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A Generalization of the Meir-Keeler Condensing Operators

and its Application to Solvability of a System of Nonlinear

Functional Integral Equations of Volterra Type

Shahram Banaei1 and Mohammad Bagher Ghaemi2∗

Abstract. In this paper, we generalize the Meir-Keeler condens-
ing operators via a concept of the class of operators O(f ; .), that
was given by Altun and Turkoglu [4], and apply this extension to
obtain some tripled fixed point theorems. As an application of this
extension, we analyze the existence of solution for a system of non-
linear functional integral equations of Volterra type. Finally, we
present an example to show the effectiveness of our results. We use
the technique of measure of noncompactness to obtain our results.

1. Introduction

The theory of measure of noncompactness (MNC) is an important
branch of nonlinear functional analysis. This concept was introduced
by Kuratowski [13] in 1930. Since then, many authors applied this
notions for studying and solving of integral equations (see, for example,
[1, 2, 7, 9, 11, 17]). Moreover, the study of existence of solutions for a
systems of integral and differential equations of Volterra type has been
considered in many papers (see for instance [6, 15, 16] and the references
therein). Darbo’s fixed point theorem [10] which ensures the existence
of fixed point is an essential application of this measure, since it extends
both Schauder fixed point and Banach contraction principle.

In 1969, Meir and Keeler [14] obtained an interesting fixed-point the-
orem, which is a generalization of the Banach contraction principle.
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Samet [18] obtained some coupled fixed point theorems for a general-
ized Meir-Keeler contraction in partially ordered metric spaces.

Arab et al. introduced a new measure of noncompactness on Ba-
nach space BC(Ω), consisting of all bounded continuous functions on
unbounded set Ω of Rn and applied it to study the existence of solutions
for a class of nonlinear functional integral equations of Volterra type [5].

Aghajani et al. proved some fixed point theorems for Meir- Keeler
condensing operators on the Banach space, then discussed the solvability
of a nonlinear functional integral equation in [3].

The aim of this work is to generalize the Meir- Keeler condensing op-
erators via the concept of the class of operators O(f ; .) and apply our
extension to obtain some tripled fixed point theorems. Furthermore, we
study the existence of solutions for the system

(1.1)

u1(x) = f

(
x, u1(x), u2(x), u3(x),

∫
Λ(x)

g (x, y, u1(y), u2(y), u3(y)) dy

)
,

u2(x) = f

(
x, u2(x), u1(x), u3(x),

∫
Λ(x)

g (x, y, u2(y), u1(y), u3(y)) dy

)
,

u3(x) = f

(
x, u3(x), u2(x), u1(x),

∫
Λ(x)

g (x, y, u3(y), u2(y), u1(y)) dy

)
,

where x ∈ Ω (Ω is an unbounded subset of Rn) and f, g, u, and Λ,
are continuous functions satisfy some certain conditions, specified later.
Also, we show that Eq.(1.1) has one solution that belongs to {BC(Ω)}3.

The structure of this paper is as follows. In Section 2, some defini-
tions and concepts are recalled. Sections 3 and 4 are devoted to extend
the Meir-Keeler condensing operators and prove some tripled fixed point
theorems. In section 5, as an application for the main results, we present
an existence theorem. Finally, in section 6 an example is given to illus-
trate our results.

2. Preliminaries

In this section, we provide some basic definitions and facts which
will be used in our main results. Let R be the set of real numbers,
R+ = [0,∞) and (E, ∥.∥) be a real Banach space with the zero element
0. We write B(x, r) to denote the closed ball centered at x with radius
r. If X is a nonempty subset of E then the symbols X and convX
denote the closure and closed convex hull of X, respectively. Moreover,
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ME is the family of a nonempty bounded subset of E, and NE denotes
its subfamily consisting of all relatively compact sets.

Definition 2.1 ([8]). A mapping µ : ME → R+ is said to be a measure
of noncompactness in E if it satisfies the following conditions:

1◦ The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and
kerµ ⊂ NE ;

2◦ X ⊂ Y ⇒ µ(X) ≤ µ(Y );
3◦ µ(X) = µ(X);
4◦ µ(convX) = µ(X);
5◦ µ (λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];
6◦ If {Xn} is a sequence of closed subsets from ME such that

Xn+1 ⊂ Xn for n = 1, 2, . . . and if lim
n→∞

µ(Xn) = 0, then

X∞ =
∞∩
n=1

Xn ̸= ∅.

