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Application of Convolution of Daubechies Wavelet in Solving

3D Microscale DPL Problem

Zahra Kalateh Bojdi1, Ataollah Askari Hemmat2∗, and Ali Tavakoli3

Abstract. In this work, the triple convolution of Daubechies
wavelet is used to solve the three dimensional (3D) microscale Dual
Phase Lag (DPL) problem. Also, numerical solution of 3D time-
dependent initial-boundary value problems of a microscopic heat
equation is presented. To generate a 3D wavelet we used the triple
convolution of a one dimensional wavelet. Using convolution we get
a scaling function and a sevenfold 3D wavelet and all of our com-
putations are based on this new set to approximate in 3D spatial.
Moreover, approximation in time domain is based on finite differ-
ence method. By substitution in the 3D DPL model, the differential
equation converts to a linear system of equations and related system
is solved directly. We use the Lax-Richtmyer theorem to investigate
the consistency, stability and convergence analysis of our method.
Numerical results are presented and compared with the analytical
solution to show the efficiency of the method.

1. Introduction

An applicable version of traditional heat equation is the microscopic
heat flux equation, developed from physical and mathematical reason-
ing. Microscale heat transfer occurs in many physical phenomena like
microchip [14], mobile phones and processing of materials [26]. The
DPL heat conduction equation arises in many branches of physics and
engineering, see [13, 19, 25]. Qui and Tien deduced a partial differen-
tial equation (PDE) model for the heat transfer in microscale [22, 23].
Recently a similar equation to energy equation without containing the
electron energy storage is suggested [6, 25]. Several techniques have
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been used to obtain the numerical or analytical solutions of heat transfer
problems [5, 27]. For solving the heat flux equation at microscale, finite
difference methods used in one dimension [8, 10] and three dimensions
[9, 11, 28]. Dai applied a higher-order accurate and unconditionally sta-
ble compact finite difference scheme for solving the DPL equation with
the temperature jump boundary condition [7]. Malek and Kalateh Bojdi,
investigated numerical solution of laser heating of nanoscale thin-films
in three dimensions using DPL model based on mixed collocation-finite
difference method [18]. Also Kargar and Saeedi, used B-spline wavelet
operational method for solving fractional partial differential equations
[16]. In this paper we will investigate the numerical solution of the 3D
heat equation at microscale. The wavelet method is used to approximate
the solution, and the finite difference scheme is used for time discretiza-
tion. In Section 2 the DPL model is presented. MRA and wavelet
method is presented in Section 3. In Section 4 the convergence of the
method is investigated. In Section 5 numerical results and a comparison
of numerical and analytical solutions are given.

2. DPL Model

The Fourier heat transfer law in the classical theory of diffusion is

q (r, t) = −κ∇U (r, t) ,(2.1)

where κ is the conductivity, q = (qx, qy, qz) is the heat flux, r is the po-
sition vector that has heat flux components in the x, y and z directions,
respectively, and U is the temperature. In Eq. (2.1), the heat flux q,
and the temperature gradient ∇U are assumed to arise simultaneously.
If one of the directions is at the microscale, (of order 0.1µm), Tzou
has shown that the temperature gradient and heat flux occur at differ-
ent times in this direction and Eq. (2.1) has the following form (DPL
model)[25]

q (r, t+ τq) = −κ∇U (r, t+ τU ) .(2.2)

Also the heat conduction equation is given by [25]

−∇.q +Q = ρCp
∂U

∂t
,(2.3)

where Cp is the specific heat, ρ is density, Q is a heat source, τq and
τU are positive constants, which are the time lags of the heat flux and
temperature gradient, respectively. Therefore, if the components of the
heat flux in the z direction satisfy in Eq. (2.2), then

qx (r, t) = −κ∂U (r, t)

∂x
,
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qy (r, t) = −κ∂U (r, t)

∂y
,

qz (r, t+ τq) = −κ∂U (r, t+ τU )

∂z
.

Using Taylor’s expansion we have

qz + τq
∂qz
∂t

= −κ
(
∂U

∂z
+ τU

∂

∂t

(
∂U

∂z

))
.(2.4)

Differentiating the Eq. (2.4), and substituting the expression of ∇.q in
Eq. (2.3), implies

ρCp

κ

(
∂U

∂t
+ τq

∂2U

∂t2

)
= ∇2U + τq

∂

∂t

(
∂2U

∂x2
+
∂2U

∂y2

)
(2.5)

+ τU
∂3U

∂t∂z2
+
Q+ τq∂Q/∂t

κ
.

