Sahand Communications in Mathematical Analysis (SCMA) Vol. 15 No. 1 (2019), 37-48 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2019.68582.264

Controlled Continuous G-Frames and Their Multipliers in Hilbert Spaces

Yahya Alizadeh¹ and Mohammad Reza Abdollah
pour 2*

ABSTRACT. In this paper, we introduce $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frames is a $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frame. Also, we investigate when a $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel multiplier is a p-Schatten class operator.

1. INTRODUCTION AND PRELIMINARIES

In 1952, Duffin and Schaeffer [8] introduced the concept of discrete frames in Hilbert spaces. Weighted and controlled frames have been introduced in [9]. In [6, 9], controlled and weighted frames were used as tools for spherical wavelets. Balazs, Antoine and Grybos [4] investigated relations of weighted frames and controlled frames. Also, they showed that controlled frames are equivalent to standard frames, and the concept of controlled frame gives us a generalized way to check the frame condition, while offering a numerical advantage in the sense of preconditioning.

Throughout this paper, \mathcal{H} is a complex Hilbert space and the set of all bounded operators on \mathcal{H} will be denoted by $B(\mathcal{H})$. We say that $T \in B(\mathcal{H})$ is *positive* (respectively non-negative), if $\langle Tf, f \rangle > 0$ for all $f \neq 0$ (respectively $\langle Tf, f \rangle \geq 0$ for all $f \in \mathcal{H}$).

²⁰¹⁰ Mathematics Subject Classification. Primary: 41A58; Secondary: 47A58, 42C45.

Key words and phrases. Controlled continuous g-frames, $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel families, Multiplier of continuous g-frames.

Received: 22 July 2017, Accepted: 10 September 2018.

^{*} Corresponding author.

Let $B^+(\mathcal{H})$ be the set of all positive operators in $B(\mathcal{H})$. The set of all bounded invertible operators on \mathcal{H} is denoted by $GL(\mathcal{H})$, and the set of all positive elements of $GL(\mathcal{H})$ will be showed by $GL^+(\mathcal{H})$.

Controlled and weighted continuous frames introduced in [5] and here we recall the definition of controlled and weighted continuous frame.

Definition 1.1. Let (Ω, μ) be a measure space with a positive measure μ and $\mathcal{C} \in GL(\mathcal{H})$. A \mathcal{C} -controlled continuous frame is a map $F : \Omega \to \mathcal{H}$ such that there exists $0 < A \leq B < \infty$ such that

$$A\|f\|^{2} \leq \int_{\Omega} \langle f, F(\omega) \rangle \, \langle \mathcal{C}F(\omega), f \rangle \, d\mu \leq B\|f\|^{2}, \quad f \in \mathcal{H}.$$

Definition 1.2. Let (Ω, μ) be a measure space with a positive measure μ and $m : \Omega \to \mathbb{R}^+$. The mapping $F : \Omega \to \mathcal{H}$ is called a weighted continuous frame with respect to (Ω, μ) and m, if

- (1) F is weakly measurable and m is measurable;
- (2) there exist constants A, B > 0 such that

$$A||f||^{2} \leq \int_{\Omega} m(\omega) |\langle f, F(\omega) \rangle|^{2} d\mu \leq B||f||^{2}, \quad f \in \mathcal{H}.$$

The concept of g-frame as a natural generalization of frame introduced by Sun in [12].

Definition 1.3. Let \mathcal{H} be a Hilbert space and $\{\mathcal{K}_i\}_{i\in I}$ be a sequence of Hilbert spaces. We call $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ a *g*-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i\in I}$, if there exist two positive constants A, B such that

(1.1)
$$A \|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B \|f\|^2, \quad f \in \mathcal{H}.$$

We call A, B the lower and upper frame bounds, respectively. If the right hand inequality of (1.1) holds for all $f \in \mathcal{H}$ then Λ is called a *g*-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$.

If $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ is a g-Bessel sequence, the operator

$$S_{\Lambda}: \mathcal{H} \to \mathcal{H}, \qquad S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f,$$

is a bounded operator and if Λ is a *g*-frame for \mathcal{H} , then S_{Λ} is a bounded invertible positive operator and $A_{\Lambda}I \leq S_{\Lambda} \leq B_{\Lambda}I$. The operator S_{Λ} is called the *g*-frame operator of Λ .

Controlled g-frame as a generalization of controlled frame introduced by Rahimi and Fereydooni [11].

Definition 1.4. Let $\mathcal{C}, \mathcal{C}' \in GL^+(\mathcal{H})$ and $\{\mathcal{K}_i\}_{i \in I}$ be a sequence of Hilbert spaces. $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ is called a $(\mathcal{C}, \mathcal{C}')$ -controlled

g-frame for \mathcal{H} , if Λ is a g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i\in I}$ and there exists constants A > 0 and $B < \infty$ such that

$$A\|f\|^2 \leq \sum_{i\in I} \left\langle \Lambda_i \mathcal{C}f, \Lambda_i \mathcal{C}'f \right\rangle \leq B\|f\|^2, \quad f\in \mathcal{H}.$$

If $\mathcal{C}' = I$ then Λ is called a \mathcal{C} -controlled *g*-frame.