The following concept of O(f ; .) was given by Altun and Turkoglu [4].
Let F ([0,∞)) be the class of all functions f : [0,∞) → [0,∞) and let

Θ be the class of all operators

O(•; ·) : F ([0,∞)) → F ([0,∞)), f → O(f ; ·),
satisfying the following conditions:

(i) O(f ; t) > 0 for t > 0 and O(f ; 0) = 0;
(ii) O(f ; t) ≤ O(f ; s) for t ≤ s;
(iii) limn→∞O(f ; tn) = O(f ; limn→∞ tn);
(iv) O (f ;max{t, s}) = max {O(f ; t), O(f ; s)} for some f ∈ F ([0,∞)),

Definition 2.2 ([12]). A tripled (x, y, z) of a mapping T : X×X×X →
X is called a tripled fixed point if

T (x, y, z) = x, T (y, x, z) = y, T (z, y, x) = z.

The following theorems are basic for our studies.

Theorem 2.3 (Schauder [1]). Let C be a nonempty, bounded, closed and
convex subset of a Banach space E. Then every compact and continuous
map T : C → C has at least one fixed point.

Definition 2.4 ([14]). Let (X, d) be a metric space. Then, a mapping
T on X is said to be a Meir-Keeler contraction (MKC, for short) if for
any ϵ > 0, there exists δ > 0 such that

ϵ ≤ d(x, y) < ϵ+ δ ⇒ d(Tx, Ty) < ϵ,

for all x, y ∈ X.
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Theorem 2.5 (Meir and Keeler [14]). Let (X, d) be a complete metric
space. If T : X → X is a Meir-Keeler contraction, then T has a unique
fixed point.

Definition 2.6 ([3]). Let C be a nonempty subset of a Banach space
E and µ an arbitrary measure of noncompactness on E. We say that
the operator T : C → C is a Meir-Keeler condensing operator if for any
ϵ > 0, there exists δ > 0 such that

ϵ ≤ µ(X) < ϵ+ δ ⇒ µ(T (X)) < ϵ,

for any bounded subset X of C.

Obviously, a MKC defined by Definition 2.4 is a Meir-Keeler condens-
ing operator, if we take µ(X) = diamX as a measure of noncompactness.

Definition 2.7 ([14]). A function λ : [0,∞) → [0,∞) will be called an
L-function if λ(0) = 0, and for every s > 0 there exists u > s such that
λ(t) ≤ s for t ∈ [s, u].

Note that every L-function satisfies λ(s) ≤ s ∀s > 0.

Definition 2.8 ([3]). We say that ψ : R+ → R+ is a strictly L-function
if ψ(0) = 0, ψ(s) > 0 for s ∈ (0,+∞), and for every s ∈ (0,+∞) there
exists δ > 0 such that ψ(t) < s, for all t ∈ [s, s+ δ].

3. Main Results

In this section, we generalize and extend the Meir-Keeler condensing
operator via the concept of the class of O(f ; .).

Definition 3.1. Let C be a nonempty subset of a Banach space E and µ
an arbitrary measure of noncompactness on E. We say that the operator
T : C → C is an Extended Meir-Keeler condensing operator if for any
ϵ > 0, there exists δ > 0 such that

ϵ ≤ O(f ;µ(X)) < ϵ+ δ ⇒ O(f ;µ(T (X))) < ϵ,

for any bounded subset X of C and O(•; ·) ∈ Θ.

Remark 3.2. The Definition 2.6 is followed if O(f ; t) = t and f = I
(identity map) in Definition 3.1.

Theorem 3.3. Let C be a nonempty, bounded, closed and convex subset
of a Banach space E and µ be an arbitrary measure of noncompact-
ness on E. If T : C → C is a continuous and Extended Meir-Keeler
condensing operator, then T has at least one fixed point in C.

Proof. By induction, we construct a sequence {Cn} such that C0 = C
and Cn = conv(TCn−1) for n ≥ 1. We have

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1 ⊇ · · · .



A GENERALIZATION OF THE MEIR-KEELER CONDENSING OPERATORS ... 23

If there exists an integer N ≥ 0 such that µ(CN ) = 0 then CN is
relatively compact. In this case, Theorem 2.3 implies that T has a
fixed point. Now, we suppose that µ(Cn) ̸= 0 for n ≥ 0. Define ϵn =
O(f ;µ(Cn)) and δn = δ(ϵn) > 0. By the definition of Cn and ϵn < ϵn+δn
we have

ϵn+1 = O(f ;µ(Cn+1))(3.1)

= O(f ;µ(conv TCn))

= O(f ;µ(TCn))

≤ O(f ;µ(Cn))

= ϵn.