Let the real-valued functions f and g are given. Therefore, the initial
conditions at t = 0 are

U (x, y, z, 0) = f (x, y, z) ,(2.6)

∂U

∂t
(x, y, z, 0) = g (x, y, z) .

We also assume that the solution of the above initial value problem is
smooth. We consider

Ω = {(x, y, z) |0 ≤ x ≤ lx, 0 ≤ y ≤ ly, 0 ≤ z ≤ lz} .

3. 3D MRA and Wavelet Method

A nested sequence of closed subspaces of L2 (R), {V j}j∈Z , is called an

MRA for L2 (R) with scaling function φ, if
∪

j∈ZVj = L2 (R),
∩

j∈Z Vj =

{0}, f (·) ∈ Vj iff f
(
2−j ·

)
∈ V0 and there exists a function φ ∈ V0 such

that {φ (· − k) : k ∈ Z} is an orthonormal basis for V0 [12, 21].
We can write

V1 = V0 ⊕W0,(3.1)

whereW0 is the orthogonal complement of V0 in V1 and {ψ (· − k) : k ∈ Z}
is an orthonormal basis for W0. ψ is called the wavelet generated by
{Vj}j∈Z. Any u ∈ L2 (R) can be approximated with arbitrary precision

by elements of Vj . One can use the above conditions to get the following
corollary [12].

Corollary 3.1. Let {Vj}j∈Z be an MRA for L2 (R) with scaling function
φ.
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(a) There exist coefficients {ak}k∈Z such that

φ(x) =
∑
k∈Z

akφ (2x− k) .

(b) For any j, k ∈ Z define φjk(x) = 2j/2φ
(
2jx− k

)
. Then {φjk(x)}k∈Z

is an orthonormal basis for Vj.

If {Vj}j∈Z is an MRA for L2 (R) with scaling function φ and wavelet

ψ, then
{
V

′
j = Vj ⊗ Vj ⊗ Vj

}
j∈Z

is an MRA of L2
(
R3
)
. Using Eq. (3.1),

one can easily show that

V
′
1 = V

(x)
1 ⊗ V

(y)
1 ⊗ V

(z)
1(3.2)

=
(
V

(x)
0 ⊕W

(x)
0

)
⊗
(
V

(y)
0 ⊕W

(y)
0

)
⊗
(
V

(z)
0 ⊕W

(z)
0

)
=
(
V

(x)
0 ⊗ V

(y)
0 ⊗ V

(z)
0

)
⊕
(
V

(x)
0 ⊗ V

(y)
0 ⊗W

(z)
0

)
⊕
(
V

(x)
0 ⊗W

(y)
0 ⊗ V

(z)
0

)
⊕
(
V

(x)
0 ⊗W

(y)
0 ⊗W

(z)
0

)
⊕
(
W

(x)
0 ⊗ V

(y)
0 ⊗ V

(z)
0

)
⊕
(
W

(x)
0 ⊗ V

(y)
0 ⊗W

(z)
0

)
⊕
(
W

(x)
0 ⊗W

(y)
0 ⊗ V

(z)
0

)
⊕
(
W

(x)
0 ⊗W

(y)
0 ⊗W

(z)
0

)
= V

′
0 ⊕W

′1
0 ⊕W

′2
0 ⊕W

′3
0 ⊕W

′4
0 ⊕W

′5
0 ⊕W

′6
0 ⊕W

′7
0 .

In a similar way, one can compute every V
′
j . This 3D multiresolution

analysis requires one scaling function

Φ (x, y, z) = φ(x)φ(y)φ(z) ∈ V
′
0 ,

and seven wavelets

Ψ1 (x, y, z) = φ(x)φ(y)ψ(z), Ψ2 (x, y, z) = φ(x)ψ(y)φ(z),
Ψ3 (x, y, z) = φ(x)ψ(y)ψ(z), Ψ4 (x, y, z) = ψ(x)φ(y)φ(z),
Ψ5 (x, y, z) = ψ(x)φ(y)ψ(z), Ψ6 (x, y, z) = ψ(x)ψ(y)φ(z),
Ψ7 (x, y, z) = ψ(x)ψ(y)ψ(z),

where Ψi is the wavelet associated toW
′i for i = 1, 2, . . . , 7, respectively.

