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On the Structure of Metric-like Spaces

Amin Hosseini1∗ and Ajda Fošner2

Abstract. The main purpose of this paper is to introduce several
concepts of the metric-like spaces. For instance, we define concepts
such as equal-like points, cluster points and completely separate
points. Furthermore, this paper is an attempt to present compat-
ibility definitions for the distance between a point and a subset of
a metric-like space and also for the distance between two subsets
of a metric-like space. In this study, we define the diameter of a
subset of a metric-like space, and then we provide a definition for
bounded subsets of a metric-like space. In line with the aforemen-
tioned issues, various examples are provided to better understand
this space.

1. Introduction

The notion of distance is fundamental in mathematics and there exist
many generalizations of the concept of distance in the literature (see
[4]). One such generalization is the partial metric which was introduced
by Matthews (see [6]). It differs from a metric in that points are allowed
to have non-zero “self-distances” (i.e., d(x, x) ≥ 0), and the triangle
inequality is modified to account for positive self-distances. O’Neill [7]
extended Matthews’ definition to partial metrics with ”negative dis-
tances”. Before describing the major points of the paper, let us recall
some basic definitions and set the notations which we use in the sequel.

Definition 1.1. A mapping p : X ×X → R+, where X is a non-empty
set, is said to be a partial metric onX if for any x, y, z ∈ X, the following
four conditions hold true:
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• x = y if and only if p(x, x) = p(y, y) = p(x, y);
• p(x, x) ≤ p(x, y);
• p(x, y) = p(y, x);
• p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space. A sequence
{xn} in a partial metric space (X, p) converges to a point x ∈ X if
limn→∞ p(xn, x) = p(x, x). A sequence {xn} of elements of X is called
p-Cauchy if the limit limm,n→∞ p(xn, xm) exists and is finite. A partial
metric space (X, p) is called complete if for each p-Cauchy sequence
{xn}, there is some x ∈ X such that

lim
n→∞

p(xn, x) = p(x, x)

= lim
m,n→∞

p(xn, xm).

A handy example of a partial metric space is the pair (R+, p), where
p(x, y) = max{x, y} for all x, y ∈ R+. For more examples of partial
metric spaces see [1, 3, 5] and references therein.

In 2012, A. Amini-Harandi [2] introduced a new generalization of a
partial metric space which is called a metric-like space. Here, we state
the concept of a metric-like space.

Definition 1.2. A mapping D : X×X → R+, where X is a non-empty
set, is said to be a metric-like on X if for any x, y, z ∈ X, the following
three conditions hold true:

• D(x, y) = 0 ⇒ x = y;
• D(x, y) = D(y, x);
• D(x, y) ≤ D(x, z) +D(z, y).

The pair (X,D) is then called a metric-like space. It is evident that
the concept of a metric-like space is a generalization of the concept of a
partial metric space. Partial metrics are used in computer sciences (see
[3] and references therein). For this reason, working on this topic can
be very useful in practical applications. Since metric-likes are, indeed,
generalizations of partial metrics, knowing them can therefore provide
us more applicable fields. In fact, this is our motivation to study the
metric-like spaces. Each metric-like D on X generates a topology τD
on X whose base is the family of open D-balls. An open D-ball, with
center x and radius r > 0, is the set

BD(x, r) = {y ∈ X : |D(x, y)−D(x, x)| < r} , for all x ∈ X, r > 0.

It is clear that a sequence {xn} in the metric-like space (X,D) converges
to a point x ∈ X if and only if limn→∞D(xn, x) = D(x, x). A sequence
{xn} of elements ofX is calledD-Cauchy if the limit limn,m→∞D(xn, xm)
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exists and is finite. A metric-like space (X,D) is called complete if for
each D-Cauchy sequence {xn}, there is some x ∈ X such that

lim
n→∞

D(xn, x) = D(x, x)

= lim
n,m→∞

D(xn, xm).

For more details see [2]. Note that every partial metric space is a metric-
like space, but the converse is not true in general. For example, let
X = R, and let D(x, y) = max{|x − 5|, |y − 5|} for all x, y ∈ R. So
(X,D) is a metric-like space, but since D(0, 0) ≰ D(1, 2), then (X,D)
is not a partial metric space. In this article, we focus on the structure
of metric-like spaces. For instance, we introduce some concepts such as
equal-like points, completely separate points, distance between a point
and a subset of a metric-like space, and distance between two subsets of a
metric-like space. Additionally, we obtain several results for metric-like
spaces.