Hence {ϵn} is a positive non-increasing sequence of real numbers and
there exists r ≥ 0 such that ϵn → r as n → ∞. We show that r = 0. If
r ̸= 0, then there exists N0 such that n > N0 implies r ≤ ϵn < r+δr, and
by the definition of Meir-Keeler condensing operator, we get ϵn+1 < r,
which is a contradiction, so r = 0. Therefore, by letting n→ ∞ in (3.1)
we infer that

lim
n→∞

[O (f ;µ(Cn+1))] = 0.

Therefore,

lim
n→∞

[O(f ;µ(Cn+1))] = [O(f ; lim
n→∞

µ(Cn+1))]

= 0,

we know that O(f ; 0) = 0. Thus, limn→∞ µ(Cn) = 0. Since Cn ⊇ Cn+1

and TCn ⊆ Cn for all n = 1, 2, 3, . . . then from 6◦ of definition MNC,
C∞ = ∩∞

n=1Cn is a nonempty, closed and convex set, invariant under T
and belongs to kerµ. Consequently, from Theorem 2.3, we deduce that
T has at least a fixed point. □
Theorem 3.4. Let C be a nonempty and bounded subset of a Banach
space E, µ an arbitrary measure of noncompactness on E and T : C → C
be a continuous operator that

(3.2) O (f ;µ(TX)) < ψ (O(f ;µ(X))) ,

for all X of ME with µ(X) ̸= 0, O(•; ·) ∈ Θ and ψ is a strictly L-
function. Then T is an Extended Meir-Keeler condensing operator.

Proof. Let O (f ;µ(X)) := ϵ > 0 and there exist δ > 0, t such that
ϵ ≤ t < ϵ+ δ. By the assumptions, ψ(ϵ) < ϵ. If X is a subset of C such
that

ϵ ≤ O(f ;µ(X)) < ϵ+ δ(ϵ),

then by applying (3.2), we infer that

O (f ;µ(TX)) < ψ (O(f ;µ(X)))
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= ψ(ϵ)

< ϵ.

Therefore, T is an Extended Meir-Keeler condensing operator. □

As a consequence of Theorems 3.3 and 3.4 we obtain the following
corollary.

Corollary 3.5. Let C be a nonempty, bounded, closed and convex subset
of a Banach space E and let T : C → C be a continuous operator such
that

O (f ;µ(TX)) < ψ (O(f ;µ(X))) ,

for all X of ME with µ(X) ̸= 0, O(•; ·) ∈ Θ and ψ is a strictly L-
function. Then, T has at least one fixed point.

4. Tripled Fixed Point Results

first we define the notion of a three variate Extended Meir-Keeler
condensing operator.

Definition 4.1. Let C be a nonempty subset of a Banach space E
and µ an arbitrary measure of noncompactness on E. We say that T :
C × C × C → C is an Extended Meir-Keeler condensing operator if for
any ϵ > 0, there exists δ > 0 such that

(4.1) ϵ ≤ O (f ;max {µ(X1), µ(X2), µ(X3)}) < ϵ+ δ,

where,

O (f ;µ(T (X1 ×X2 ×X3))) < ϵ,

for any bounded subset X of C and O(•; ·) ∈ Θ.

Theorem 4.2. Let C be a nonempty, bounded, closed and convex subset
of a Banach space E and µ an arbitrary measure of noncompactness
on E. If T : C × C × C → C is a continuous Extended Meir-Keeler
condensing operator, then T has at least one tripled fixed point.