Let φ be the scaling function of a Daubechies wavelet. Then there
exists a sequence {ak} (the filter coefficients) such that [12]

φ(x) =

N−1∑
k=0

akφ (2x− k) ,(3.3)

where N is an even positive integer and φ has compact support

supp(φ) ⊂ [0, N − 1].
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Let φ(x) be normalized, i.e.
∫∞
−∞ φ(x) dx = 1. We now define autocor-

relation function of φ by [2]

θ(x) := (φ ∗ φ (−·)) (x).(3.4)

For j ∈ Z, define Vj = span
{
2j/2θ

(
2j · −k

)
, k ∈ Z

}
, then {Vj}j∈Z gen-

erates an MRA with the scaling function θ, [12, 15]. Due to the orthonor-
mality property of the set {φ (· − n) , n ∈ Z}, the function θ satisfies

θ(0) =

∫
φ(x)φ(x) dx = 1, θ(n) =

∫
φ(x)φ (x− n) dx = 0, n ̸= 0.

The function θ defined by Eq. (3.4) is θ(x) =
∫
φ(t)φ (t− x) dt, and one

can simply compute its second derivative, θ′′(l) = −
∫
φ′(t)φ′ (t− l) dt.

Define

Γl =

∫
φ′(t)φ′ (t− l) dt.

Since φ has compact support on [0, N − 1], we have

Γ−l = Γl, θ′′(l) = −Γl, |l| ≤ N − 2.

MATLAB software is used to compute Γ [1, 15, 17]. Thus we compute
second derivative of the function θ at the points xl = l2−j .

3.1. 3D Wavelet Method. Let jx, jy and jz be arbitrary natural num-
bers. We can estimate the solution of Eq. (5.3) with corresponding initial
conditions at a fixed time level by

U (ξ, η, ζ, t) ≃ Ujx,jy ,jz (ξ, η, ζ, t)(3.5)

=

lx∑
i=0

ly∑
j=0

lz∑
k=0

Uijk(t)Θi,j,k (ξ, η, ζ) ,

where Uijk(t) = U (ξi, ηj , ζk, t) and

Θi,j,k (ξ, η, ζ) = θ
(
2jxξ − i

)
θ
(
2jyη − j

)
θ
(
2jzζ − k

)
.

Thus the discretization of Eq. (5.3) at given collocation points ξi =
i2−jx , ηj = j2−jy and ζk = k2−jz , is

− 22jx
lx∑
i=0

UiplΓm−i − 22jy
ly∑
j=0

UmjlΓp−j − 22jz
lz∑

k=0

UmpkΓl−k

(3.6)

− τU2
2jz

∂

∂t

(
lz∑

k=0

UmpkΓl−k

)
+ τq

∂

∂t

−22jx
lx∑
i=0

UiplΓm−i − 22jy
ly∑
j=0

UmjlΓp−j


=
ρCp

κ

(
∂U

∂t
+ τq

∂2U

∂t2

)
− Q+ τq∂Q/∂t

κ
,
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for m = 0, 1, . . . , lx, p = 0, 1, . . . , ly and l = 0, 1, . . . , lz. The derivatives
of U are estimated

∂U

∂t
≃ Un+1 − Un

∆t
,

∂2U

∂t2
≃ Un−1 − 2Un + Un+1

∆t2
.(3.7)

Therefore, from Eq. (3.6), we can write

τq
∆t

22jx
lx∑
i=0

Un+1
ipl Γm−i +

τq
∆t

22jy
ly∑
j=0

Un+1
mjl Γp−j

(3.8)

+
τU
∆t

22jz
lz∑

k=0

Un+1
mpkΓl−k +

(∆t+ τq)

α (∆t)2
Un+1
mpl

=
( τq
∆t

− 1
)
22jx

lx∑
i=0

Un
iplΓm−i +

( τq
∆t

− 1
)
22jy

ly∑
j=0

Un
mjlΓp−j

+
( τU
∆t

− 1
)
22jz

lz∑
k=0

Un
mpkΓl−k +

(∆t+ 2τq)

α (∆t)2
Un
mpl

− τq

α (∆t)2
Un−1
mpl +

(
Q+ τq∂Q/∂t

κ

)n

mpl

,

for n = 0, 1, 2, . . . , where α = κ
ρCp

. Now, the system will be

AUn+1 = BUn + CUn−1 +Dn,(3.9)

where

C = − τq

α (∆t)2
,

is a scalar and the vector Dn is generated by the boundary conditions
and source terms.