2. Main Results

We begin with several examples of metric-like spaces.

Example 2.1. Let X be a normed space. Then, D : X×X → R defined
by D(x, y) = ∥x∥+ ∥y∥ is a metric-like on X.

Example 2.2. Let X be a C∗-algebra, and let

D(x, y) =

{
∥x− y∥,
∥x∥+ ∥y∥,

x, y > 0,
otherwise.

Then, a straightforward verification shows that D is a metric-like on X.

Example 2.3. Let (X, d) be a metric space, and letD(x, y) = 1+d(x, y)
for all x, y ∈ X. Then, D is a metric-like on X.

A metric-like D is called non-Archimedean if instead of axiom
D(x, y) ≤ D(x, z) +D(z, y) for all x, y, z ∈ X, it satisfies the following
better inequality:

D(x, y) ≤ max {D(x, z), D(z, y)} , for all x, y, z ∈ X.

For instance, let d : X×X → R be a non-Archimedean metric. It means
that d satisfies

d(x, y) ≤ max {d(x, z), d(z, y)} , for all x, y, z ∈ X.

Hence, D(x, y) = 1 + d(x, y) is a non-Archimedean metric-like on X.

Example 2.4. Let (X, d) be a metric space, and let c be an arbitrary
fixed element of X. Then, D(x, y) = max{d(x, c), d(c, y)} (x, y ∈ X) is
a metric-like on X.
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Example 2.5. Let X be a non-empty set, and let c be an arbitrary
fixed element of X. Then,

D(x, y) =

{
0,
1,

(x, y) = (c, c),
(x, y) ̸= (c, c),

is a metric-like on X. Open balls in this space are as follows:
BD(x0, r) = X, whenever x0 ̸= c, and in the case that x0 = c, we have

BD(c, r) =

{
{c},
X,

0 < r ≤ 1,
r > 1.

Remark 2.6. Let (X,D) be a metric-like space, and let c be an arbitrary
fixed element of X. It is easy to check that

d(x, y) =

{
0,
D(x, y),

x = y,
x ̸= y,

is a metric on X. Moreover, d1(x, y) = |D(x, c)−D(c, y)| is a pseudo-
metric on X.

Proposition 2.7. Let (X,D) be a metric-like space, and let x0 be an
arbitrary element of X. Then D(x, x0) ≥ 1

2D(x0, x0) for all x ∈ X.

Proof. To obtain a contradiction, assume that there exists an element
a ∈ X such that D(a, x0) <

1
2D(x0, x0). We therefore have

D(x0, x0) ≤ D(x0, a) +D(a, x0)

<
1

2
D(x0, x0) +

1

2
D(x0, x0)

= D(x0, x0),

which is a contradiction. This contradiction shows that D(x, x0) ≥
1
2D(x0, x0) for all x ∈ X. □
It follows immediately from the above proposition that if (X,D) is a

metric-like space and x0 is an arbitrary element of X, then{
x ∈ X : D(x, x0) <

1

2
D(x0, x0)

}
= ∅.

Moreover, we have

D(x, y) ≥ max

{
1

2
D(x, x),

1

2
D(y, y)

}
, for all x, y ∈ X.

One can easily prove that if {Dn} is a sequence of metric-likes on X,
then

D(x, y) =

∞∑
n=1

2−nDn(x, y)

1 +Dn(x, y)
,

is a metric-like on X.
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Note that in metric-like spaces the limit of a convergent sequence
is not necessarily unique. For example, suppose that X = R and
D(x, y) = max{|x|, |y|} for each x, y ∈ X. Putting xn = 1

n , we have

limn→∞D( 1n , 1) = limn→∞max{ 1
n , 1} = 1 = D(1, 1), which means

that the sequence { 1
n} converses to 1, i.e. 1

n → 1. Moreover, we have

limn→∞D( 1n , 2) = limn→∞max{ 1
n , 2} = 2 = D(2, 2), and consequently,

1
n → 2 as well. This demonstrates that the sequence { 1

n} converges to
two distinct points.

The above example leads us to the next definition.

Definition 2.8. (equal-like points) Let (X,D) be a metric-like space.
Two points x and y of X are called equal-like points if there exists a
sequence {xn} of X converging to both x and y, i.e. xn → x and xn → y.