Proof. We know that

µ̃(X) := max {µ(X1), µ(X2), µ(X3)} ,

for any bounded subset X ⊂ E × E × E, defines a measure of non-
compactness on E × E × E, where Xi, (i = 1, 2, 3) denote the natural
projections of X. Also, the operator G : C×C×C → C×C×C, given
by

G(x, y, z) := (T (x, y, z), T (y, x, z), T (z, x, y)) ,



A GENERALIZATION OF THE MEIR-KEELER CONDENSING OPERATORS ... 25

is clearly continuous on C×C×C. Now, we claim that G satisfies all the
conditions of Theorem 3.3. To prove this claim, let ϵ > 0 and δ(ϵ) > 0
be as in Definition 4.1. If X is a bounded subset of C×C×C such that

ϵ ≤ O (f ; µ̃(X)) < ϵ+ δ(ϵ),

then
ϵ ≤ O (f ;max{µ(X1), µ(X2), µ(X3)}) < ϵ+ δ(ϵ),

where Xi, i = 1, 2, 3 denote the natural projections of X. By condition
(iv) of O(f ; .) and (4.1), we have

O (f ; µ̃(G(X))) ≤ O
(
f ; µ̃(T (X1 ×X2 ×X3)× T (X2 ×X1 ×X3)

(4.2)

× T (X3 ×X2 ×X1))
)

= O
(
f ; max

{
µ(T (X1 ×X2 ×X3)), µ(T (X2 ×X1 ×X3))

, µ(T (X3 ×X2 ×X1))
})

< ϵ.

Therefore, from Theorem 3.3, G has at least one fixed point in C ×
C × C. □

Now, we present and prove a tripled fixed point theorem.

Theorem 4.3. Let C be a nonempty, bounded, closed and convex subset
of a Banach space E, µ an arbitrary measure of noncompactness on E,
and ψ a strictly L-function. Suppose that T : C × C × C → C is a
continuous operator satisfying
(4.3)

O (f ;µ(T (X1 ×X2 ×X3)) <
1

3
O (f ;ψ(µ(X1) + µ(X2) + µ(X3)) ,

for any subset X1, X2, X3 of C and for any bounded subset X of C and
O(•; ·) ∈ Θ. Then, T has at least one tripled fixed point.

Proof. First, define the mapping G : C ×C ×C → C ×C ×C, given by

G(x, y, z) := (T (x, y, z), T (y, x, z), T (z, x, y)),

which is a continuous map. We know that

µ̃(X) := {µ(X1) + µ(X2) + µ(X3)} ,
for any bounded subset X ⊂ E × E × E, defines a measure of non-
compactness on E × E × E, where Xi, i = 1, 2, 3 denote the natural
projections of X. Let X ⊂ C × C × C be any nonempty subset. Then,
by (4.3) and 2◦ we have
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O (f ; µ̃(G(X))) ≤ O
(
f ; µ̃(T (X1 ×X2 ×X3))× T (X2 ×X1 ×X3)

(4.4)

× T (X3 ×X2 ×X1)
)

= O
(
f ;µ(T (X1 ×X2 ×X3)) + µ(T (X2 ×X1 ×X3))

+ µ(T (X3 ×X2 ×X1))
)

< O(f ;ψ (µ(X1) + µ(X2) + µ(X3))

≤ O (f ;ψ(µ̃(X))) .

Therefore, all the conditions of Corollary 3.5 are satisfied and T has
a tripled fixed point. □

If O(f ; t) = t and f = I (identity map) we have the following corol-
lary.

Corollary 4.4. Let C be a nonempty, bounded, closed and convex subset
of a Banach space E, µ an arbitrary measure of noncompactness on E,
and ψ a strictly L-function. T : C×C×C → C is a continuous operator
satisfying

(4.5) µ (T (X1 ×X2 ×X3)) <
1

3
(ψ(µ(X1) + µ(X2) + µ(X3)) ,

for any subset X1, X2, X3 of C and for any bounded subset X of C.
Then, T has at least one tripled fixed point.

5. Application

In this section, as an application of Corollary 4.4, we study the exis-
tence of solutions for a systems of integral equations (1.1) on the BC(Ω)
where Ω is a nonempty and unbounded subset of Rn and BC(Ω) is the
Banach space of all bounded continuous functions on Ω equipped with
the standard norm

∥f∥ = sup {|f(x)| : x ∈ Ω} .
The measure of noncompactness on BC(Ω) is as follows.

Theorem 5.1 ([5]). Let F be a bounded subset of BC(Ω). For f ∈ F ,
ε > 0 and T > 0 let

ωT (f, ε) = sup
{
|f(x)− f(y)| : x, y ∈ B̄T , ∥x− y∥ < ε

}
,

ωT (F , ε) = sup
{
ωT (f, ε) : f ∈ F

}
,

ωT (F) = lim
ε→0

ωT (F , ε),
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ω(F) = lim
T→∞

ωT (F),

d(F) = lim sup
∥x∥→∞

diamF(x).

