B → 0.

Applying functor P we get a short exact sequence of pre-C∗-algebras

(4.1) 0 → I[Z]
ĩ
↪→ A[Z]

g̃→ B[Z] → 0.

Note that we have the ∗-isomorphism g1 : A/I → B, induced by g. By
Part (d) we have the composition of isometric ∗-isomorphism of pre-C∗-
algebras

A[Z]/I[Z]
T→ (A/I)(Z)

g̃1→ B[Z]
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such that
∞∑
n=0

anZ
n + I[Z] 7→

∞∑
n=0

(an + I)Zn 7→
∞∑
n=0

g(an)Z
n.

That is the induced map A[Z]/I[Z] → B[Z] by g̃ is an isometry. There-
fore, (4.1) is a normal exact sequence of pre-C∗-algebras. □

From (c) and (d) of Theorem 4.4 we have:

Corollary 4.5. Suppose that I is a closed ideal of a C∗-algebra A and
a0, a1, a2, . . . is a sequence in A such that

∑∞
n=0 ∥an∥ < ∞. Then

inf
b∈I

sup
t∈K

∥∥∥∥∥
∞∑
n=0

ant
n + b

∥∥∥∥∥ = sup
t∈K

inf
b∈I

∥∥∥∥∥
∞∑
n=0

ant
n + b

∥∥∥∥∥ .
5. Cauchy Extension [A]K as C∗-subalgebra of Cb(K,A)

In this section, we characterize the Cauchy extensions of C∗-algebras
as C∗-valued function spaces. Using the obtained characterization, we
give some results on the Cauchy extensions of C∗-algebras.

Recall that for a C∗-algebra A and a topological space X, Cb(X,A)
is the set of all bounded continuous functions from X to A. The ad-
dition, scalar multiplication and the product on Cb(X,A) are defined
pointwise. The involution can be defined as α∗(x) = (α(x))∗, for all
α ∈ Cb(X,A) and x ∈ X. Furthermore, defining ∥α∥∞ = supx∈X ∥α(x)∥
for all α ∈ Cb(X,A), the algebra Cb(X,A) becomes a C∗-algebra. If X is
a locally compact Hausdroff space, then C0(X,A) consisting of all con-
tinuous functions f ∈ Cb(X,A) vanishing at infinity is a C∗-subalgebra
of Cb(X,A) (see [12, p.37] ). If X is a compact Hausdorff space then

Cb(X,A) = C0(X,A) = C(X,A).

It is easy to see that for C∗-algebras A1,A2, . . . ,An, we have

(5.1) Cb(X,A1 ⊕ · · · ⊕ An) ∼= Cb (X,A1)⊕ · · · ⊕ Cb(X,An).

In particular, if A = C, we use C(X),Cb(X) and C0(X) for C(X,C),
Cb(X,C) and C0(X,C), respectively. Recall that a C∗-algebraA is called
nuclear if for each C∗-algebra B, there is a unique C∗-norm on tensor
product A⊗B. An ideal I of a C∗-algebra A is called essential if aI = 0
implies that a = 0.

Theorem 5.1. Suppose that A and B are two C∗-algebras and K ⊆ J =
[−1, 1] such that 0 is a limit point of K. Then

(i) [A]K is ∗-isomorphic to a C∗-subalgebra of Cb(K,A);
(ii) If K is a compact interval, then [A]K ∼= C(K,A);
(iii) [A]K ∼= {f |K : f ∈ C([−1, 1],A)};
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(iv) If K is compact then [A]K ∼= C(K,A). Furthermore, [A⊗B]K ∼=
[A]K ⊗ B ∼= A⊗ [B]K ;

(v) There is a closed ideal IK of [A]J such that [A]J/IK ∼= [A]K ;
(vi) A is nuclear if and only if [A]K is nuclear;
(vii) I is an essential ideal of A if and only if [I]K is an essential

ideal of [A]K ;
(viii) If 0 /∈ K and K is a locally compact subspace of J such that

K ′ = K ∪ {0} is compact then [A]K ∼= C(K ′,A). If A is fi-

nite dimensional, then M(Â1) ∼= Cb(K,A) where M(Â1) is the

multiplier algebra of Â1;
(ix) A ∼= B if and only if [A]K ∼= [B]K for any compact K.

