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Common Fixed Point in Cone Metric Space for

s− φ-contractive

Hamid Shojaei1∗, Neda Shojaei2, and Razieh Mortezaei3

Abstract. Huang and Zhang [4] have introduced the concept of
cone metric space where the set of real numbers is replaced by an
ordered Banach space. Shojaei [9] has obtained points of coinci-
dence and common fixed points for s-Contraction mappings which
satisfy generalized contractive type conditions in a complete cone
metric space.

In this paper, the notion of complete cone metric space has been
introduced. We have defined s − φ-contractive and obtained com-
mon fixed point theorem for a mapping f, s which satisfies s − φ-
contractive.

1. Introduction

Huang and Zhang [4] have introduced the concept of cone metric
space where the set of real numbers is replaced by an ordered Banach
space, and they have established some fixed point theorems for contrac-
tive type mappings in a normal cone metric space. Subsequently, some
other authors [1, 12] have generalized the results of Huang and Zhang
[4] and studied the existence of common fixed points of a pair of self-
mappings satisfying a contractive type condition in the framework of
normal cone metric spaces. In [3] Bari and Vetro obtained some results
on the points of coincidence and common fixed points in non-normal
cone metric spaces. Shojaei [9] obtained points of coincidence and com-
mon fixed points for s − contraction mappings satisfying generalized
contractive type conditions in a complete cone metric space.
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In 1969, Boyd andWong [2] have introduced the notion of φcontraction.
Generalization of the above Banach contraction principle has been a
heavily investigated branch research, (see, e.g., [2, 10, 4]). In 2003, Kirk
et. al., [7] introduced the notion of cyclic representation.

We have introduced the notion of s−φ-contractive mappings in a con
metric space and proved some propositions.
Throughout this paper, we have denoted by N the set of positive integers,
by R the set of real numbers and E will be a Real Banach Space.

Definition 1.1. Suppose E is a Real Banach Space and P is a subset
of E. P is called a Cone if and only if:

(i) P is nonempty, closed and satisfies P ̸= {0} ,
(ii) If a, b ∈ R, such that, a, b ≥ 0 and x, y ∈ P , then ax+ by ∈ P ,
(iii) If x ∈ P and −x ∈ P then x = 0.

For a Cone P ⊆ E, we defined a partial ordering ⪯ with respect to P
by x ⪯ y iff y − x ∈ P . We shall write x ≺ y iff x ⪯ y and x ̸= y,
and x ≪ y iff y − x ∈ intP , where intP is the interior of P . From
now on, it is assumed that intP ̸= ∅. The cone P is called normal if
there is a number K ≥ 1 such that, for all x, y ∈ E, 0 ⪯ x ⪯ y implies
∥x∥ ⪯ K ∥ y ∥.

Here, the least positive integer K satisfying this inequality is called
the normal constant of P . P is said to be regular if every increasing
sequence which is bounded from above is convergent, that is, if {xn}n≥1

is a sequence such that x1 ⪯ x2 ⪯ · · · ⪯ y for some y ∈ E, then there is
x ∈ E such that limn→∞∥xn − x∥ = 0.

Equivalently, the cone P is regular if and only if every decreasing
sequence which is bounded from below is convergent.

Lemma 1.2. Suppose that E is a real Banach space with a cone P .
Then;

(i) If x ⪯ y and 0 ≤ a ≤ b then ax ⪯ by,
(ii) If x ⪯ y and u ⪯ v then x+ u ⪯ y + v,
(iii) If xn ⪯ yn for all n ∈ N and lim

n→∞
xn = x, lim

n→∞
yn = y then

x ⪯ y.

Proof. The proof is simple. □
Lemma 1.3. If P is a cone, x ∈ P, α ∈ R, 0 ≤ α < 1 and x ⪯ αx then
x = 0.

Proof. Since x ⪯ αx then αx − x = (α − 1)x ∈ P . Since x ∈ P ,
0 ≤ α < 1, we have by Definition (1.1)(ii) that (1− α)x ∈ P . It follows
by Definition (1.1)(iii) that x = 0. □
Lemma 1.4. see [4, 6]
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(a) Every regular cone is normal.
(b) For each k > 1, there is a normal cone with normal constant

K > k.
(c) The cone P is regular if every decreasing sequence which is

bounded from below is convergent.