Then ω0 : MBC(Ω) → R given by

(5.1) ω0(F) = ω(F) + d(F),

defines a measure of noncompactness on BC(Ω).

Definition 5.2 ([5]). Let Ω be an unbounded subset of an arbitrary
Banach space X. We say Λ : Ω → MRm is a continuous function if for
each ε > 0 there exists δ > 0 such that

∥x− y∥ < δ ⇒ m(Λ(x)△ Λ(y)) < ε,

where m is a Lebesgue measure on Ω and △ denotes the symmetric
difference.

Theorem 5.3. Assume that the following conditions are satisfied:

(i) Λ : Ω → MRm is a continuous function and
∪

∥x∥≤T

Λ(x) is a

bounded subset of Rm for all T > 0.
(ii) f : Ω × R3 × R → R is continuous and there exists a nonde-

creasing strictly L-function φ : R+ → R+ and a nondecreasing
continuous function Φ : R+ → R+ with Φ(0) = 0 such that

|f(x, u1, u2, u3, y)− f(x, v1, v2, v3, z)| ≤ φ

(
max
1≤i≤3

|ui − vi|
)
+Φ(|y − z|).

(iii) M := sup{|f(x, 0, 0, 0, 0)| : x ∈ Ω} <∞.

(iv) g : Ω×

(∪
x∈Ω

Λ(x)

)
× R3 → R is continuous and

D := sup

{∣∣∣∣∣
∫
Λ(x)

g(x, y, u1(y), u2(y), u3(y))dy

∣∣∣∣∣ : x ∈ Ω,

u1, u2, u3 ∈ BC(Ω)

}
<∞.

Moreover,

lim
∥x∥→∞

∣∣∣∣∣
∫
Λ(x)

[g(x, y, u1(y), u2(y), u3(y))− g(x, y, v1(y), v2(y), v3(y))] dy

∣∣∣∣∣ = 0,

uniformly with respect to ui, vi ∈ BC(Ω).
(v) There exists a positive solution r0 to the inequality

1

3
φ(3r) +M +Φ(D) ≤ r.
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Then the system of integral equations (1.1) has at least one solution in
the space {BC(Ω)}3.

Proof. Let us consider the operator

F : BC(Ω)×BC(Ω)×BC(Ω) → BC(Ω),

by the formula
(5.2)

F (u1, u2, u3)(x) = f

(
x, u1(x), u2(x), u3(x),

∫
Λ(x)

g(x, y, u1(y), u2(y), u3(y))dy

)
.

We observe that for any x ∈ Ω the function F (x) is continuous and for
arbitrary fixed x ∈ Ω, by applying the assumptions (i)− (v) we have

|F (u1, u2, u3)(x)|

≤

∣∣∣∣∣f((x, u1(x), u2(x), u3(x),
∫
Λ(x)

g(x, y, u1(y), u2(y), u3(y))dy)

− f(x, 0, 0, 0, 0)

∣∣∣∣∣+ |f(x, 0, 0, 0, 0)|

≤ φ

(
max
1≤i≤3

|ui − vi|
)
+Φ

(∣∣∣∣∣
∫
Λ(x)

g(x, y, u1(y), u2(y), u3(y))dy)

∣∣∣∣∣
)

+ |f(x, 0, 0, 0, 0)|
≤ φ (F max {∥u1∥, ∥u2∥, ∥u3∥}) +M +Φ(D).

Therefore,

(5.3) ∥F (u1, u2, u3)∥ ≤ φ (F max{∥u1∥, ∥u2∥, ∥u3∥}) +M +Φ(D),

and F (u1, u2, u3) ∈ BC(Ω) for any (u1, u2, u3) ∈ (BC(Ω))3. Due to
Inequality (5.3) and using (v), the function F maps (B̄r0)

3 into (B̄r0).
Now, we prove that the operator F is a continuous operator on (B̄r0)

3.
Let us fix arbitrarily ε > 0 and take (u1, u2, u3), (v1, v2, v3) ∈ (B̄r0)

3

such that

max {∥u1 − v1∥, ∥u2 − v2∥, ∥u3 − v3∥} < ε.