According to the previous paragraph, if X = R and D(x, y) =
max {|x| , |y|} for all x, y ∈ R, then 1 and 2 are equal-like points.

Definition 2.9. (completely separate points) Let (X,D) be a metric-
like space. Two points x and y of X are called completely separate
points if the following condition holds true:

D(x, y) > D(x, x) +D(y, y).

Theorem 2.10. Let (X,D) be a metric-like space. Then, there is no
sequence converging to two completely separate points.

Proof. Suppose that x, y are two completely separate points. To obtain
a contradiction, let {xn} be a sequence of X converging to both x, y.
Put d1 =

1
3d, where d = D(x, y)−D(x, x)−D(y, y). Since xn → x and

xn → y, for ε = d1 there exists N1 ∈ N such that

n ≥ N1 implies that |D(xn, x)−D(x, x)| < d1,

and also there exists N2 ∈ N such that

n ≥ N2 implies that |D(xn, y)−D(y, y)| < d1.

It is evident that, if N = max {N1, N2}, then we arrive at

max {|D(xN , x)−D(x, x)| , |D(xN , y)−D(y, y)|} < d1.

We therefore have

D(x, y) = |D(x, y)|
≤ |D(x, xN ) +D(xN , y)|
= |D(x, xN ) +D(xN , y)−D(x, x) +D(x, x)−D(y, y) +D(y, y)|
≤ |D(x, xN )−D(x, x)|+ |D(xN , y)−D(y, y)|+D(x, x) +D(y, y)

< d1 + d1 +D(x, x) +D(y, y)
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= 2d1 +D(x, x) +D(y, y)

=
2

3
(D(x, y)−D(x, x)−D(y, y)) +D(x, x) +D(y, y)

=
2

3
D(x, y) +

1

3
D(x, x) +

1

3
D(y, y),

which means that D(x, y) < D(x, x) + D(y, y), a contradiction. This
contradiction proves our theorem, completely. □

As an immediate conclusion from the above theorem, we deduce that
completely separate points are not equal-like.

Theorem 2.11. Let (X,D) be a metric-like space. Two points x1, x0 of
X are equal-like if and only if BD(x0, r)

∩
BD(x1, r) ̸= ∅ for any r ∈ R+.

Proof. Suppose that x0, x1 are two equal-like points of X. Hence, there
exists a sequence {xn} of X such that xn → x0 and xn → x1. To
obtain a contradiction, assume there exists a positive number r such
that BD(x0, r)

∩
BD(x1, r) = ∅. Since xn → x0 and xn → x1, for ε = r

there exist N1, N2 ∈ N such that

n ≥ N1 implies that xn ∈ BD(x0, r),

and also

n ≥ N2 implies that xn ∈ BD(x1, r).

Considering N = max{N1, N2}, we have xN ∈ BD(x0, r)
∩
BD(x1, r) =

∅, a contradiction. Conversely, suppose that BD(x0, r)
∩

BD(x1, r) ̸= ∅
for each r ∈ R+. Our task is to show that there is a sequence {xn} ⊆
X converging to both x0 and x1. Put rn = 1

n . So according to our
assumption, for any n ∈ N there exists xn ∈ X such that

xn ∈ BD

(
x0,

1

n

)∩
BD

(
x1,

1

n

)
.

We know that the real numbers satisfy the Archimedean property. Ac-
cording to the Archimedean property, for a given positive number ε there
exists a natural number N ∈ N such that 1

N < ε. Thus, for any n ≥ N ,
we have

xn ∈ BD

(
x0,

1

n

)∩
BD

(
x1,

1

n

)
⊆ BD

(
x0,

1

N

)∩
BD

(
x1,

1

N

)
⊆ BD (x0, ε)

∩
BD (x1, ε) .

It means that for every ε > 0 there exists N ∈ N such that

n ≥ N implies that xn ∈ BD (x0, ε),(2.1)
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and also for every ε > 0 there exists N ∈ N such that

n ≥ N implies that xn ∈ BD (x1, ε).(2.2)

We conclude from (2.1) and (2.2) that the sequence {xn} converges to
both x0 and x1, i.e. xn → x0, xn → x1. It means that x0 and x1 are
equal-like points. □

An immediate corollary is:

Corollary 2.12. Let (X,D) be a metric-like space. Two points x0, x1
of X are not equal-like if and only if there exists a positive number r
such that BD (x0, r)

∩
BD (x1, r) = ∅.