Definition 1.5. Let X be a non-empty set. Suppose that the mapping
h : X ×X → E satisfies:

(a) 0 ⪯ h(x, y) for all x, y ∈ X,
(b) h(x, y) = 0 if and only if x = y,
(c) h(x, y) ⪯ h(x, z) + h(z, y) for all x, y ∈ X,
(d) h(x, y) = h(y, x) for all x, y ∈ X.

Then h is called a cone metric on X, and the pair (X,h) is a cone metric
space, (CMS).

It is quite natural to consider cone normed space, (CNS).

Definition 1.6. Let X be a vector space over R. Suppose that the
mapping ∥ . ∥P : X → E satisfies:

(a) ∥ x ∥P⪰ 0 for all x ∈ X,
(b) ∥ x ∥P= 0 if and only if x = 0,
(c) ∥ x+ y ∥P⪯∥ x ∥P + ∥ y ∥P for all x, y ∈ X,
(d) ∥ kx ∥P=| k |∥ x ∥P for all k ∈ R,

then ∥ . ∥P is called a cone p-norm on X, and the pair (X, ∥ . ∥P ) a
cone p-normed space, (CNS).

Note that each CNS is a CMS, Indeed, h(x, y) =∥ x− y ∥P .
Definition 1.7. Suppose that (X,h) is a cone metric space. A sequence
{xn} in X is said to be:

(i) convergent to x ∈ X if for every c ∈ E with 0 ⪯ c, there is
n0 ∈ N such that for all n ≥ n0, h(xn, x) ⪯ c. We denote this
by lim

n→∞
xn = x or xn → x, when n → ∞.

(ii) Cauchy sequence if for every c ∈ E with 0 ⪯ c, there is n0 ∈ N
such that for all n,m ≥ N, we have h(xn, xn) ⪯ c.

(iii) A cone metric space (X,h) is said to be complete if every Cauchy
sequence is convergent in X.

Lemma 1.8. Suppose that (X,h) is a cone metric space. If {xn} is a
convergent sequence in X then the limit of {xn} is unique.

Proof. The proof of the following lemma is straight forward and is omit-
ted. □
Lemma 1.9. Suppose that (X,h) is a cone metric space and {xn} be a
sequence in X. If {xn} converges to x and {xnk

} is any subsequence of
{xn} then {xnk

} converges to x.
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Lemma 1.10. Every regular cone is normal.

Proof. Suppose that P is a regular cone which is not normal. For all
n ≥ 1, choose tn, sn ∈ P such that tn − sn ∈ P and n2 ∥ tn ∥<∥ sn ∥.
For each n ≥ 1 put yn = tn

∥tn∥ and xn = sn
∥sn∥ .

Then xn, yn, yn − xn ∈ P, ∥ yn ∥= 1 and n2 <∥ xn ∥ for all n ≥ 1. Since
the series ∑

n=1

1

n2
yn,

is convergent and P is closed, there is an element y ∈ P such that∑
n=1

1

n2
yn = y.

Now, note that

0 ⪯ x1 ⪯ x1 +
1

22
x2 ⪯ x1 +

1

22
x2 +

1

32
x3 ⪯ . . . ⪯ y.

Thus ∑
n=1

1

n2
xn,

is convergent because P is regular. Hence

lim
n→∞

∥ xn ∥
n2

= 0,

which is a contradiction. □
Definition 1.11. A function φ : [0,+∞) → [0,+∞) is called a com-
parison function if it satisfies:

(i) φ is increasing,
(ii) {φn(t)}n∈N converges to 0 as n → ∞, for all t ∈ (0,∞).

If condition (ii) replaced by

(iii)
∑∞

k=1 φ
k(t) < ∞ for all t ∈ (0,∞) then φ is called a strong

comparison function.

Every strong comparison function is a comparison function.

Example 1.12. Let φ : [0,+∞) → [0,+∞) defined by ϕ(t) = t
1+t .

