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Theory of Hybrid Fractional Differential Equations with
Complex Order

Devaraj Vivek!, Omid Baghani?*, and Kuppusamy Kanagarajan®

ABSTRACT. We develop the theory of hybrid fractional differential
equations with the complex order 8 € C, 0 = m +ia, 0 < m < 1,
a € R, in Caputo sense. Using Dhage’s type fixed point theorem
for the product of abstract nonlinear operators in Banach algebra;
one of the operators is ©- Lipschitzian and the other one is com-
pletely continuous, we prove the existence of mild solutions of initial
value problems for hybrid fractional differential equations. Finally,
an application to solve one-variable linear fractional Schrodinger
equation with complex order is given.

1. INTRODUCTION

Fractional differential equations (FDEs) are employed in several fields,
consisting of physics, mechanics, chemistry, engineering etc.. There has
been an enormous improvement in ordinary differential equations con-
cerning to fractional order derivative; see the monographs of Hilfer [IT],
Kilbas [12] and Podlubny [I'7]. Specifically, many works have been con-
cerned to the initial value problems for nonlinear fractional differential
equations, for instance, see [G, [3].

The topic of FDEs, which attracted a growing interest for some time,
specially, on the subject of the complex order in fractional calculus, had
been quickly developed in the latest years. E.R. Love [I4] started the
research on fractional derivatives of imaginary order. The idea is to
complete the basic definitions of fractional integrals and derivatives by
defining derivatives of purely imaginary orders. A use for a derivative of
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complex order in the fractional calculus was studied in [I8]. A belief of
fractional operator of complex order is proposed by Samko et al. [T9].
On this course, numerous notions of fractional derivative of complex
order were discussed [8, 4]. For instance, C.M.A. Pinto [I6] introduced
two approximations of the complex order Van der Pol oscillator. In
[T5], the authors investigated the existence of solutions of boundary
value problems (BVPs) with complex order. Most recently, Vivek et al.
studied the existence and stability results for pantograph equations [21]
and integro-differential equations [20] with nonlocal conditions involving
complex order.

Another attractive class of problems connects to hybrid fractional
differential equations (HFDEs). For further study on this topic, one can
refer to [0, 2, 00, 22]. The following hybrid differential of first order

{5@ (7¢%5) = ott2(0), 1€ T=[0.7),

1.1
( ) l'(t()) =1x9 € R,

was revised by Dhage et al. [8], under the assumptions f € C(J x
R,R|{0}), and g € C(J x R,R). In [22], Zhao et al. looked after the
fractional version of the problem (L), i.e.,

(1.2) Do (f(f(it()t)» =g(t,z(t)), teJ, ac(0,1),
z(0) = 0,

where f € C(J xR,R|{0}), g € C(J xR,R), and a fixed point theorem

in Banach algebras was the main implementation in this work.
Inspired by above works, we improve the concept of HFDEs with

complex order. In this paper, we consider the following HFDE:

{D?H (7)) = o(te®), teJ=[0.1],

1.3
(13) x(0) = g

where Dg’+ is the Caputo fractional derivative of order 8 € C, § = m+ic,
0 <m <1, a € R, and we consider f € C(J xC,C—{0}), and
g€ C(J xC,C). It is easy to see that the equation (I33) is equivalent
to the following integral system:

(1.4)  z(t) = f(t,z(t)) <f((fox0) + I‘(lg) /0 (t— s)e_lg(s,x(s))ds) )

The paper is planned as follows. In Section B, we recall some of the initial
results required for the development of the paper. Section B includes
existence results for the problem (IZ3). Finally, in Section B, we will
study the existence of mild solution of an important equation in the
complex space.
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2. FUNDAMENTAL CONCEPTS

In this section, we give a few fixed point theorems used for mixed
operator equations. We also offer a few definitions and properties of
fractional calculus theory.

2.1. Review on Dhage’s Mixed Fixed Point Theorems. In sev-
eral areas of scientific disciplines, mathematical physics, mechanics and
population dynamics, problems are modelled by mathematical equations
which can be reduced to nonlinear equations of the form:

AxBr=x, x €S,

where S is closed, convex and bounded subset of a Banach algebra X,
and A, B are two operators. A useful tool to deal with such issues is
the celebrated fixed point theorem due to Dhage in 1988:

Theorem 2.1 ([7]). Let S be a closed, convex and bounded subset of a
Banach algebra X and let A, B : S — X be two operators such that

(a) A is Lipschitzian with Lipschitz constant c,

(b) B is completely continuous, and
(¢c) x = AxBx for allx € S.

Then the operator equation AxBx = x has a solution in S, whenever
aM < 1, where M := ||B(5)]|.

Most recently, Dhage has shown his attention on hypothesis (¢) of
above theorem and established the subsequent version under weaker
conditions. Before stating the other fixed point theorem, we provide
a helpful definition.