It is clear that if x, y are two completely separate points of a metric-
like space (X,D), then there exists a positive number r such that
BD (x, r)

∩
BD (y, r) = ∅. It suffices to assume that

r =
1

2
(D(x, y)−D(x, x)−D(y, y)) .

Below, we show that the converse of the above mentioned statement is
not true in general. To see this, let X = R, D(x, y) = |x| + |y|, x0 = 1
and x1 = 5. Obviously, D(x0, x1) < D(x0, x0)+D(x1, x1), which means
that the points x0, x1 are not completely separate points. We claim that
BD (x0, 1)

∩
BD (x1, 1) = ∅. To show the claim, we have

BD (x0, 1) = BD (1, 1) = {x ∈ R : |D(x, 1)−D(1, 1)| < 1}
= {x ∈ R : ||x| − 1| < 1}
= {x ∈ R : −1 < |x| − 1 < 1}
= {x ∈ R : 0 < |x| < 2}
= (−2, 0) ∪ (0, 2) .

Moreover,

BD (x1, 1) = BD (5, 1) = {x ∈ R : |D(x, 5)−D(5, 5)| < 1}
= {x ∈ R : ||x| − 5| < 1}
= {x ∈ R : −1 < |x| − 5 < 1}
= {x ∈ R : 4 < |x| < 6}
= (4, 6) ∪ (−6,−4) .

Therefore, we have BD(1, 1)
∩

BD(5, 1) = ∅.

In every metric-like space (X,D), we have the following simple state-
ments:
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(i) If x0, x1 are completely separate points, then there exists a pos-
itive number r such that BD (x0, r)

∩
BD (x1, r) = ∅.

(ii) Two points x0, x1 are not equal-like if and only if there exists a
positive number r such that BD (x0, r)

∩
BD (x1, r) = ∅.

(iii) If x0, x1 are completely separate points, then they are not equal-
like points.

Definition 2.13. (cluster points) Let (X,D) be a metric-like space,
and let A be a subset of X. A point x0 ∈ X is said to be a cluster
point of A whenever for every ε > 0 there exists a ∈ A such that
|D(a, x0)−D(x0, x0)| < ε.

The set of all cluster points of A is called the closure of A and denoted
by A. Clearly, x0 ∈ A if and only if BD (x0, ε) ∩ A ̸= ∅ for every ε > 0.

In the following, we establish a theorem to present a necessary and
sufficient condition for cluster points in the metric-like spaces.

Theorem 2.14. Let (X,D) be a metric-like space, and let A be a subset
of X. Then x0 ∈ A if and only if there exists a sequence {an} ⊆ A
converging to x0.

Proof. Suppose that x0 ∈ A. So for each εn = 1
n (n ∈ N), there is an

element an ∈ A such that |D(an, x0)−D(x0, x0)| < 1
n , which means

that limn→∞D(an, x0) = D(x0, x0). Consequently the sequence {an} ⊆
A converges to x0. Conversely, assume that {an} ⊆ A is a sequence
converging to x0. Now we want to show that x0 ∈ A. Let ε be an
arbitrary positive number. Therefore, there exists a natural number N
such that for any n ≥ N , we have an ∈ BD (x0, ε), which means that
A ∩BD (x0, ε) ̸= ∅. Since ε > 0 is arbitrary, x0 ∈ A is achieved. □

Example 2.15. Let X = R, A = (−1, 1), and let x0 be an arbitrary
real number. If D(x, y) = max {|x| , |y|} for any x, y ∈ X, then

lim
n→∞

D

(
1

n
, x0

)
= lim

n→∞
max

{
1

n
, |x0|

}
= |x0|
= D(x0, x0),

which means that 1
n → x0. Since

{
1
n

}
⊆ A and also x0 is an arbitrary

element of R, A = R.

In the following, we define the ”distance” between a point and a subset
of a metric-like space.

Definition 2.16. Let (X,D) be a metric-like space, and let A be a
non-empty subset of X. The distance between a point x0 ∈ X and A is
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defined as follows:

d(x0,A) := inf {|D(x0, a)−D(x0, x0)| : a ∈ A} .