Then φ is a comparison function, since φn(t) = t
1+nt converges to 0 as

n → ∞. On the other hand,
∞∑
k=1

φk(t) = ∞,

which shows that φ is not a strong comparison function.
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Definition 1.13. Suppose thatX is a nonempty set p ∈ N, and f : X →
X is a mapping. Then X =

∪p
i=1Ai is called a cyclic representation of

X with respect to f if:

(i) Every Ai, 1 ≤ i ≤ p is a non empty subset of X,
(ii) f(Ai) ⊆ A(i+1), 1 ≤ i ≤ p and Ap+1 = A1.

Definition 1.14. Suppose thatX is a nonempty set, p ∈ N , A1, A2, . . . , Ap

are closed nonempty subsets of X, and X =
∪p

i=1Ai. A mapping
f : X → X is called cyclic weaker φ−controuction if:

(i) X =
∪p

i=1Ai is a cyclic representation of X with respect to f ,
(ii) There exists a continuous non decreasing function f : [0,∞) →

[0,∞) with f(t) ⪯ t, f(0) = 0.

Lemma 1.15. Suppose that (X,h) is a cone metric space and P is a
normal cone with normal constant k. Let {xn}, {yn} be two sequence in
X and xn → x, yn → y when n → ∞. Then h(xn, yn) → h(x, y) when
n → ∞.

Lemma 1.16. Suppose that (X,h) is a cone metric space. Then for
each C ⪰ 0, C ∈ E, there exists δ > 0 such that (c − x) ∈ IntP , (i.e.
x ≪ c), whenever ∥ x ∥< δ, x ∈ E.

2. Main Results

Lemma 2.1. Suppose that (X,h) is a cone metric space. Then for each
c1, c2 ∈ E, c1, c2 ⪰ 0, there exists c ∈ E, c ⪰ 0 such that c ⪯ c1, c ⪯ c2.

Proof. Since c2 ⪰ 0 , by Lemma 1.16, there is δ > 0 such that ∥ x ∥< δ
implies x ⪯ c2. Choose n such that 1

n0
< δ

∥c1∥ . Let c =
c1
n0
. Then

∥ c ∥=
∥∥∥∥ c1n0

∥∥∥∥ =
∥ c1 ∥
n0

< δ,

and hence c ⪯ c2. But also c ⪯ c1 and c ⪰ 0.
□

Definition 2.2. Let (X,h) be a topological space. We define

B(x, c) = {y ∈ x : h(x, y) ⪯ c}, B̂ = {B(x, c) : x ∈ X,C ⪰ 0},

and,

τc =
{
U ⊆ X : for all x ∈ U,∃B ∈ B̂ such that x ∈ B ⊆ U

}
.

Proposition 2.3. In every cone metric space (X,h), τc is a Topological
space.
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Proof. It is obvious that ∅, X ∈ τc. Now put U, V ∈ τc and x ∈ U ∩ V .
Then x ∈ U , x ∈ V and there exists c1 ⪰ 0, c2 ⪰ 0 such that x ∈
B(x, c1) ⊆ U and x ∈ B(x, c2) ⊆ V . By Lemma (2.1), there is c ⪰ 0 such
that c ⪯ c1, c ⪯ c2. Therefore x ∈ B(x, c) ⊆ B(x, c1)∩B(x, c2) ⊆ U ∩V .
Hence U ∩ V ∈ τc.

Now, put U = {Uα}α∈I and Uα ∈ τc for each α ∈ I, and let x ∈ U =∪
α∈I Uα. Then there exists α0 ∈ I such that x ∈ Uα0 . Hence there

exists c ⪰ 0 such that x ∈ B(x, c) ⊆ Uα0 ⊆ ∪α∈IUα. This shows that
U = ∪α∈IUα ∈ τc. □

Every element of τc is called open. A subset C is called closed iff
X − C is open.

Note that every cone metric space (X,h), is a Hausdorff space. Indeed,
if x ̸= y are two points in X then d(x, y) = c ⪰ 0 and B(x, c3), B(y, c3)

are in τc but B
(
x, c3

)
∩B

(
y, c3

)
= ∅.

Definition 2.4. Suppose that (X,h) is a cone metric space. A subset
A of X is called compact if each cover of A by subsets from τc can be
reduced to a finite subcover, i.e. if A ⊆

∪
α∈I Uα where Uα ∈ τc for all

α ∈ I, then there is α1, α2, . . . , αn ∈ I such that A ⊆ α1 ∪ α2 ∪ . . .∪αn.