In 2007, P. Balazs [3] introduced Bessel and frames multipliers for Hilbert spaces.

Definition 1.5. : Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces. Let $\{\phi_i\}_{i\in I} \subset \mathcal{H}_1$ and $\{\psi_i\}_{i\in I} \subset \mathcal{H}_2$ be Bessel sequences. Fix $m = \{m_i\}_{i\in I} \in \ell^{\infty}$. The operator $M_{m,\{\phi_i\},\{\psi_i\}} : \mathcal{H}_1 \to \mathcal{H}_2$ defined by

$$M_{m,\{\phi_i\},\{\psi_i\}}f := \sum_{i \in I} m_i \langle f, \phi_i \rangle \psi_i,$$

is called the *Bessel multiplier* for the Bessel sequences $\{\phi_i\}_{i \in I}$ and $\{\psi_i\}_{i \in I}$. The sequence *m* is called the symbol of $M_{m,\{\phi_i\},\{\psi_i\}}$.

Continuous g-frame in Hilbert spaces as a common generalization of g-frame and continuous frame defined by Abdollahpour and Faroughi [2].

In the following, we suppose that (Ω, μ) is a measure space with positive measure μ and $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$ is a family of Hilbert spaces. We say that $F \in \prod_{\omega\in\Omega}\mathcal{K}_{\omega}$ is strongly measurable if F as a mapping of Ω into $\bigoplus_{\omega\in\Omega}\mathcal{K}_{\omega}$ is measurable.

Definition 1.6. A family of operators $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ is a *continuous g-frame* with respect to $\{\mathcal{K}_{\omega}\}_{\omega \in \Omega}$ for \mathcal{H} if

- (i) for each $f \in \mathcal{H}$, $\{\Lambda_{\omega}f\}_{\omega \in \Omega}$ is strongly measurable,
- (ii) there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that

(1.2)
$$A_{\Lambda}||f||^{2} \leq \int_{\Omega} ||\Lambda_{\omega}f||^{2} d\mu_{\omega} \leq B_{\Lambda}||f||^{2}, \quad f \in \mathcal{H}.$$

 $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\} \text{ is called a continuous } g\text{-Bessel family} \\ \text{with bound } B_{\Lambda}, \text{ if the right hand inequality in (1.2) holds for all } f \in \mathcal{H}.$

Authors of this paper, introduced the concept of continuous g-Bessel multipliers [1].

Definition 1.7. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be continuous *g*-Bessel families with respect to $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$ for \mathcal{H} and $m \in L^{\infty}(\Omega, \mu)$, the operator $M_{m,\Lambda,\Phi} : \mathcal{H} \to \mathcal{H}$ defined by

$$\langle M_{m,\Lambda,\Phi}f,g\rangle = \int_{\Omega} m(\omega) \langle \Lambda^*_{\omega}\Phi_{\omega}f,g\rangle d\mu_{\omega}, \quad f,g \in \mathcal{H},$$

is called *continuous g-Bessel multiplier* of Λ, Φ and m.

2. Controlled Continuous g-frames

In this section, we intend to introduce controlled continuous g-frames in Hilbert spaces. In the following result, we provide a sufficient and necessary condition, under which a combination of two members of $GL^+(\mathcal{H})$ also belongs to $GL^+(\mathcal{H})$.

Proposition 2.1. Let $T, C \in GL^+(\mathcal{H})$. Then $TC \in GL^+(\mathcal{H})$ if and only if TC = CT.

Proof. For all $f \in \mathcal{H}$ we have

$$\begin{split} 4 \left\langle T\mathcal{C}f, f \right\rangle &= \left\langle T(\mathcal{C}f+f), \mathcal{C}f+f \right\rangle - \left\langle T(\mathcal{C}f-f), \mathcal{C}f-f \right\rangle \\ & i \left\langle T(\mathcal{C}f+if), \mathcal{C}f+if \right\rangle - i \left\langle T(\mathcal{C}f-if), \mathcal{C}f-if \right\rangle. \end{split}$$

Since TC is positive, $\langle TCf, f \rangle \in \mathbb{R}$, for all $f \in \mathcal{H}$ and

$$\begin{aligned} 4 \left\langle T\mathcal{C}f, f \right\rangle &= \left\langle T(\mathcal{C}f+f), \mathcal{C}f+f \right\rangle - \left\langle T(\mathcal{C}f-f), \mathcal{C}f-f \right\rangle \\ &= 2 \left\langle T\mathcal{C}f, f \right\rangle + 2 \left\langle \mathcal{C}Tf, f \right\rangle, \end{aligned}$$

therefore $\langle TCf, f \rangle = \langle CTf, f \rangle$ for all $f \in \mathcal{H}$. Thus TC = CT.