Then, we have

|F (u1, u2, u3)(x)− F (v1, v2, v3)(x)|

≤

∣∣∣∣∣f(x, u1(x), u2(x), u3(x),
∫
Λ(x)

g(x, y, u1(y), u2(y), u3(y))dy)

−f(x, v1(x), v2(x), v3(x),
∫
Λ(x)

g(x, y, v1(y), v2(y), v3(y))dy)

∣∣∣∣∣
≤ φ (max |u1(x)− v1(x)|, |u2(x)− v2(x)|, |u3(x)− v3(x)|)
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+Φ

(∫
Λ(x)

|g(x, y, u1(y), u2(y), u3(y)))dy)− g(x, y, v1(y), v2(y), v3(y))| dy

)
.

By applying condition (v) we choose T > 0 such that for ∥x∥ > T the
following inequality holds∫

Λ(x)

∣∣g(x, y, u1(y), u2(y), u3(y))− g
(
x, y, v1(y), v2(y), v3(y))

∣∣ dy < ε,

and we infer

(5.4) |F (u1, u2, u3)(x)− F (v1, v2, v3)(x)| ≤ φ(ε) + Φ(ε).

If ∥x∥ ≤ T , then

(5.5) |F (u1, u2, u3)(x)− F (v1, v2, v3)(x)| ≤ φ(ε) + Φ(ΛTϑT (ε)),

where

ΛT = sup {m(Λ(x)) : ∥x∥ ≤ T} ,
and

ϑT (ε) = sup
{
|g(x, y, u1, u2, u3)− g(x, y, v1, v2, v3)| : x ∈ B̄T

, y ∈
∪

∥x∥≤T

Λ(x), ui, vi ∈ [−r0, r0], |ui − vi| ≤ ε, i = 1, 2, 3
}
.

By using the continuity of g on the compact set

B̄T ×
∪

∥x∥≤T

Λ(x)× [−r0, r0]× [−r0, r0]× [−r0, r0],

we have ϑT (ε) → 0 as ε → 0, and we conclude that Φ(ΛTϑT (ε)) → 0
as ε → 0. Thus, from (5.4) and (5.5) we infer that F is a continuous
function on (BC(Ω))3.

Now, we prove that F satisfies condition (4.5) of Corollary 4.4. To
do this aim, let X1, X2 and X3 be nonempty and bounded subsets of
B̄r0 , and assume that T > 0 and ε > 0 are arbitrary constants. Let
x1, x2 ∈ B̄T , with ∥x2 − x1∥ ≤ ε and u1, u2, u3 ∈ X1 ×X2 ×X3. Then
we have

|F (u1, u2, u3)(x1)− F (u1, u2, u3)(x2)|

(5.6)

≤

∣∣∣∣∣f(x1, u1(x1), u2(x1), u3(x1),
∫
Λ(x1)

g(x1, y, u1(y), u2(y), u3(y))dy)

−f(x2, u1(x1), u2(x1), u3(x1),
∫
Λ(x1)

g(x1, y, u1(y), u2(y), u3(y))dy)

∣∣∣∣∣
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+

∣∣∣∣∣f(x2, u1(x1), u2(x1), u3(x1),
∫
Λ(x1)

g(x1, y, u1(y), u2(y), u3(y))dy)

−f(x2, u1(x2), u2(x2), u3(x2)),
∫
Λ(x1)

g(x1, y, u1(y), u2(y), u3(y))dy)

∣∣∣∣∣
+

∣∣∣∣∣f(x2, u1(x2), u2(x2), u3(x2),
∫
Λ(x1)

g(x1, y, u1(y), u2(y), u3(y))dy)

−f(x2, u1(x2), u2(x2), u3(x2)),
∫
Λ(x2)

g(x1, y, u1(y), u2(y), u3(y))dy)

∣∣∣∣∣
+

∣∣∣∣∣f(x2, u1(x2), u2(x2), u3(x2),
∫
Λ(x2)

g(x1, y, u1(y), u2(y), u3(y)))dy)

−f(x2, u1(x2), u2(x2), u3(x2),
∫
Λ(x2)

g(x2, y, u1(y), u2(y), u3(y))))dy)

∣∣∣∣∣
≤ ωT

r0(f, ε) +
1

3
φ
[
ωT (u1, ε) + ωT (u2, ε) + ωT (u3, ε)

]
+ UT

r0ω
T (Λ, ε) + ΛTω

T
r0(g, ε),

where

ΛT = sup{m(Λ(x)) : ∥x∥ ≤ T}.