Definition 2.5. Suppose that (X,h) is a cone metric space. A subset
A of (X,h) is called totally bounded if for each c ≫ 0, c ∈ E, A can
be composed into union of sets Ni, i = 1, 2, , n, (A ⊆

∪n
i=1Ni), where

δ(Ni) ⪯ c (δ(K) = sup{h(x, y) : x, y ∈ K}).

Proposition 2.6. Let (X,h) be a complete cone metric space, p ∈ N,
and A1, A2, . . . , Ap are closed non empty subsets of X and X =

∪p
i=1Ai.

Suppose that f, s : X → X satisfies the following conditions:

(i) f(Ai) ⊆ f(Ai+1), s(Ai) ⊆ s(Ai+1), for 1 ≤ i ≤ n, Ap+1 = Ap.
(we say,

∪p
i=1Ai is a cyclic representation of X with respect to

f and s).
(ii) h(f(x), f(y)) ⪯ kh(s(x), s(y)) where 0 < k < 1 and x ∈ Ai, y ∈

Ai+1.

Then f, s has a unique common fixed point in
∩p

i=1Ai.

Proof. Given x0 ∈ X, let

sx1 = fx0, sx2 = fx1 = f2x0, . . . , sxn = fxn = f (n+1)x0.

From (ii),

h(fxn+1, fxn) ⪯ kh(sxn+1, sxn) = kh(fxn, fxn−1) ⪯ · · · ⪯ knh(sx1, sx0).
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Put n > m such that n ≡p m+ 1. Then;

h(fxn−1, fxn−2) ⪯ h(fxn, fxn−1) + h(fxn−1, fxn−2) + · · ·+ h(fxm+1, fxm)

⪯ knh(sx1, sx0) + kn−1h(sx1, sx0) + · · ·+ kmh(sx1, sx0)

= (kn + kn−1 + · · ·+ km)h(sx1, sx0)

⪯ km

1− k
h(sx1, sx0).

Then if m → ∞, we have, h(fxn, fxm) → 0. Therefore, {fxn}n=1 is
a cauchy sequence in the complete cone metric space X and then there
exists z ∈ X such that fxn → z. Hence sxn → z.
Since many infinite sequences {fx}n=1 lie in Ai and every Ai is closed,
z ∈ Ai for all 1 ≤ i ≤ p hence z ∈

∩p
i=1Ai. So there is u ∈

∩p
i=1Ai such

that su = z.
We have

h(z, fu) ⪯ h(fxn, fu) + h(z, fxn) ⪯ kh(sxn, su) + h(z, fxn),

hence

h(z, z) + kh(z, z) = 0, when n → ∞.

Therefore h(z, fu) = 0 or fu = z. Then fu = z = su.
So, f, s have one common point in

∩p
i=1Ai. On the other hand,

h(z, fz) = h(fu, fz) ⪯ kh(su, sz) = kh(z, fz).

Since 0 < k < 1, sz = fz = z. So, z is a common fixed point of f, s in∩p
i=1Ai.
Now let z, z0 ∈

∩p
i=1Ai, such that fz0 = sz0 = z0 and fz = sz = z.

By assumption, we have h(z, z0) = h(fz, fz0) ⪯ kh(sz, sz0) = kh(z, z0).
Since 0 < k < 1, z = z0, and this shows that the common fixed point is
unique. □
Definition 2.7. Two self maps f and s of a cone metric space (X,h)
are called reciprocal continuous if and only if

lim
n→∞

sfxn = sz, lim
n→∞

fsxn = fz,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

sxn = z

for some z ∈ X.

Definition 2.8. Suppose that s, f are self-mappings on a CMS (X,h).
A point z ∈ X is called a coincidence point of s, f if sz = fz and it is
called a common fixed point of s, f if sz = z = fz.