Conversely, if $T\mathcal{C} = \mathcal{C}T$ then \mathcal{C}^{-1} commutes with $\mathcal{C}T\mathcal{C}$ and \mathcal{C}^2 . Also $\mathcal{C}T\mathcal{C}$, \mathcal{C}^2 and \mathcal{C}^{-1} are self-adjoint. By Proposition 2.4 in [4], there is m > 0 such that $T - mI \ge 0$, then

$$\langle (\mathcal{C}T\mathcal{C} - m\mathcal{C}^2) f, f \rangle = \langle (T - mI)\mathcal{C}f, \mathcal{C}f \rangle \ge 0, \quad f \in \mathcal{H}.$$

Therefore $CTC \geq mC^2$. By Theorem A.6.5 in [7] we can conclude $C^{-1}CTC \geq mC$ then $TC \geq mC > 0$.

It is proved in [2], if $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ is a continuous *g*-frame then there is a unique positive invertible operator $S_{\Lambda} : \mathcal{H} \to \mathcal{H}$ such that for each $f, g \in \mathcal{H}$

$$\langle S_{\Lambda}f,g
angle = \int_{\Omega} \langle f,\Lambda_{\omega}^{*}\Lambda_{\omega}g
angle \,d\mu_{\omega},$$

and $A_{\Lambda}I \leq S_{\Lambda} \leq B_{\Lambda}I$. Thus by Proposition 2.4 in [4], we have $S_{\Lambda} \in GL^+(\mathcal{H})$. The operator S_{Λ} is called the *continuous g-frame operator* of Λ .

The following proposition shows that under which conditions we can produce a new continuous g-frame and we omit its proof.

Proposition 2.2. Let $C \in B(\mathcal{H})$ and let the family $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be a continuous g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$. Then $\Lambda C = \{\Lambda_{\omega}C \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ is a continuous g-frame for \mathcal{H} if only if there is $\alpha > 0$,

$$\|\mathcal{C}f\|^2 \ge \alpha \|f\|^2, \quad f \in \mathcal{H}.$$

Definition 2.3. Let $\mathcal{C}, \mathcal{C}' \in GL^+(\mathcal{H})$. $\Lambda = \{\Lambda_\omega \in B(\mathcal{H}, \mathcal{K}_\omega) : \omega \in \Omega\}$ is called a $(\mathcal{C}, \mathcal{C}')$ - controlled continuous g-frame for \mathcal{H} with respect to $\{\mathcal{K}_\omega\}_{\omega\in\Omega}$, if Λ is a continuous g-Bessel family and there exist constants $A_{\Lambda \mathcal{C}\mathcal{C}'} > 0$ and $B_{\Lambda \mathcal{C}\mathcal{C}'} < \infty$ such that

(2.1)
$$A_{\Lambda CC'}||f||^2 \leq \int_{\Omega} \langle \Lambda_{\omega} Cf, \Lambda_{\omega} C'f \rangle d\mu_{\omega} \leq B_{\Lambda CC'}||f||^2, \quad f \in \mathcal{H}.$$

 $A_{\Lambda CC'}$ and $B_{\Lambda CC'}$ are called the *controlled continuous g-frame bounds*. If $\mathcal{C}' = \mathbf{I}$, then we call Λ a \mathcal{C} -controlled continuous g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$. If the right hand inequality of (2.1) holds for all $f \in \mathcal{H}$ then Λ is called a $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel family with bound $B_{\Lambda CC'}$. If Λ is a $(\mathcal{C}, \mathcal{C})$ -controlled g-frame then we use the notations $A_{\Lambda C}$ and $B_{\Lambda C}$ for bounds of Λ instead of $A_{\Lambda CC}$ and $B_{\Lambda CC}$.

Proposition 2.4. Let $C, C' \in GL^+(\mathcal{H})$ and $\Lambda = \{\Lambda_\omega \in B(\mathcal{H}, \mathcal{K}_\omega) : \omega \in \Omega\}$ be a (C, C')- controlled continuous g-frame for \mathcal{H} with controlled continuous g-frame bounds $A_{\Lambda CC'}, B_{\Lambda CC'}$. Then there exists a unique positive and invertible operator $S_{\Lambda CC'} : \mathcal{H} \to \mathcal{H}$ such that for each $f, g \in \mathcal{H}$,

(2.2)
$$\langle S_{\Lambda CC'}f,g\rangle = \int_{\Omega} \langle C'\Lambda^*_{\omega}\Lambda_{\omega}Cf,g\rangle d\mu_{\omega},$$

and $A_{\Lambda CC'}I \leq S_{\Lambda CC'} \leq B_{\Lambda CC'}I$.

Proof. The mapping

$$\sigma: \mathcal{H} \times \mathcal{H} \to \mathbb{C}, \qquad \sigma(f,g) = \int_{\Omega} \left\langle \mathcal{C}' \Lambda_{\omega}^* \Lambda_{\omega} \mathcal{C}f, g \right\rangle d\mu_{\omega},$$

is a bounded sesqlinear form, since by Cauchy-Schwartz's inequality, we have

$$\begin{aligned} |\sigma(f,g)| &\leq \left(\int_{\Omega} \|\Lambda_{\omega} \mathcal{C}f\|^2 d\mu_{\omega}\right)^{1/2} \left(\int_{\Omega} \|\Lambda_{\omega} \mathcal{C}'g\|^2 d\mu_{\omega}\right)^{1/2} \\ &\leq B_{\Lambda} \|\mathcal{C}\| \|\mathcal{C}'\| \|f\| \|g\|, \end{aligned}$$

for all $f, g \in \mathcal{H}$.