Proof.
(i) It is clear that for any sequence (an) in A with

∑∞
n=0 ∥an∥ < ∞ the

summation f(t) =
∑∞

n=0 ant
n where t ∈ K, defines a function from K

to A. Denote the set of all such functions by A(K). It is clear that f
is a bounded continuous function on K and A(K) is a ∗-subalgebra of
Cb(K,A). Now the map T : A(K) → A[Z] defined by

T

( ∞∑
n=0

ant
n

)
=

∞∑
n=0

anZ
n,

is an isometric ∗-isomorphism. That is [A]K is ∗-isomorphic to a C∗-
subalgebra of Cb(K,A).
(ii) For the case A = C, since C(K) is a self-adjoint subalgebra of C(K)
which separates points ofK and contains the constant functions, one can
see, by Stone-Weierstrass Theorem (see [15, p.165]), that [C]K ∼= C(K).
Now for any C∗-algebra A and any compact interval K one can use
approximate Berstein Theorem (see [2, p.182] ), as follows: We may
assume that K = [0, 1]. Let f ∈ C(K,A). Because f is uniformly
continuous (see [8, p.60] ), define the Bernstein Polynomials

βn(t) =

n∑
m=0

f(m/n)

(
n

m

)
tm(1− t)n−m,

for any t ∈ K and integer n > 0. Note that βn ∈ A(K) for any
n = 1, 2, 3, . . .. By a similar argument as in the proof of the Berstein
Theorem, we see that βn is convergent uniformly to f . This shows that
[A]K ∼= C(K,A).
(iii) Define T : A(J) → A(K) by T (f) = f |K , for each f ∈ A(J). It is
clear that T is a bijective bounded linear operator. We claim that the
extension T̂ : [A]J → [A]K is surjective. Note that Parts (i) and (ii)

imply that T̂ is of the form T̂ (g) = g|K for all g ∈ [A]J . Suppose that

H,G : [A]K → B are two ∗-homomorphisms such that G ◦ T̂ = H ◦ T̂ .
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This implies that H ◦ T̂ |A(J) = G ◦ T̂ |A(J) or H|A(K) = G|A(K). Since

A(K) ∼= A[Z] is dense in [A]K , we have H = G. Hence T̂ is surjective
(see [13]). By (ii) we have [A]J ∼= C(J,A) and therefore [A]K ∼= {f |K :
f ∈ C(J,A)}.
(iv) By Tietze’s Theorem ([9, Theorem 4.1]), any continuous function
f : K → A has a continuous extension f1 : J → A. This fact together
with Part (iii) show that [A]K ∼= C(K,A). From ([3, II.6.4.4]) we have
C(K,A) ∼= C(K)⊗A and therefore

[A⊗ B]K ∼= C(K)⊗ (A⊗ B) ∼= [A]K ⊗ B ∼= A⊗ [B]K .

(v) Let T̂ : [A]J → [A]K be the given surjective ∗-homomorphism in Part

(iii). If IK = ker T̂ then [A]J/IK ∼= [A]K . In fact, [A]J is an extension
of any Cauchy extension [A]K .
(vi) Let A be nuclear. By Part (ii) we have [A]J ∼= C(J,A). Since C(J)
is nuclear (see [12, Theorem 6.4.15]) and C(J,A) ∼= C(J) ⊗ A (see [3,
II.6.4.4]) we conclude that [A]J is nuclear (see [3, IV.3.1.1]). Since every

closed ideal of a nuclear C∗-algebra is nuclear (see [3, II.9.6.3]), Â1 is
nuclear. In particular, the closed ideal IK (given in part (v)) is nuclear.
Since [A]J/IK is nuclear (see [3, IV 3.1.13]), Part (v) implies that [A]K
is also nuclear. Conversely, if [A]K is nuclear the ideal Â1 is nuclear. By

(2.6), we have A ∼= [A]K/Â1 which shows that A is nuclear, too.
(vii) Let I be an essential ideal of A. By Part (i), we can consider [A]K
as a C∗-subalgebra of Cb(K,A). Choose G : K → A in [A]K such that
fG = Gf = 0 for any f : K → I ∈ [I]K . For any t ∈ K we have
f(t)G(t) = G(t)f(t) = 0. Let b be an arbitrary element in I and let
fb : K → I be a constant function with value fb(t) = b. Now for any
t ∈ K we have

fb(t)G(t) = G(t)fb(t) = 0,

or
bG(t) = G(t)b = 0.