Moreover, a pair of self-mappings (s, f) will be called weakly compat-
ible on X if they commute at their coincidence points, that is, if z ∈ X
and sz = fz then sfz = fsz.
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Definition 2.9. Let (X,h) be a complete cone metric space. Suppose
f, s : X → X be mappings. If there exists a function φ : E → E with
φ(t) ≺ t and t − φ(t) is non-decreasing for all t > 0, φ(0) = 0 and for
any x, y ∈ X

(2.1) h(fx, fy) ⪯ φ(h(sx, sy)).

we say f, s are s− φ− contractive.
In additional if there is, p ∈ N and A1, A2, . . . , Ap are closed non

empty subsets of X such that X =
∪p

i=1Ai and
∪p

i=1Ai is a cyclic
representation ofX with respect to f , s and for all x ∈ Ai, y ∈ Ai+1, (1 ≤
i ≤ p andAp+1 = A1), (2.1) holds we say f, s are cyclic s−φ−contractive
on X.

Lemma 2.10. Put φ : E → E with φ(t) ≺ t for all t ≻ 0 and φ(0) = 0
then;

(i) φk(t) ≺ t for all t ∈ (0,+∞) and k ∈ N.
(ii) lim

k→∞
φk(t) = 0 for all t ≻ 0.

Proof. Proof of (i) is by induction.
Now, we prove (ii). Since φk+1(t) < φk(t), the sequence {φk(t)} is

decreasing and bounded from below by 0, therefore lim
k→∞

φk(t) = l ⪰ 0

and l ⪯ φk(t) for all k. If l ≻ 0 then l − φ(l) ≻ 0. We have;

0 ⪯ l − φ(l) ⪯ φk(t)− φ(φk(t)) → 0,

when k → ∞. This contradicts with l − φ(l) ≻ 0. So l = 0. □

Proposition 2.11. Let (X,h) be a complete cone metric space, p ∈ N,
A1, A2, . . . , Ap be closed non empty subsets of X, and X =

∪p
i=1Ai.

Suppose that f, s : X → X are mappings. Assume that f, s satisfy the
following;

(i)
∪p

i=1Ai is a cyclic representation of X with respect to f, s.
(ii) There exists a function φ : E → E with φ(t) ≺ t for all t ≻ 0

and φ(0) = 0 such that h(fx, fy) ⪯ φ(h(sx, sy)), for any x ∈
Ai, y ∈ Ai+1 where Ap+1 = A1.

(iii) f, s are reciprocal continuous and weakly compactable.

Then f, s have a unique common fixed point in
∩p

1Ai.

Proof. Put x0 ∈ X and let;

sx1 = fx0, sx2 = fx1 = f2x0, . . . , sxn+1 = fxn = fn+1x0.

If there exists z0 such that fz0 = z0 = sz0 then the existence of the
fixed point is proved.

We assumed that sxn ̸= xn for all n (This implies fxn ̸= xn).
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First we show that sxn ̸= sxm for all n ̸= m. Suppose that sxn = sxm
for some n ̸= m (By contrary hypothesis). We can supposem > n. Then

h(sxn, sxn+1) = h(sxn, fxn)

= h(sxm, fsxm)

= h(fxm−1, sxm+1)

= h(fxm−1, fxm)

⪯ φ(h(sxm−1, sxm)

⪯ · · · ⪯ φm−n(h(sxn, sxn+1)),

So,

h(sxn, sxn+1) ⪯ φm−n(h(sxn, sxn+1)).

which is in contradiction with (ii) Lemma (2.1). Thus sxn ̸= sxm for all
n ̸= m.

Now, by (i) Lemma (2.1)

(2.2) h(sxn, sxn+1)h(fxn−1, fxn) ⪯ φ(h(sxn−1, sxn) < h(sxn−1, sxn).

So, the sequence {h(sxn, sxn+1)} is decreasing and bounded from below.
Therefore lim

n→∞
h(sxn, sxn+1) exists. Put lim

n→∞
h(sxn, sxn+1) = l. If l >

0, then by definition of φ, φ(l) ≺ l. Since {h(sxn, sxn+1)} is decreasing,
h(sxn, sxn+1) ⪰ l, and we have;
(2.3)

0 ⪯ l − φ(l) ⪯ h(sxn, sxn+1)− φ((h(sxn, sxn+1))) for all n ∈ N.

By (2.1) we have;

(2.4) h(sxn+1, sxn+2) ⪯ φ(h(sxn, sxn+1)).