UT
r0 = sup

{
|g(x, y, u1, u2, u3)| : ∥x∥ ≤ T,

y ∈
∪

∥x∥≤T

Λ(x), u1, u2, u3 ∈ [−r0, r0]
}
,

ωT
r0(f, ε) = sup

{
|f(x1, u1, u2, u3, v)− f(x2, u1, u2, u3, v)| : x1, x2 ∈ B̄T ,

∥x2 − x1∥ ≤ ε, |ui| ≤ r0, |v| < ΛTU
T
r0 , i = 1, 2, 3

}
,

ωr0
T (g, ε) = sup

{
|g(x1, y, u1, u2, u3)− g(x2, y, u1, u2, u3)| : x1, x2 ∈ B̄T ,

y ∈
∪

∥x∥≤T

Λ(x), ∥x2 − x1∥ ≤ ε, |ui| ≤ r0, i = 1, 2, 3
}
,

ωT (Λ, ε) = sup
{
m(Λ(x1)△ Λ(x2)) : x1, x2 ∈ B̄T , ∥x2 − x1∥ ≤ ε

}
.

Since (u1, u2, u3) is an arbitrary element of X1 × X2 × X3 in (5.6), we
have

ωT (F (X1 ×X2 ×X3), ε)

< ωT
r0(f, ε) +

1

3
φ
[
ωT (X1, ε) + ωT (X2, ε) + ωT (X3, ε)

]
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+ UT
r0ω

T (Λ, ε) + ΛTω
T
r0(g, ε),

and by the uniform continuity of f , g and Λ on the compact sets

B̄T × [−r0, r0]× [−r0, r0]× [−r0, r0]×
[
−ΛTU

T
r0 ,ΛTU

T
r0

]
,

B̄T ×

 ∪
∥x∥≤T

Λ(x)

× [−r0, r0]× [−r0, r0]× [−r0, r0],

and B̄T respectively, we have ωr0
T (f, ε) → 0, ωr0

T (g, ε) → 0 and
ωT (Λ, ε) → 0 as ε→ 0. Therefore, we obtain

ωT (F (X1 ×X2 ×X3)) <
1

3
φ
[
ωT (X1) + ωT (X2) + ωT (X3)

]
,

and

(5.7) ω(F (X1 ×X2 ×X3)) <
1

3
φ [ω(X1) + ω(X2) + ω(X3)] .

Now for all (u1, u2, u3), (v1, v2, v3) ∈ X1 ×X2 ×X3 and x ∈ Ω we have

|F (u1, u2, u3)(x)− F (v1, v2, v3)(x)|

<
1

3
φ [|u1(x)− v1(x)|+ |u2(x)− v2(x)|+ |u3(x)− v3(x)|]

+ Φ

(∫
Λ(x)

[g(x, y, u1(y), u2(y), u3(y))− g(x, y, v1(y), v2(y), v3(y))] dy

)
.

Therefore,

diam(F (X1 ×X2 ×X3)(x))

(5.8)

<
1

3
φ [diam(X1(x)) + diam(X2(x)) + diam(X3(x))]

+ Φ

(∫
Λ(x)

[g(x, y, u1(y), u2(y), u3(y))− g(x, y, v1(y), v2(y), v3(y))] dy

)
.

By take ∥x∥ → ∞ in the inequality (5.8), then apply (iii) and (v) we
infer that

lim sup
∥x∥→∞

diamF (X1 ×X2 ×X3)(x)

(5.9)

<
1

3
φ

[
lim sup
∥x∥→∞

diam(X1(x)) + lim sup
∥x∥→∞

diam(X2(x)) + lim sup
∥x∥→∞

diam(X3(x))

]
.

Now, combining (5.7) and (5.9) we get

d(F (X1 ×X2 ×X3)) + ω(F (X1 ×X2 ×X3))

(5.10)
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<
1

3
φ[ω(X1) + ω(X2) + ω(X3)] +

1

3
φ[d(X1) + d(X2) + d(X3)].

Since φ is a concave function, (5.10) implies

d(F (X1 ×X2 ×X3)) + ω(F (X1 ×X2 ×X3))

(5.11)

<
1

3
φ([d(X1) + ω(X1)]) +

1

3
φ([d(X2) + ω(X2)]) +

1

3
φ([d(X3) + ω(X3)]).

Finally, since µ is defined by

µ(X) = ω(F ) + d(F ),

we get

µ(F (X1 ×X2 ×X3)) <
1

3
φ(µ(X1) + µ(X2) + µ(X3)).