4. The Convergence of the Method

In this section, we will show that the proposed method is convergent.
To do this, we need the following theorem, that is known as the Lax-
Richtmyer theorem [4, 24].

Theorem 4.1. A consistent finite-difference scheme for a partial dif-
ferential equation for which the initial-value problem is well posed is
convergent if and only if it is stable.

Thus we will prove that our scheme is consistent and stable.
Let P (Umpl) illustrate the PDE operator of Eq. (3.6) at fixed collo-

cation point (xm, yp, zl) and independent variable t with exact solution
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Umpl. Moreover, let Pn (Umpl) represent the approximating wavelet-
finite difference operator with exact solution Umpl for a fixed time-level
associated to Eq. (3.8). Suppose Vmpl is a continuous function of t with
a sufficient number of continuous derivatives to enable P (Vmpl) to be
evaluated at point n∆t. Then the truncation error En (Vmpl) for all
m = 0, 1, . . . , lx, p = 0, 1, . . . , ly, l = 0, 1, . . . , lz, at the point n∆t, is
given by

En (Vmpl) = Pn (Vmpl)− P
(
V n
mpl

)
,(4.1)

where V n
mpl = Vmpl (n∆t) .

If En (Vmpl) tends to zero as ∆t tends to zero, then the Eq. (3.8) is
consistent with the PDE (3.6), [24]. In the following, we show that the
truncation error En (Vmpl) is O (∆t).

By expanding Un+1
mpl and Un

mpl in Eq. (3.8) at the point (xm, yp, zl, n∆t) ∈
Ω× [0, T ], we have

τq
∆t

22jx
lx∑
i=0

[
Un
ipl +∆t

(
∂U

∂t

)n

ipl

+
(∆t)

2

2

(
∂2U

∂t2

)n

ipl

+O
(
(∆t)

3
)]

Γm−i

(4.2)

+
τq
∆t

22jy
ly∑
j=0

[
Un
mjl +∆t

(
∂U

∂t

)n

mjl

+
(∆t)

2

2

(
∂2U

∂t2

)n

mjl

+O
(
(∆t)

3
)]

Γp−j

+
τU
∆t

22jz
lz∑

k=0

[
Un
mpk +∆t

(
∂U

∂t

)n

mpk

+
(∆t)

2

2

(
∂2U

∂t2

)n

mpk

+O
(
(∆t)

3
)]

Γl−k (ζl)

+
∆t+ τq

α (∆t)
2

[
Un
mpl +∆t

(
∂U

∂t

)n

mpl

+
(∆t)

2

2

(
∂2U

∂t2

)n

mpl

+O
(
(∆t)

3
)]

= − τq

α (∆t)
2

[
Un
mpl −∆t

(
∂U

∂t

)n

mpl

+
(∆t)

2

2

(
∂2U

∂t2

)n

mpl

+O
(
(∆t)

3
)]

+
( τq
∆t

− 1
)
22jx

lz∑
i=0

Un
iplΓm−i +

( τq
∆t

− 1
)
22jy

ly∑
j=0

Un
mjlΓp−j

+
( τU
∆t

− 1
)
22jz

lz∑
k=0

Un
mpkΓl−k +

∆t+ 2τq

α (∆t)
2 U

n
mpl +

(
Q+ τq∂Q/∂t

κ

)n

mpl

,

for n = 0, 1, 2, . . ., m = 0, 1, . . . , lx, p = 0, 1, . . . , ly and l = 0, 1, . . . , lz.
From Eq. (3.6) we can write

− 22jx
lx∑
i=0

Un
iplΓm−i − 22jy

ly∑
j=0

Un
mjlΓp−j − 22jz

lz∑
k=0

Un
mpkΓl−k(4.3)
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− τq

22jx lx∑
i=0

(
∂U

∂t

)n

ipl

Γm−i + 22jy
ly∑
j=0

(
∂U

∂t

)n

mjl

Γp−j


− 22jzτU

lz∑
k=0

(
∂U

∂t

)n

mpk

Γl−k

=
ρCp

κ

(
∂U

∂t

)n

mpl

+
ρCpτq
κ

(
∂2U

∂t2

)n

mpl

−
(
Q+ τq∂Q/∂t

κ

)n

mpl

.