By (2.3) and (2.4) for all n ∈ N we have;

0 ⪯ l − φ(l) ⪯ h(sxn, sxn+1)− h(sxn+1, sxn+2) → l − l = 0,

when n → ∞. We get, 0 ⪯ l− φ(l) ⪯ 0, which is in contradication with
φ(l) ≺ l. Thus l = 0 or,

(2.5) h(sxn, sxn+1) → 0 when (n → ∞).

For all n, xn, xn+p−1 lie in the different setsAi andAi+1, for all 1 ≤ i ≤ p.
We have;

h(sxn, sxn+p−1) = h(fxn−1, fxn+p−2) ⪯ φ(h(sxn−1, sxn+p−2)).

Similar to above, the sequence {h(sxn, sxn+p−1)} is decreasing and con-
verges to zero. Therefore,

(2.6) h(sxn, sxn+p−1) → 0 when n → ∞.
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By (2.1) and (2.5) when n → ∞ and 1 ≤ k ≤ p we get;

h(sxn, sxn+k) ⪯ h(sxn, sxn+1) + h(sxn+1, sxn+2) + · · ·(2.7)

+ h(sxn+k−1, sxn+k) → 0,

when n → ∞.
Now, we show that, for every ε > 0, there exists n0 ∈ N such that if

n > m > n0 with n ≡p m+ 1 then;

(2.8) h(sxn, sxm) ⪯ ε.

We prove this by contradict hypothesis.
If there exists ε0 > 0 such that for all n > m > n0, n ≡p m + 1,

h(sxnandsxm) ⪰ ε0. By definition of φ, we get;

(2.9) ε0 − φ(ε0) ⪯ h(sxn, sxm)− φ(h(sxn, sxm)).

By (2.4) we have;

(2.10) h(sxn+1, sxm+1) ⪯ φ(h(sxn, sxm).

By (2.9), (2.10) and Triangle inequality, we get;

ε0 − φ(ε0) ⪯ h(sxn, sxm)− h(sxn+1, sxm+1)(2.11)

⪯ h(sxn, sxn+1) + h(sxn+1, sxm+1)

+ h(sxn+1, sxm − h(sxn, sxm+1)

= h(sxn, sxn+1) + h(sxm+1, sxm).

By (2.2) and (2.11) it has been followed that,

ε0 − φ(ε0) ⪯ 2h(sxm+1, sxm),

or

h(sxm+1, sxm) ⪰ (ε0 − φ(ε0))

2
> 0,

which shows that the sequence h(sxm+1, sxm) does not converge to zero
when m → ∞, which contradicts (2.5), or (2.8) holds.

Now we prove that {sxn} is a Cauchy sequence in X.
Let ε > 0, by (2.7), there exists n1 ∈ N such that if n > m > n1 with

n ≡p m+ 1, then;

(2.12) h(sxn, sxm) <
ε

3
.

On the other hand by (2.7) there exists n2 ∈ N such that for any n > n2;

(2.13) h(sxn, sxn+k) ≺
ε

3
, for k ∈ {1, 2, . . . , p}.

Let n > m > max(n1, n2) and then we can find u ∈ {0, 1, 2, . . . , p} such
that n ≡p m+ u+ 1.

We consider two cases;
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case i) If u = 0, we have by (2.13)

h(sxn, sxm) ≺ ε

3
≺ ε.

case ii) If u ≥ 1, we have;

h(sxm, sxn) ⪯ h(sxm, sxm−1) + h(sxm−1, sxm+u) + h(sxm+u, sxn)

(2.14)

≺ ε

3
+

ε

3
+

ε

3
= ε.

This shows that {sxn} is a Cauchy sequence. Since X is a complete cone
metric space, there exists z ∈ X such that lim

n→∞
sxn = z. Since fxn =

sxn+1 , lim
n→∞

fxn = lim
n→∞

sxn = z. Since f is a cyclic representation of

X with respect to f, s, infinitly many members of {sxn} lie in Ai for
1 ≤ i ≤ p. Since Ai is closed, z ∈ Ai for all 1 ≤ i ≤ p, we see that
z ∈

∩p
1Ai, and there is u ∈

∩p
1Ai such that su = z.