Therefore by Theorem 2.3.6 in [10], there exists a unique operator $S_{\Lambda CC'}$ such that (2.2) holds for all $f, g \in \mathcal{H}$ and $||S_{\Lambda CC'}|| \leq B_{\Lambda} ||\mathcal{C}|| ||\mathcal{C}'||$. Then for all $f \in \mathcal{H}$ we have

$$\langle S_{\Lambda CC'}f,f \rangle = \int_{\Omega} \left\langle \Lambda_{\omega} Cf, \Lambda_{\omega} C'f \right\rangle d\mu_{\omega},$$

and $A_{\Lambda CC'}I \leq S_{\Lambda CC'} \leq B_{\Lambda CC'}I$. Therefore

$$\left\|I - \frac{1}{B_{\Lambda CC'}} S_{\Lambda CC'}\right\| \le 1 - \frac{A_{\Lambda CC'}}{B_{\Lambda CC'}} < 1,$$

so $S_{\Lambda CC'}$ is an invertible operator.

The operator $S_{\Lambda CC'}$ is called the $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frame operator of $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega} : \omega \in \Omega\}.$

Now, we intend to prove a proposition that shows any continuous g-frame is a controlled continuous g-frame.

Proposition 2.5. Let $C \in GL^+(\mathcal{H})$. The family $\Lambda = \{\Lambda_\omega \in B(\mathcal{H}, \mathcal{K}_\omega : \omega \in \Omega\}$ is a continuous g-frame if and only if Λ is a (C, C)-controlled continuous g-frame.

Proof. Let Λ be a $(\mathcal{C}, \mathcal{C})$ -controlled continuous g-frame. Then for all $f \in \mathcal{H}$,

$$A_{\Lambda \mathcal{C}} \|f\|^2 \leq \int_{\Omega} \|\Lambda_{\omega} \mathcal{C}f\|^2 d\mu_{\omega} \leq B_{\Lambda \mathcal{C}} \|f\|^2.$$

Therefore,

$$\begin{split} A_{\Lambda \mathcal{C}} \|f\|^2 &= A_{\Lambda \mathcal{C}} \|\mathcal{C}\mathcal{C}^{-1}f\|^2 \\ &\leq A_{\Lambda \mathcal{C}} \|\mathcal{C}\|^2 \|\mathcal{C}^{-1}f\|^2 \\ &\leq \|\mathcal{C}\|^2 \int_{\Omega} \|\Lambda_{\omega}\mathcal{C}\mathcal{C}^{-1}f\|^2 d\mu_{\omega} \\ &= \|\mathcal{C}\|^2 \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu_{\omega}, \end{split}$$

for all $f \in \mathcal{H}$. On the other hand,

$$\int_{\Omega} \|\Lambda_{\omega}f\|^{2} f d\mu_{\omega} = \int_{\Omega} \|\Lambda_{\omega}\mathcal{C}\mathcal{C}^{-1}f\|^{2} d\mu_{\omega}$$
$$\leq B_{\Lambda\mathcal{C}}\|\mathcal{C}^{-1}f\|^{2}$$
$$\leq B_{\Lambda\mathcal{C}}\|\mathcal{C}^{-1}\|^{2}\|f\|^{2},$$

for all $f \in \mathcal{H}$. Therefore, Λ is a continuous *g*-frame with bounds $A_{\Lambda \mathcal{C}} \|\mathcal{C}\|^{-2}$ and $B_{\Lambda \mathcal{C}} \|\mathcal{C}^{-1}\|^2$.

Conversely, assume that Λ is a continuous g-frame. Then

$$A_{\Lambda} \|f\|^{2} \leq \int_{\Omega} \|\Lambda_{\omega}f\|^{2} d\mu_{\omega} \leq B_{\Lambda} \|f\|^{2}, \quad f \in \mathcal{H}.$$

So

$$\begin{split} \int_{\Omega} \|\Lambda_{\omega} \mathcal{C}f\|^2 d\mu_{\omega} &\leq B_{\Lambda} \|\mathcal{C}f\|^2 \\ &\leq B_{\Lambda} \|\mathcal{C}\|^2 \|f\|^2, \quad f \in \mathcal{H}, \end{split}$$

and

$$\begin{aligned} A_{\Lambda} \|f\|^{2} &= A_{\Lambda} \|\mathcal{C}^{-1} \mathcal{C}f\|^{2} \\ &\leq A_{\Lambda} \|\mathcal{C}^{-1}\|^{2} \|\mathcal{C}f\|^{2} \\ &\leq \|\mathcal{C}^{-1}\|^{2} \int_{\Omega} \|\Lambda_{\omega} \mathcal{C}f\|^{2} f\mu_{\omega}, \quad f \in \mathcal{H}. \end{aligned}$$