Hence the truncated error will be found from subtracting Eqs. (4.2) and (4.3),
i.e.,

En (Umpl) = τq
∆t

2

22jx lx∑
i=0

(
∂2U

∂t2

)n

ipl

Γm−i + 22jy
ly∑
j=0

(
∂2U

∂t2

)n

mjl

Γp−j


(4.4)

+ τU
∆t

2
22jz

lz∑
k=0

(
∂2U

∂t2

)n

mpk

Γl−k +
∆t

2α

(
∂2U

∂t2

)n

mpl

+O (∆t) .

Clearly En (Umpl) vanishes as ∆t tends to zero and lx, ly and lz tend to
infinity [3].

Eq. (3.9) can be represented as following (see [20])

Fn+1 =WNF
n + En, n = 1, 2, . . . ,(4.5)

where

Fn =

[
Un
N

Un−1
N

]
, WN =

[
A−1

N BN A−1
N CN

IN 0

]
, En =

[
A−1

N Dn
N

0

]
.

If each eigenvalue of WN has a modulus ≤ 1, i.e., ρ (WN ) ≤ 1, we say
Eq. (4.5) is stable. The eigenvalues of WN can be evaluated numerically
[24].

Therefore by the Lax-Richtmyer Theorem, the scheme is convergent.

5. Numerical Results

Example 5.1. Suppose
ρCp

κ = 1, τq = 1
π2 + 103, τU = 1

π2 − 1.99 ×
10−5, Q = 0, 0 ≤ x, y ≤ 0.1 mm, 0 ≤ z ≤ 10−5 mm, where the initial
and boundary conditions are

U (x, y, z, 0) = cos (10πx) sin (10πy) cos
(
105πz

)
,

∂U

∂t
(x, y, z, 0) = −π2 cos (10πx) sin (10πy) cos

(
105πz

)
,
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U (0, y, z, t) = −U (0.1, y, z, t) = exp
(
−π2t

)
sin (10πy) cos

(
105πz

)
,

U (x, 0, z, t) = U (x, 0.1, z, t) = 0,

U (x, y, 0, t) = −U (x, y, 0.1, t) = exp
(
−π2t

)
cos (10πx) sin (10πy) .

The boundary conditions were assumed to be insulated. The corre-
sponding exact solution is

U (x, y, z, t) = exp
(
−π2t

)
cos (10πx) sin (10πy) cos

(
105πz

)
.(5.1)

Thus, we expect positive (heating) and negative (cooling) values for the
temperature in the 3D sub-microscale particle. Let jx = jy = 7 and
jz = 20. Define the infinity norm by

Max Error = max
i,j,k

∣∣∣(UExact)
n
i,j,k − Un

i,j,k

∣∣∣ .(5.2)

The absolute eigenvalues of the WN matrix is plotted in the Fig. 1. We
show that the upper bound for the absolute value of WN ’s eigenvalues is
1. Thus the scheme is stable in time. In the following, Table 1 displays

Figure 1. Absolute eigenvalues of WN at Example 5.1.

the absolute of maximum error for time step ∆t = 0.01 at different times.
As it can be seen, the maximum error decreases down to zero against
increasing time. In Table 2 the absolute error for time step ∆t = 0.01 at
different collocation points is given. The simulation results show a good
agreement between the approximate solution and the exact solution.
The 3D temperature distribution is shown in Fig. 2 for x = 0.0703125,
y = 0.0703125 and z = 7.62939453125×10−6, respectively, for ∆t = 0.01
at t = 1.5.