We have

h(z, fu) ⪯ h(fxn, fu) + h(z, fxn)

⪯ kh(sxn, su) + h(z, fxn),

hence h(z, z) + kh(z, z) = 0, when n → ∞. Therefore h(z, fu) = 0 or
fu = z. Then fu = z = su. So, f, s have a common point in

∩p
i=1Ai.

If there exists x∗ ∈
∩p

1Ai such that sx∗ = z, then

h(z, fz) ⪯ h(z, fxn) + h(fxn, fx
∗)

⪯ h(z, fxn + φ(h(sxn, sx
∗))

≺ h(z, fxn) + h(sxn, sx
∗) → 0, when n → ∞.

This implies that sx∗ = z = fx∗.
On the other hand, If fz ̸= z then;

h(z, fz) = h(fu, fz)

⪯ φ(h(su, sz))

≺ h(z, fz). (By definition of φ).

This is a contradiction, therefore we have fz = z or sz = fz = z. So,z
is a common fixed point of f, s in

∩p
i=1Ai. Now let z, z0 ∈

∩p
i=1Ai, such

that fz0 = sz0 = z0 and fz = sz = z. By assumption, we have;

h(z, z0) = h(fz, fz0) ⪯ φ(h(sz, sz0)) ≺ h(z, z0).

Now, let z1, z2 ∈
∩p

i=1Ai be two common fixed points of s, f . We show
that z1 = z2. We have sz1 = z1 = fz1, sz2 = z2 = fz2. By (2.1),
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h(fz1, fz2) ⪯ φ(h(sz1, sz2).
Therefore,

h(z1, z2) = h(fz1, fz2) ⪯ φ(h(sz1, sz2)) = φ(h(z1, z2)) ≺ h(z1, z2).

So z1 = z2 and the common fixed point is unique. □

References

1. M. Abbas and G. Jungck, Common fixed point results for noncommuting map-
pings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008),
pp. 416-420.

2. D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math.
Soc. 20 (1969), pp. 458-464.

3. C. Di Bari and P. Vetro, φ-pairs and common fixed points in cone metric spaces,
Rend. Circ. Mat. Palermo, 57 (2008), pp. 279-285.

4. L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of
contractive mappings, J. Math. Anal. Appl., 332 (2007), pp. 1468-1476.

5. D. Ilic and C.V. Rakocevi, Common fixed points for maps on cone metric space,
J. Math. Anal. Appl., 341 (2008), pp. 876-882.

6. E. Karapinar, Fixed point theory for cyclic φ-contractions, Appl. Math. Lett, 24
(2011), pp. 822-825.

7. W.A. Kirk, P.S. Srinivasan, and P. veeramany, Fixed point theorem for mapping
satisfying cycle contractive condition, Fixed point theory, 4 (2003), pp. 79-89.

8. R.P. Pant, Common fixed points for contractive maps, J. Math. Anal. Appl. 226
(1998), pp. 251-251.

9. H. Shojaei, Some Theorem for Common Fixed Point for S-Contraction Map-
pings in Complete Cone Metric Spaces, International Journal on Recent and
Innovation Trends in Computing and Communication (IJRITCC), 5 (2017), pp.
241-251.

10. H. Shojaei and R. Mortezaei,Common Fixed Point for Affine Self Maps Invariant
Approximation in p-normed Spaces, J. Math. Computer Sci., 6 (2013), pp. 201-
209.

11. D. Turkoglu, Cone metric spaces and fixed diametrically contractive mapping,
Acta Math. Sin. (Engl. Ser.), 26 (2010), pp. 489-496.

12. P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo
(2), 56 (2007), pp. 464-468.

1 Department of Mathematics, Afzale Kermani, Institute of Higher
Education,, Kerman, Iran.

E-mail address: hshojaei2000@yahoo.com

2 Department of Mathematics, Afzale Kermani, Institute of Higher
Education, Kerman, Iran.

E-mail address: n.shojaee64@yahoo.com

3 Department of Mathematics, Afzale Kermani Institute of Higher Ed-
ucation, Kerman, Iran.

E-mail address: razieh.mortezaei@yahoo.com


	1. Introduction
	2. Main Results
	References