For example, let X = R, D(x, y) = max{|x|, |y|} for any x, y ∈ X,
and let A = {n+ 1

n : n ∈ N}. Then, we have

d(2,A) = inf

{∣∣∣∣max

{
n+

1

n
, 2

}
−max {2, 2}

∣∣∣∣ : n ∈ N
}

= inf

{∣∣∣∣n+
1

n
− 2

∣∣∣∣ : n ∈ N
}

= 0.

As another example in this regard, let X = R, D(x, y) = |x| + |y|,
A = (−1, 1), and let x0 = 4. Then, we have

d(4,A) = inf {|D(4, 4)−D(4, a)| : a ∈ A}
= inf {|4− |a|| : a ∈ A}
= 3.

The next theorem demonstrates the relationship between distance
from a subset of a metric-like space and its closure.

Theorem 2.17. Let (X,D) be a metric-like space, and let A be a non-
empty subset of X. Then, A = {x ∈ X : d(x,A) = 0}.

Proof. First, we show that A ⊆ {x ∈ X : d(x,A) = 0}. We have the
following expressions:

x0 ∈ A ⇒ ∀ε > 0, BD (x0, ε) ∩ A ̸= ∅,
⇒ ∀ε > 0, ∃a0 ∈ A : |D(x0, x0)−D(x0, a0)| < ε,

⇒ ∀ε > 0, d(x0,A) < ε,

⇒ d(x0,A) = 0,

which implies that A ⊆ {x ∈ X : d(x,A) = 0}. Conversely, we show
that if d(x0,A) = 0, then x0 ∈ A. For each εn = 1

n (n ∈ N), there
exists an element an ∈ A such that |D(x0, x0)−D(x0, an)| < 1

n . Hence,
we can get a sequence {an} of A converging to x0. Now Theorem 2.14
implies that x0 ∈ A. So, {x ∈ X : d(x,A) = 0} ⊆ A. This yields the
desired result. □

Besides, one can easily prove the following proposition:

d(x0,A) = 0 ⇔ ∀ ε > 0 ∃ a ∈ A such that |D(x0, x0)−D(x0, a)| < ε.

Remark 2.18. LetX = R, A = (−1, 1), and letD(x, y) = max {|x| , |y|}
for any x, y ∈ R. We know that A = R. In the following, it will be shown
that {x ∈ R : d(x,A) = 0} = R. Suppose that x0 ∈ R with |x0| ≥ 1.



168 AMIN HOSSEINI AND AJDA FOŠNER

Then for every a ∈ A, D(a, x0) = max {|a| , |x0|} = |x0|. In this case we
have

d(x0,A) = inf {|D(x0, x0)−D(x0, a)| : a ∈ A}
= inf {||x0| − |x0|| : a ∈ A}
= 0.

Obviously, d(x0,A) = 0 for any x0 ∈ A. Therefore, it is observed that

{x ∈ R : d(x,A) = 0} = R = A.

In the following, we define the distance between two non-empty sub-
sets of a metric-like space.

Definition 2.19. Let (X,D) be a metric-like space, and let A,B be two
non-empty subsets of X. The distance between A and B is defined as
follows:

d(A,B) := min {inf {d(a,B) : a ∈ A} , inf {d(b,A) : b ∈ B}} .

Example 2.20. Suppose that X = R and D(x, y) = |x| + |y| for all
x, y ∈ R. We want to calculate the distance between the sets A = (−1, 1)
and B = (3, 4) in the metric-like space (X,D). For an arbitrary element
a ∈ A, we have

d(a,B) = inf {|D(a, a)−D(a, b)| : b ∈ B}
= inf {||a| − |b|| : b ∈ B}
= 3− |a| .

So, inf {d(a,B) : a ∈ A} = inf {3− |a| : a ∈ A} = 2. Moreover, if b is an
arbitrary element of B, then

d(b,A) = inf {|D(a, b)−D(b, b)| : a ∈ A}
= inf {b− |a| : a ∈ A}
= b− 1.

Hence, inf {d(b,A) : b ∈ B} = inf {b− 1 : b ∈ B} = 3− 1 = 2. So we see
that d(A,B) = min{2, 2} = 2.