Thus from Corollary 4.4 we obtain that the operator F has a tripled
fixed point and thus the system of functional integral equations (1.1)
has at least one solution in (BC(Ω))3. □

6. Example

Example 6.1. Consider the following system of integral equations
(6.1)

x(t) = 1
2e

−t2 + arctan x(t)+sin y(t)
4π+t4 + ln(1+|z(t)|)

2π+t2

+

∫ t

0

s2| cosx(s)|+
√
es(1 + x2(s))(1 + sin2 y(s))(1 + cos2 z(s))

et(1 + x2(s))(1 + sin2 y(s))(1 + cos2 z(s))
ds,

y(t) = 1
2e

−t2 + arctan y(t)+sin x(t)
4π+t4 + ln(1+|z(t)|)

2π+t2

+

∫ t

0

s2| cos y(s)|+
√
es(1 + y2(s))(1 + sin2 x(s))(1 + cos2 z(s))

et(1 + y2(s))(1 + sin2 x(s))(1 + cos2 z(s))
ds,

z(t) = 1
2e

−t2 + arctan z(t)+sin y(t)
4π+t4 + ln(1+|x(t)|)

2π+t2

+

∫ t

0

s2| cos z(s))|+
√
es(1 + z2(s))(1 + sin2 y(s))(1 + cos2 x(s))

et(1 + z2(s))(1 + sin2 y(s))(1 + cos2 x(s))
ds.

We observe that this system of integral equations (6.1) is a special case
of (1.1) with

Λ(t) = [0, t],

Φ(t) = t,
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φ(t) =
max{sin t, arctan t, ln 1 + t}

4
,

f(t, x, y, z, p) =
1

2
e−t2 +

arctanx+ sin y

4π + t4
+

ln(1 + |z|)
4π + t2

+ p,

g(t, s, x, y, z) =
s2| cosx|+

√
es(1 + x2)(1 + sin2 y)(1 + cos2 z)

et(1 + x2)(1 + sin2 y)(1 + cos2 z)
.

To solve this system, we need to verify the conditions (i) - (v) of Theorem
5.3.
Condition (i) is clearly evident.

Now we have

|f(t, x, y, z,m)− f(t, u, v, w, n)|

(6.2)

≤ | arctanx− arctanu|+ | sin y − sin w|
4π + t4

+
ln
(

1+|z|
1+|w|

)
4π + t2

+ |m− n|

≤ arctan |x− u|
4π

+
sin |y − w|

4π
+

ln(1 + |z − w|)
4π

+ |m− n|

≤ φ(max{|x− u|, |y − v|, |z − w|}) + Φ(|m− n|).

Obviously the function φ is a strictly L-function and concave on R+ and
if we define Φ(t) = t so we can find that f and Φ satisfy condition (ii)
of Theorem 5.3. Also,

M = sup {|f(t, 0, 0, 0, 0)| : t ∈ R}

= sup

{
1

2
e−t2 : t ∈ R

}
< 0.2.

So, condition (iii) of Theorem 5.3 is valid. Moreover, g is continuous on
R× R× R3 and

D = sup

{∣∣∣∣∣∣
∫ |t|

0

s2| cosx(s))|+
√
es(1 + x2(s))(1 + sin2 y(s))(1 + cos2 z(s))

et(1 + x2(s))(1 + sin2 y(s))(1 + cos2 z(s))
ds

∣∣∣∣∣∣
: t, s ∈ R+, x, y, z ∈ BC(R+)

}

< sup
s2

et
< 0.5.
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Then,

lim
|t|→∞

∣∣∣∣∣
∫ t

0

s2 |cosx|+
√
es(1 + x2)(1 + sin2 y)(1 + cos2 z)

et(1 + x2)(1 + sin2 y)(1 + cos2 z)

−s
2 |cosu|+

√
es(1 + u2)(1 + sin2 v)(1 + cos2w)

et(1 + u2)(1 + sin2 v)(1 + cos2w)
ds

∣∣∣∣∣
≤ lim

|t|→∞

∣∣∣∣∫ t

0

s2

et
ds

∣∣∣∣ = 0.

Furthermore, it is easy to see that each number r ≥ 3 satisfies the
inequality in condition (v), i.e.,

1

3
φ(3r) +M +Φ(D) ≤ ln(1 + r) + 0.7 ≤ r.

Consequently, all the conditions of Theorem 5.3 are satisfied. Hence
system of integral equations (6.1) has at least one solution which belongs
to the space BC(R)3.
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