Definition 2.2. Let X be a Banach space. A mapping T : X — X
is called ©- Lipschitzian if there exists a continuous and nondecreasing
function ¢ : R™ — R such that

[Tz —Tyl| < ¢ ([lz—yl),

for all z,y € X, where ¢(0) = 0. If ¢ is not necessarily nondecreasing
and satisfies ¢(r) < r, for r > 0, the mapping T is called a nonlinear
contraction with a contraction function ¢.

Dhage in [6] replaced the hypothesis (a) by ©- Lipschitzian contrac-
tion condition for operator A and relaxed the hypothesis (c) with the
following condition

r=AzxBy = «x€8 forallyes.

Theorem 2.3 ([6]). Let S be a closed, convex and bounded subset of
the Banach algebra X and let A: X — X, B: S — X be two operators
such that
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(a) A is ©-Lipschitzian with ©-function ¢,
(b) B is completely continuous, and
(c) z=AxBy=z €S, forallye S.
Then the operator equation AxBx = x has a solution in S, whenever
Mo(r) <r for 0 <r, where M := || B(S)]|.

The main fixed point theorem used in the rest of the paper is offered
by Dhage in [6] as follows.

Theorem 2.4. Let B,(0) and B,(0) be open and closed balls in a Ba-
nach algebra X centered at a origin O of radius r, for some real number

r >0, andlet A, B : B,(0) — X be two operators satisfying the following

(a) A is Lipschitz with constant ~;
(b) B is continuous and compact;
(c) vM < 1, where

M = HB(M)H — sup {HB(JU)H L ze m} .

Then, either

(i) the equation AzBx = x has a solution in B,(0), or
(i) there is an element x € X such that ||z|| = r satisfying \AzBx =
x, for some 0 < A < 1.

2.2. Review on Fractional Calculus. In this subsection, we present
some definitions and theorems utilized in the sequel.

Definition 2.5 ([7]). The Riemann-Liouville fractional integral of or-
der § € C, (Re(#) > 0) of a function f is
1 t
IBoft) === [ (t—s)""'f(s)ds.
1) = g7 [ (€= 9" Fs)as

Definition 2.6 (['7]). For a function f given on a interval J, the Caputo
fractional-order 6§ € C, (Re(f) > 0) of f, is defined by

1 t

DO _ o \n—0-1 g(n)

(D610 = =g [ =" sy,

where n = [Re(f)] + 1 and [Re(f)] denotes the integer part of the real
number Re(#).

Definition 2.7 ([12]). The Stirling asymptotic formula of the Gamma
function for z € C is as follows:

Z— 1
(2.1) T'(z2)= (27r)5lee*Z {1 +0 ()] . (Jarg(2)| < 73 |2| = 00),
z
and its result for |I'(u 4 iv)|, (u,v € R) is

(2.2) [D(u+ )| = (21)F [o]*~2 e—u=lv/2 {1 +0 (i)} . (v — ).
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3. MAIN RESULTS

In this section, our intention is to examine the existence of mild so-
lutions to the problem (I=3).

Lemma 3.1. Any function satisfying (I3) with g € L*(J,C) will also

T

satisfy the integral equation (ICA). Moreover, if the function x — T

is injective, and I°g(t,z(t)) is an absolutely continuous function, then
the contrary is true.
Proof. Assume that z(t) satisfies (I=3). Then, <%> is absolutely

continuous, then we get that Dg+ (%) exists and is Lebesgue in-

tegrable on J. Applying the fractional integration I? to both sides of
(I3) we get (). Contrary is also true. The proof is corresponding to
Lemma 7 in [T0]. Hence, we skip the proof. O

Definition 3.2. (1) The function x € C(J,C) is called a mild so-
lution of the HFDEs with complex order (I=3) if it satisfies the
integral equation (I4).

(2) The function z € Ac(J,C), the space of absolutely continuous
complex-valued functions defined on J, is called a strong solu-
tion of (I=3) if

(a) the function ¢t — (%) is absolutely continuous for each

xz € C, and
(b) x satisfies (I=3).
Assume the following conditions:
(C1) There exists a constant v > 0 such that |f(t,x) — f(t,y)] <
v|z —y| for all t € J and z,y € C.

(C2) There exists a function h € L(J,C) such that |g(t,z)| < h(t),
for allt € J and =z € C.

(©3) 7 (|t | + oy Il ) <.

(C4) There exists r > 0 such that
T Tm
Fo (‘ f(O,(J)Uo) + mre) HhHLl)

Tm ’
1= (| s | + e 1)
where Fjy = sup;c; |£(t,0)].