This implies that G(t) = 0 for all t ∈ K. Therefore, [I]K is an essential
ideal of [A]K . The converse statement can be proved similarly.
(viii) Suppose that C1(K) = {f ∈ C(K) : f(0) = 0}, where C(K) is as
given in Part (i). For f ∈ C1(K) and ε > 0, suppose that X = {t ∈
K : |f(t)| ≥ ε} and x is a limit point of X. Then x ̸= 0 and x is a
limit point of K ′, and therefore x ∈ K. This implies that X is compact.
That is f vanishes at infinity, so C1(K) ⊆ C0(K). Now suppose that
0 ̸= a ∈ C and g(x) = xa for all x ∈ K. Then g ∈ C1(K) and for any
t ∈ K we have g(t) ̸= 0. In addition, for any t1 ̸= t2 in K, g(t1) ̸= g(t2),
that is, C1(K) strongly separates points of K. It is clear that C1(K) is
self-adjoint. By the Stone-Weierstrass Theorem (see [7, p.151]), we have

Ĉ1
∼= C0(K) and therefore [C]K ∼= C ⊕ C0(K) ∼= C(K ′) (see [3, p.53]).
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Parts (iii) and (iv) and the fact that ∥f∥K = ∥f∥K′ for any f ∈ C(J,A)
imply that the map f |K 7→ f |K′ is a ∗-isomorphism between [A]K and
C(K ′,A). Now suppose that A is a finite dimensional C∗-algebra. By
([12, p.194]) we have

(5.2) A ∼= Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnm(C).

We first show that for any positive integer n, ̂(Mn(C))1 ∼= Mn(Ĉ1). To
see this, note that the completion of C1(K) is ∗-isomorphic to C0(K).
Now the map G : (Mn(C))1(K) → Mn(C1(K)) defined by G(F ) = (Fij),
where

F (t) =
∞∑

m=1

Bmtm = (Fij(t)),

and Fij ∈ C1(K), for any i, j = 1, 2, . . . , n is an isometric ∗-isomorphism
with norm ∥(Fij)∥ = supt∈K ∥Fij(t)∥ = ∥F∥. Suppose that F = (Fij) ∈
Mn(C0(K)). Then Fij ∈ C0(K) for i, j = 1, 2, . . . , n. There exist se-
quences (Fmij) in C1(K) for i, j = 1, 2, . . . , n such that Fmij → Fij as
m → ∞ in norm ∥ · ∥K . If F : K → Mn(C) is a continuous function
such that for any t ∈ K,F (t) = (Fij(t)), then

∥(Fmij)− (Fij)∥ = sup
t∈K

∥(Fmij(t))− Fij(t)∥

≤ sup
t∈K

∑
i,j

∥Fmij(t)− Fij(t)∥

≤
∑
i,j

sup
t∈K

∥Fmij(t)− Fij(t)∥.

This implies that (Fmij) → (Fij) as m → ∞. Now, by completion we
see that

(5.3) ̂(Mn(C))1 ∼= Mn(C0(K)) ∼= Mn(Ĉ1).

Also, we have clearly the ∗-isomorphism

(5.4) Mn(Cb(K)) ∼= Cb(K,Mn(C)).

Suppose that B,A1,A2, . . . ,An are C∗-algebras. We have the following
for the multipliers algebras (see [4, p.84] and [3, p.155])

(5.5) M(Mn(B)) ∼= Mn(M(B))

(5.6) M(A1 ⊕A2 ⊕ · · · ⊕ An) ∼= M(A1)⊕M(A2)⊕ · · · ⊕M(An).