Thus Λ is a $(\mathcal{C}, \mathcal{C})$ -controlled continuous g-frame with bounds

$$A_{\Lambda} \| \mathcal{C}^{-1} \|^{-2}, B_{\Lambda} \| \mathcal{C} \|^{2}.$$

Proposition 2.6. Let $C, C' \in B(\mathcal{H})$ and $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be continuous g-Bessel families with respect to $\{\mathcal{K}_{\omega}\}_{\omega \in \Omega}$ for \mathcal{H} . Then the operator

$$\langle S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} f, g \rangle = \int_{\Omega} \left\langle \Lambda_{\omega} \mathcal{C} f, \Phi_{\omega} \mathcal{C}' g \right\rangle d\mu_{\omega}, \quad f, g \in \mathcal{H},$$

is a well-defined bounded operator.

Proof. Let $f,g \in \mathcal{H}.$ By Cauchy-Schwartz's inequality, we have

$$\begin{split} |\langle S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} f, g \rangle| &= \left| \int_{\Omega} \left\langle \mathcal{C}' \Phi_{\omega}^* \Lambda_{\omega} \mathcal{C} f, g \right\rangle d\mu_{\omega} \right| \\ &\leq \int_{\Omega} \left| \left\langle \Lambda_{\omega} \mathcal{C} f, \Phi_{\omega} \mathcal{C}' g \right\rangle \right| d\mu_{\omega} \\ &\leq \int_{\Omega} \|\Lambda_{\omega} \mathcal{C} f\| \|\Phi_{\omega} \mathcal{C}' g\| d\mu_{\omega} \\ &\leq \left(\int_{\Omega} \|\Lambda_{\omega} \mathcal{C} f\|^2 d\mu_{\omega} \right)^{\frac{1}{2}} \left(\int_{\Omega} \|\Phi_{\omega} \mathcal{C}' g\|^2 d\mu_{\omega} \right)^{\frac{1}{2}} \\ &\leq \sqrt{B_{\Lambda}} \|\mathcal{C} f\| \sqrt{B_{\Phi}} \|\mathcal{C}' g\| \\ &= \sqrt{B_{\Lambda} B_{\Phi}} \|\mathcal{C}\| \|\mathcal{C}'\| \|f\| \|g\|. \end{split}$$

So

$$\|S_{\Lambda \mathcal{C} \Phi \mathcal{C}'}\| \leq \sqrt{B_{\Lambda} B_{\Phi}} \|\mathcal{C}\| \|\mathcal{C}'\|,$$

therefore $S_{\Lambda C \Phi C'}$ is bounded and well-defined operator.

Corollary 2.7. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ -controlled continuous g-Bessel family and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}', \mathcal{C}')$ -controlled continuous g-Bessel family with bounds $B_{\Lambda \mathcal{C}}$ and $B_{\Phi \mathcal{C}'}$, respectively. The operator $S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} : \mathcal{H} \to \mathcal{H}$ defined weakly by

$$\langle S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} f, g \rangle = \int_{\Omega} \left\langle \mathcal{C}' \Phi^*_{\omega} \Lambda_{\omega} \mathcal{C} f, g \right\rangle d\mu_{\omega}, \quad f, g \in \mathcal{H},$$

is a well-defined bounded operator and $||S_{\Lambda C \Phi C'}|| \leq \sqrt{B_{\Lambda C} B_{\Phi C'}}$.

43

Proof. Let $f, g \in \mathcal{H}$. Then by Cauchy-Schwartz's inequality, we have

$$\begin{split} |\langle S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} f, g \rangle| &= \left| \int_{\Omega} \left\langle \mathcal{C}' \Phi_{\omega}^* \Lambda_{\omega} \mathcal{C} f, g \right\rangle d\mu_{\omega} \right| \\ &\leq \int_{\Omega} \left| \left\langle \Lambda_{\omega} \mathcal{C} f, \Phi_{\omega} \mathcal{C}' g \right\rangle \right| d\mu_{\omega} \\ &\leq \int_{\Omega} \left\| \Lambda_{\omega} \mathcal{C} f \right\| \| \Phi_{\omega} \mathcal{C}' g \| d\mu_{\omega} \\ &\leq \left(\int_{\Omega} \| \Lambda_{\omega} \mathcal{C} f \|^2 d\mu_{\omega} \right)^{\frac{1}{2}} \left(\int_{\Omega} \| \Phi_{\omega} \mathcal{C}' g \|^2 d\mu_{\omega} \right)^{\frac{1}{2}} \\ &\leq \sqrt{B_{\Lambda \mathcal{C}}} \| f \| \sqrt{B_{\Phi \mathcal{C}'}} \| g \| \\ &= \sqrt{B_{\Lambda \mathcal{C}} B_{\Phi \mathcal{C}'}} \| f \| \| g \|. \end{split}$$

So

$$\|S_{\Lambda \mathcal{C} \Phi \mathcal{C}'}\| \leq \sqrt{B_{\Lambda \mathcal{C}} B_{\Phi \mathcal{C}'}},$$

therefore $S_{\Lambda C \Phi C'}$ is a bounded and well-defined operator.