Example 2.21. Suppose that X = R and D(x, y) = max {|x|, |y|} for
all x, y ∈ R. In the following, we will calculate the distance between the
sets A = (−1, 1) and B = (3, 4) in the metric-like space (X,D). If a is
an arbitrary element of A, then we have

d(a,B) = inf {|D(a, a)−D(a, b)| : b ∈ B}
= inf {||a| − |b|| : b ∈ B}
= 3− |a| .
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So inf {d(a,B) : a ∈ A} = inf {3− |a| : a ∈ A} = 2. If b is an arbitrary
element of B, then we have

d(b,A) = inf {|D(a, b)−D(b, b)| : a ∈ A}
= inf {b− b : a ∈ A}
= 0,

which implies that inf {d(b,A) : b ∈ B} = 0 Thus, d(A,B) = min {2, 0} =
0.

The following discussion is interesting. Let A = (−1, 1) and B be
an arbitrary subset of R. In the metric-like space (R, D), whenever
D(x, y) = max {|x| , |y|} for all x, y ∈ R, we have shown that R = A =
{x ∈ R : d(x,A) = 0} and so inf {d(b,A) : b ∈ B} = 0. From this fact,
we infer that

d(A,B) = min {inf {d(a,B) : a ∈ A} , inf {d(b,A) : b ∈ B}}
= min {inf {d(a,B) : a ∈ A} , 0}
= 0.

Definition 2.22. Let (X,D) be a metric-like space, and let A be a
subset of X. We define the diameter of A as follows:

diam(A) := sup {|D(x, y)−D(x, x)| , |D(x, y)−D(y, y)| : x, y ∈ A} .

A subset A ⊆ X is said to be bounded whenever diam(A) < ∞.

Example 2.23. Let X = R, D(x, y) = |x|+ |y| for all x, y ∈ R, and let
A = (3, 5). In this case, we have

diam(A) = sup {|D(x, y)−D(x, x)| , |D(x, y)−D(y, y)| : x, y ∈ A}
= sup {||x| − |y|| , ||x| − |y|| : x, y ∈ A}
= sup {|x− y| : x, y ∈ A}
= 2.

Example 2.24. Let X = R, D(x, y) = max {|x| , |y|} for all x, y ∈ R,
and let A =

{
n

n+1 : n ∈ N
}
. Hence, we have

diam(A) = sup

{∣∣∣∣D(
m

m+ 1
,

n

n+ 1

)
−D

(
m

m+ 1
,

m

m+ 1

)∣∣∣∣ ,∣∣∣∣D(
m

m+ 1
,

n

n+ 1

)
−D

(
n

n+ 1
,

n

n+ 1

)∣∣∣∣ : m,n ∈ N,m ≥ n

}
= sup

{∣∣∣∣max

{
m

m+ 1
,

n

n+ 1

}
− m

m+ 1

∣∣∣∣ ,
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{
m

m+ 1
,

n

n+ 1

}
− n

n+ 1

∣∣∣∣ : m,n ∈ N,m ≥ n

}
= sup

{∣∣∣∣ m

m+ 1
− m

m+ 1

∣∣∣∣ , ∣∣∣∣ m

m+ 1
− n

n+ 1

∣∣∣∣ : m,n ∈ N,m ≥ n

}
= sup

{∣∣∣∣ m

m+ 1
− n

n+ 1

∣∣∣∣ : m,n ∈ N,m ≥ n

}
= 1− 1

2

=
1

2
.

Sequences and convergence play an essential role in metric-like spaces.
The following theorem shows that in a metric-like space every convergent
sequence is also bounded.

Theorem 2.25. Suppose that (X,D) is a metric-like space and {xn} is
a sequence converging to x ∈ X. In this case, the set A = {xn : n ∈ N}
is a bounded subset of X.

Proof. For ε = 1 there exists N ∈ N such that

n ≥ N implies that |D(xn, x)−D(x, x)| < 1.

We obtain from the above statement that D(xn, x) < 1+D(x, x) for all
n ≥ N . So for all m,n ≥ N , we have

|D(xn, xm)−D(xn, xn)| ≤ D(xm, xn) +D(xn, xn)

≤ D(xm, x) +D(x, xn) +D(xn, x) +D(x, xn)

< 4
(
1 +D(x, x)

)
< ∞.

Using a reasoning like above, we get that

|D(xn, xm)−D(xm, xm)| < 4 (1 +D(x, x)) < ∞,

for all m,n ≥ N . So diam(A) ≤ 4 (1 +D(x, x)) < ∞, which means that
A is a bounded subset of the metric-like space (X,D). Thereby, we get
the required result. □
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