Example 5.2. Let 3 directions are in microscale, introduce the DPL
heat equation as follows

ρCp

κ

(
∂U

∂t
+ τq

∂2U

∂t2

)
= ∇2U + τU

∂

∂t

(
∇2U

) Q+ τq∂Q/∂t

κ
.(5.3)
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Table 1. The Max Error for time step ∆t = 0.01 in
the wavelet-finite difference method for solving Eq. (5.3),
in Example 5.1

t MaxError t MaxError

0.5 3.425e − 04 2 3.022e − 10

0.8 2.108e − 05 2.4 6.463e − 12

1 3.547e − 06 2.8 1.346e − 13

1.5 3.482e − 08 2.9 5.099e − 14

1.8 2.038e − 09 3 1.929e − 14

Table 2. The absolute error in the wavelet-finite differ-
ence method for solving Equation (5.3), in Example 5.1

x = 0.0156 x = 0.0547 x = 0.0703 x = 0.0781 x = 0.0859 x = 0.0938

t y = 0.0625 y = 0.0156 y = 0.0156 y = 0.0156 y = 0.0156 y = 0.0547

z = 6.68e − 6 z = 5.72e − 6 z = 7.63e − 6 z = 8.58e − 6 z = 9.54e − 6 z = 5.72e − 6

0.5 9.454e − 06 1.384e − 05 1.251e − 05 1.594e − 05 2.025e − 05 2.233e − 05

1 1.644e − 07 2.472e − 07 1.632e − 07 2.004e − 07 2.499e − 07 2.912e − 07

1.5 1.762e − 09 2.597e − 09 1.580e − 09 1.916e − 09 2.375e − 09 2.818e − 09

2 1.614e − 11 2.321e − 11 1.361e − 11 1.641e − 11 2.027e − 11 2.428e − 11

2.5 1.368e − 13 1.920e − 13 1.104e − 13 1.328e − 13 1.635e − 13 1.969e − 13

3 1.108e − 15 1.520e − 15 8.632e − 16 1.034e − 15 1.274e − 15 1.539e − 15

Suppose there exists a 3D Gaussian heat source

Q (x, y, z, t) = 0.94J
1−R

tpδ
exp

−

(
x− lx

2

)2
+
(
y − ly

2

)2
2r20

− z

δ
− 1.88 |t− 2tp|

tp

 ,

(5.4)

where R = 0.93, J = 13.4 J/m2, tp = 100 fs
(
1fs = 10−15s

)
, r0 =

200 nm and δ = 15.3 nm. Let κ = 315 W/mK, α = 1.2× 10−4, τq =
8.5 ps

(
1ps = 10−12s

)
, τU = 90 ps, lx = ly = 500 nm, and lz =

100 nm.
We use the following initial and boundary conditions

U (x, y, z, 0) = 300K,
∂U

∂t
(x, y, z, 0) = 0.
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Figure 2. Graph of temperature distribution of Ex-
ample 5.1, at t = 1.5 and (a) x = 0.0703125, (b)
y = 0.0703125 and (c) z = 7.62939453125× 10−6.

The absolute eigenvalues of WN are plotted in the Fig. 3, that shows
the upper bound for the absolute value of WN ’s eigenvalues is 1. Thus
for this example, the scheme is stable in time.

In Fig.4, the temperature distribution at point x = y = 250 nm
and z = 0, is given. This shows that, in the center of the particle,
by increasing the time, the temperature decreases to 300◦K. The 3D
temperature distribution is shown in Fig. 5 for different times. The
simulation results show that at the first time, since we use 3D Gaussian
heat source, the center of particle is warm and by increasing time the
temperature decreases to 300◦K.
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Figure 3. Absolute eigenvalues of WN in Example 5.2.

Figure 4. Graph of temperature in x = y = 250 nm,
and z = 0, using ∆t = 0.5 fs, at Example 5.2.

Figure 5. Graph of temperature distribution of Exam-
ple 5.1 at different times, using ∆t = 0.5 fs.
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6. Conclusion

In this paper, we constructed a wavelet-finite difference approximation
to the solution of the 3D time-dependent initial-boundary value prob-
lems of a microscopic heat equation using the DPL model. Eq. (5.3) with
corresponding initial and boundary conditions, can be solved success-
fully using our proposed method. Consistency, stability and convergent
of the method based on a wavelet-finite difference approximation are
proved. Numerical results for temperature distribution at various times
are given and the efficiency of the method is presented. The numerical
results show that our method is effective.
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