In the spacial case for $\mathcal{C} = \mathcal{C}' = I$, the operator

$$\langle S_{\Lambda\Phi}f,g\rangle = \int_{\Omega} \langle \Phi^*_{\omega}\Lambda_{\omega}f,g\rangle \,d\mu_{\omega}, \quad f\in\mathcal{H},$$

is a well-defined bounded operator.

Proposition 2.8. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be continuous g-Bessel families for \mathcal{H} . Let $\mathcal{C}, \mathcal{C}'$ and $S_{\Phi\Lambda} + S_{\Lambda\Phi}$ be commutative with each others and $S_{\Phi\Lambda} + S_{\Lambda\Phi}, \mathcal{C}$ and \mathcal{C}' be elements of $GL^+(\mathcal{H})$. Then $S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C}$ is a positive operator.

Proof. For all $f, g \in \mathcal{H}$, we have

$$\begin{split} \langle S_{\Lambda \mathcal{C} \Phi \mathcal{C}'} + S_{\Phi \mathcal{C}' \Lambda \mathcal{C}} f, g \rangle &= \int_{\Omega} \left\langle \mathcal{C}' \Phi_{\omega}^* \Lambda_{\omega} \mathcal{C} f, g \right\rangle d\mu_{\omega} + \int_{\Omega} \left\langle \mathcal{C} \Lambda_{\omega}^* \Phi_{\omega} \mathcal{C}' f, g \right\rangle d\mu_{\omega} \\ &= \int_{\Omega} \left\langle \Phi_{\omega}^* \Lambda_{\omega} \mathcal{C} f, \mathcal{C}' g \right\rangle d\mu_{\omega} + \int_{\Omega} \left\langle \Lambda_{\omega}^* \Phi_{\omega} \mathcal{C}' f, \mathcal{C} g \right\rangle d\mu_{\omega} \\ &= \left\langle S_{\Lambda \Phi} \mathcal{C} f, \mathcal{C}' g \right\rangle + \left\langle S_{\Phi \Lambda} \mathcal{C}' f, \mathcal{C} g \right\rangle \\ &= \left\langle \mathcal{C}' S_{\Lambda \Phi} \mathcal{C} f, g \right\rangle + \left\langle \mathcal{C} S_{\Phi \Lambda} \mathcal{C}' f, g \right\rangle \\ &= \left\langle \mathcal{C}' S_{\Lambda \Phi} \mathcal{C} f, g \right\rangle + \left\langle \mathcal{C} S_{\Phi \Lambda} \mathcal{C} f, g \right\rangle \\ &= \left\langle \mathcal{C}' (S_{\Lambda \Phi} + S_{\Phi \Lambda}) \mathcal{C} f, g \right\rangle. \end{split}$$

Therefore

$$S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C} = \mathcal{C}' (S_{\Lambda \Phi} + S_{\Phi \Lambda}) \mathcal{C}.$$

By Proposition 2.1, we can conclude that $S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C}$ is positive. \Box

Corollary 2.9. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frames. Let $\mathcal{C}, \mathcal{C}', S_{\Phi\Lambda} + S_{\Lambda\Phi} \in GL^+(\mathcal{H})$ and $\mathcal{C}, \mathcal{C}'$ and $S_{\Phi\Lambda} + S_{\Lambda\Phi}$ be commutative with each others. Then $S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C}$ is a positive operator.

Corollary 2.10. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ -controlled continuous g-frames. Let $\mathcal{C}, S_{\Phi\Lambda} + S_{\Lambda\Phi} \in GL^+(\mathcal{H})$. If \mathcal{C} and $S_{\Phi\Lambda} + S_{\Lambda\Phi}$ are commutative with each other then $S_{\Lambda C\Phi \mathcal{C}} + S_{\Phi C\Lambda \mathcal{C}}$ is positive operator.

In the following proposition, we show under which conditions the sum of two $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frames is a $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frame:

Proposition 2.11. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frames for \mathcal{H} . Let $\mathcal{C}, \mathcal{C}'$ and $S_{\Phi\Lambda} + S_{\Lambda\Phi}$ be commutative with each others and $\mathcal{C}, \mathcal{C}', S_{\Phi\Lambda} + S_{\Lambda\Phi} \in GL^+(\mathcal{H})$. Then

$$\Lambda + \Phi = \{\Lambda_{\omega} + \Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\},\$$

is a $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-frame for \mathcal{H} .