We also have M(C0(K)) ∼= Cb(K) (see [12, p.83]). Now from (5.1)-
(5.6), and Proposition 2.10 (ix), we have

Â1
∼= Mn1 (C0(K))⊕Mn2(C0(K))⊕ · · · ⊕Mnm(C0(K)) .
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M(Â1) ∼= M(Mn1(C0(K)))⊕ · · · ⊕M(Mnm(C0(K)))

∼= Cb(K,Mn1(C))⊕ · · · ⊕ Cb(K,Mnm(C))
∼= Cb(K,Mn1(C)⊕ · · · ⊕Mnm(C))
∼= Cb(K,A).

(ix) If A ∼= B then [A]K ∼= [B]K by Proposition 2.10 (iv). Let φn :
[A]Kn → [B]Kn be a ∗-isomorphism between [A]Kn and [B]Kn , where
Kn = [−1/n, 1/n] for n = 1, 2, 3, . . .. It is clear that (Kn) is nested with∩∞

n=1Kn = {0}. Now ([A]Kn , pn)
∞
n=1 is a direct sequence of C∗-algebras,

where each map

pn : [A]Kn → [A]Kn+1 ,

defined by f |Kn 7→ f |Kn+1 , for all f ∈ [A]K is a ∗-homomorphism. Part
(iv) and [3, II.6.4.4] show that

[A]Kn
∼= C(Kn,A) ∼= C(Kn)⊗A,

for all n. Furthermore by [3, II.9.6.5], we have the direct limit

lim
→

[A]Kn
∼= lim

→
(C(Kn)⊗A)

∼= (lim
→

C(Kn))⊗A
∼= C({0})⊗A
∼= C⊗A
∼= A.

From the commutative diagram

[A]Kn [B]Kn

[A]Kn+1 [B]Kn+1

pn qn

φn+1

φn

where ([B]Kn , qn)
∞
n=1 is the direct sequence defined by qn(φn(f)) =

φn+1(f |Kn+1), for any f ∈ [A]Kn , we conclude that

A ∼= lim
→

[A]Kn
∼= lim

→
[B]Kn

∼= B,

as desired. □

Any C∗-algebra of the form

B = Mn1(C[a1, b1])⊕ · · · ⊕Mnm(C[an, bn]),
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where ai < bi for i = 1, 2, . . . , n are real numbers, is a Cauchy extension
of some C∗-algebra. In fact

B ∼= Mn1(C[−1, 1])⊕Mn2(C[−1, 1])⊕ · · · ⊕Mnm(C[−1, 1]).

Therefore B ∼= [A]J , where A is the C∗-algebra defined in (5.2).

Corollary 5.2. Suppose that A is a C∗-algebra and I is a closed ideal
of A. If K = [0, 1] and F ∈ C(K,A), then

inf
b∈I

sup
t∈K

∥F (t) + b∥ = sup
t∈K

inf
b∈I

∥F (t) + b∥.

Proof. Let ε > 0 be given. By Theorem 5.1 (ii), there exists an element
Fn ∈ A(K) such that supt∈K ∥F (t)−Fn(t)∥ < ε. For any t ∈ K we have

∥F (t) + b∥ ≤ ∥F (t)− Fn(t)∥+ ∥Fn(t) + b∥ < ε+ ∥Fn(t) + b∥.
On the other hand,

∥Fn(t) + b∥ ≤ ∥Fn(t)− F (t)∥+ ∥F (t) + b∥ < ε+ ∥F (t) + b∥,
for any t ∈ K. By Corollary 4.5, we have

inf
b∈I

sup
t∈K

∥F (t) + b∥ ≤ ε+ inf
b∈I

sup
t∈K

∥Fn(t) + b∥

= ε+ sup
t∈K

inf
b∈I

∥Fn(t) + b∥

≤ 2ε+ sup
t∈K

inf
b∈I

∥F (t) + b∥.

Since ε > 0, was arbitrary, we have

inf
b∈I

sup
t∈K

∥F (t) + b∥ ≤ sup
t∈K

inf
b∈I

∥F (t) + b∥.

This completes the proof. □
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