Proof. Since Λ and Φ are g-Bessel families for \mathcal{H} therefore $\Gamma = \Lambda + \Phi$ is a g-Bessel family for \mathcal{H} . By Lemma 2.8 $S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C}$ is positive and by proposition 2.4 in [4] there exists m > 0 such that $S_{\Lambda C \Phi C'} + S_{\Phi C' \Lambda C} \geq mI$. Therefore

$$\langle S_{\Gamma CC'}f,f\rangle = \int_{\Omega} \langle \mathcal{C}'(\Lambda_{\omega} + \Phi_{\omega})^*(\Lambda_{\omega} + \Phi_{\omega})\mathcal{C}f,f\rangle d\mu_{\omega} = \langle S_{\Lambda CC'}f,f\rangle + \langle S_{\Phi CC'}f,f\rangle + \langle (S_{\Lambda C\Phi C'} + S_{\Phi C'\Lambda C})f,f\rangle \geq A_{\Lambda CC'} ||f||^2 + A_{\Phi CC'} ||f||^2 + m||f||^2,$$

for all $f \in \mathcal{H}$. On the other hand,

$$\langle S_{\Lambda CC'}f,f\rangle + \langle S_{\Phi CC'}f,f\rangle + \langle (S_{\Lambda C\Phi C'} + S_{\Phi C'\Lambda C})f,f\rangle \leq (B_{\Lambda CC'} + B_{\Phi CC'} + 2\sqrt{B_{\Lambda C}B_{\Phi C'}}) \|f\|^2,$$

for all $f \in \mathcal{H}$.

Corollary 2.12. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be continuous g-frames for \mathcal{H} and $S_{\Phi\Lambda} + S_{\Lambda\Phi}$ be positive operator. Then

$$\Lambda + \Phi = \{\Lambda_{\omega} + \Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\},\$$

is a continuous g-frame for \mathcal{H} .

In the following, we extend the concept of multiplier of continuous g-Bessel families and we define multiplier of $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel families in Hilbert spaces.

Proposition 2.13. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ and $(\mathcal{C}', \mathcal{C}')$ -controlled continuous g-Bessel families with respect to $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$ for \mathcal{H} , respectively. Let $m \in L^{\infty}(\Omega, \mu)$. The operator

$$\begin{split} M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'} &: \mathcal{H} \to \mathcal{H}, \\ \left\langle M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}f,g \right\rangle &:= \int_{\Omega} m(\omega) \left\langle \mathcal{C}\Lambda_{\omega}^* \Phi_{\omega}\mathcal{C}'f,g \right\rangle d\mu_{\omega}, \quad f,g \in \mathcal{H}, \end{split}$$

is a well-defined bounded operator.

Proof. For any $f, g \in \mathcal{H}$ we have

$$\begin{split} \left| \left\langle M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}f,g\right\rangle \right| &= \left| \int_{\Omega} m(\omega) \left\langle \mathcal{C}\Lambda_{\omega}^{*}\Phi_{\omega}\mathcal{C}'f,g\right\rangle d\mu_{\omega} \right| \\ &\leq \int_{\Omega} |m(\omega)||\Phi_{\omega}\mathcal{C}'f||\Lambda_{\omega}\mathcal{C}g|d\mu_{\omega} \\ &\leq \|m\|_{\infty} \left(\int_{\Omega} \|\Phi_{\omega}\mathcal{C}'f\|^{2}d\mu_{\omega} \right)^{1/2} \left(\int_{\Omega} \|\Lambda_{\omega}\mathcal{C}g\|^{2}d\mu_{\omega} \right)^{1/2} \\ &\leq \|m\|_{\infty} \sqrt{B_{\Lambda\mathcal{C}}B_{\Phi\mathcal{C}'}} \|f\|\|g\|. \end{split}$$

This shows that $||M_{m,\Lambda C,\Phi C'}|| \leq ||m||_{\infty} \sqrt{B_{\Lambda C} B_{\Phi C'}}$ and so $M_{m,\Lambda C,\Phi C'}$ is well-defined and bounded.

Definition 2.14. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ and $(\mathcal{C}', \mathcal{C}')$ -controlled continuous g-Bessel families with respect to $\{\mathcal{K}_{\omega}\}_{\omega\in\Omega}$ for \mathcal{H} , respectively. Let $m \in L^{\infty}(\Omega, \mu)$. The operator

$$\begin{split} M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'} &: \mathcal{H} \to \mathcal{H}, \\ \left\langle M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}f,g \right\rangle &:= \int_{\Omega} m(\omega) \left\langle \mathcal{C}\Lambda_{\omega}^* \Phi_{\omega}\mathcal{C}'f,g \right\rangle d\mu_{\omega}, \quad f,g \in \mathcal{H}, \end{split}$$

is called the $(\mathcal{C}, \mathcal{C}')$ -controlled continuous g-Bessel multiplier of Λ, Φ and m.

Proposition 2.15. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ and $(\mathcal{C}', \mathcal{C}')$ -controlled continuous g-frames, respectively. Then

$$\mathcal{C}^{-1}M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}\mathcal{C}'^{-1} = M_{m,\Lambda,\Phi}.$$

Proof. By Proposition 2.5, Λ and Φ are continuous g-frames. We have

$$\begin{split} \left\langle M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}f,g\right\rangle &= \int_{\Omega} m(\omega) \left\langle \mathcal{C}\Lambda^*_{\omega}\Phi_{\omega}\mathcal{C}'f,g\right\rangle d\mu_{\omega} \\ &= \int_{\Omega} m(\omega) \left\langle \Lambda^*_{\omega}\Phi_{\omega}\mathcal{C}'f,\mathcal{C}g\right\rangle d\mu_{\omega} \\ &= \left\langle M_{m,\Lambda,\Phi}\mathcal{C}'f,\mathcal{C}g\right\rangle \\ &= \left\langle \mathcal{C}M_{m,\Lambda,\Phi}\mathcal{C}'f,g\right\rangle, \end{split}$$

for all $f, g \in \mathcal{H}$. So

$$\mathcal{C}M_{m,\Lambda,\Phi}\mathcal{C}' = M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}.$$

If \mathcal{H} is a Hilbert space then $K(\mathcal{H})$, -the set of all compact operators in \mathcal{H} -, is a closed ideal of $B(\mathcal{H})$. We say $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ is the norm bounded if there is a constant M > 0 such that $\|\Lambda_{\omega}\| \leq M$ for every $\omega \in \Omega$. Let $m : \Omega \to \mathbb{C}$ be a bounded measurable function. We say m has support of a finite measure, if there exists a subset $K \subseteq \Omega$ with $\mu(K) < \infty$ such that $m(\omega) = 0$ for almost every $\omega \in \Omega \setminus K$.

Theorem 2.16. Let $dim(\mathcal{K}_{\omega}) < \infty$ for all $\omega \in \Omega$. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be $(\mathcal{C}, \mathcal{C})$ and $(\mathcal{C}', \mathcal{C}')$ -controlled g-Bessel families, respectively. Let Λ or Φ be norm bounded families and $m : \Omega \to \mathbb{C}$ be a bounded measurable function with support of a finite measure. Then $M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}$ is a compact operator.

Proof. By Proposition 2.15 we have $\mathcal{C}^{-1}M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}\mathcal{C}'^{-1} = M_{m,\Lambda,\Phi}$, therefore

$$M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'} = \mathcal{C}M_{m,\Lambda,\Phi}\mathcal{C}'.$$

By Theorem 3.6 in [1], $M_{m,\Lambda,\Phi} \in K(\mathcal{H})$, thus $M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}'}$ is a compact operator.

Theorem 2.17. Let M > 0 be such that $\dim(\mathcal{K}_{\omega}) \leq M$, for all $\omega \in \Omega$. Let $\Lambda = \{\Lambda_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ and $\Phi = \{\Phi_{\omega} \in B(\mathcal{H}, \mathcal{K}_{\omega}) : \omega \in \Omega\}$ be norm bounded $(\mathcal{C}, \mathcal{C})$ and $(\mathcal{C}', \mathcal{C}')$ -controlled g-Bessel families with respect to $\{\mathcal{K}_{\omega}\}_{\omega \in \Omega}$ for \mathcal{H} respectively, and $m \in L^{\infty}(\Omega, \mu)$. Then $M_{m,\Lambda\mathcal{C},\Phi\mathcal{C}}$ is a Schatten p-class operator.

Proof. By Theorem 3.10 in [1], $M_{m,\Lambda,\Phi}$ is a Schatten p-class operator. Since $S_p(\mathcal{H})$, -the set of Schatten p-class operators-, is a closed ideal of $B(\mathcal{H})$, $M_{m,\Lambda,\mathcal{C},\Phi\mathcal{C}'} = \mathcal{C}M_{m,\Lambda,\Phi}\mathcal{C}'$ is a Schatten p-class operator. \Box

	_	

References

- M.R. Abdollahpour and Y. Alizadeh, Multipliers of Continuous G-Frames in Hilbert spaces, Bull. Iranian. Math. Soc., 43 (2017), pp. 291-305.
- M.R. Abdollahpour and M.H. Faroughi, Continous g-Frames in Hilbert spaces, Southeast asian Bulletin of Mathematics, 32 (2008), pp. 1-19.
- P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325 (2007), pp. 571-585.
- P. Balazs, J.P. Antoine, and A. Grybos, Weighted and controlled frames, Int. J. Wavelets Multiresolut Inf. Prosses., 8 (2010), pp. 109-132.
- 5. P. Balazs, D. Bayer, and A. Rahimi, *Multipliers for continuous frames in Hilbert spaces*, J. Phys. A: Math. Theory., 45 (2012), pp. 1-20.
- I. Bogdanova, P. Vandergheynst, J.P. Antoine, L. Jacques, and M. Morvidone, Stereographic wavelet frames on sphere, Applied Comput. Harmon. Anal., 19 (2005), pp. 223-252.
- 7. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser Boston, 2003.
- R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier seris, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
- 9. L.O. Jacques, *Reperes et couronne solaire*, These de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve. 2004.
- 10. G.J. Murphy, C^* -algebras and operator theory, Academic Press Inc., 1990.
- A. Rahimi and A. Fereydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces, An. Şt. Univ. Ovidius Constanţa, versita., 21 (2013), pp. 223-236.
- 12. W. Sun, *G*-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), pp. 437-452.

¹ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.

E-mail address: ya.alizadeh@gmail.com

 2 Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.

E-mail address: m.abdollah@uma.ac.ir, mrabdollahpour@yahoo.com