Along the paper, we take 2,(0) to be an open ball centered at the
origin and of radius » > 0 in the Banach algebra X = C(J,C) (the
Banach space of continuous complex-valued functions defined on the
interval J equipped with the sup-norm, ||z|| = sup,c;|z(s)|, and with
multiplication property defined by (zy)(s) = z(s)y(s), for s € J). It is

r>
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easy to see that there is a mild solution to the problem (I33), which is
equivalent to the operator equation (I24)

Az (t)Bz(t) = z(t), te€ J,
where A, B : B,(0) — X are defined by
Ax(t) = f(t, (1)),
Bux(t) = 0y ! /t(t — 5)07 g(s, 2(s))ds.
f(0,20) ~ T'(6) Jo
Lemma 3.3. The operator A is Lipschitz on X.
Proof. Let x,y € X and t € J; then by (C1) we get
[Ax(t) — Ay(t)] = [f(t, z(t) — f(t y(1))|
<7 lz(t) —y(@)]
<7z -yl

Taking the supremum over ¢t € J, we get that A is Lipschitz on X with
Lipschitz constant ~. O

Lemma 3.4. The operator B is continuous operator on B,(0).

Proof. Let {x,} be a convergent sequence in %8,(0) converging to = €
B,.(0). Then, by the Lebesgue dominated converging theorem,

lim Bz,(t) = lim < f(éomo) +r(19) /O (t—s)“g(s,xn(s))d5>

n—oo n—oo
Lo 1 ! 6—1 1
= 70, 20) + 0 /0 (t—ys) nl;n;og(s,xn(s))ds
t
= f((iOJUo) + 1“(19) /0 (t — ) Lg(s, z(s))ds
— Ba(t),
for all t € J, we can conclude the continuity of the operator B. O

Lemma 3.5. The operator B is a compact operator on B,(0).

Proof. Let x be arbitrary in %B,(0). For any complex number 6§ € C,
0 =m+ia, 0 <m <1, a € R, we have the following relation
(£ = 5)0-1] = [0 Dn(t=9),
_ |e((m=1)+ia) In(t=s),
_ |elm=1)n(i=s) gialn(i=s),
_ e(m=)In(t—s) | gialn(i=s)|

= (t — s)™ ! cos(aln(t — s)) + isin(aln(t — 5))|
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= (t—s)™ L,

Now, by the condition (C2) and by means of Young’s convolution in-
equality we get

o
£(0,z0)
< X0 T 1
1 f(0,20) | [T
< X0 T 1
1 f(0,20) | [T

o 1 t
< +

70.20)| T T@1 o |

i) Tm

< + hllpr,
70,200 | " m @y "
which by taking the supremum over ¢ gives

i) ™ ——
+ hll;1, VaeB,.(0),
‘f(O,xo)‘ me) e ©)

Ba(1)] < #la [ -9 tatsatoas

t

(t = )" lg(s, w(s))] ds

(t— )" g(s,z(s))| ds

t— )" |h(s)|ds

|Bz]| <

which verifies that 9,(0) is a uniformly bounded set in X.

Now, we verify that ®8,(0) is an equicontinuous set in X. For 0 <
t1 < to <T we have

ta

g [0 = gt mods = s [t =9 gt n(s)ds
Al s /tl [(h R 3)971} ds + /tz(t2 — 5% 1ds|.

|Bx(t1) — Bx(t2)| =

— (o)l
Thus, for € > 0, there exists a § > 0 such that

|t1 — t2| <6 = |B£C(t1) — Baj(tg)’ <e€ ti,toed, =ze€ %T(O)

This confirms that 9B, (0) is an equicontinuous set in X. Due to Arzela-
Ascoli Theorem, we obtain that the operator B is a compact operator.
O

Now, we are going to verify the main result of this section.

Theorem 3.6. Under the above conditions (C1)-(C4), the equation
(I3) has a mild solution on J.

Proof. Let A, B : 96,(0) — X be the operators defined in the beginning
of this section. We know that A is Lipschitz, and B is continuous and
compact (see Lemmas B33 - BH). Set

= o (53|
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:&m{wB@m:xe%Am}.
By using Lemma B3, we get
o T
M <
b@%) m |['(0)]
From the condition (C3), we deduce that

Tm
h 1

\+ llps

T
f(Ov :L‘O)

It remains to confirm that the conclusion (ii) of Theorem P is not
possible. Let z € X and A € (0,1) be such that ||z|| = r and x = AAxBz.
It follows that

o0 = A |1t 000) (7 + e [ (6= 90"t

f(O’ Z’o)
<AU@$®H<'5}O w@|/‘ 7~ ltos (o) a5
< A1t 2(6)) — £(0,0) + £(2,0)

Xﬂﬂom wey/ m1MSx@nm)
T

AWMM+%%M@%A+INMMMJ
Fo (| s | + ot Il
1= (| ] + i Ihlos)

Taking supremum over ¢ and using (C4) and 0 < A < 1 we get

Fo (|7 m?quwy)
f(

WMSVO

<

HW<

— A (‘ 00| T mlF 0)] HhHLl)
 Follra] + s 1410
1=7 (’f(ogﬁo) m|F )] ”hHL1>
<r
which contradicts ||z|| = r; thus the conclusion (ii) of Theorem 24

is impossible; hence the operator AzBx = z has a solution in 98,(0).
Accordingly, problem (I=3) has a mild solution on J which completes
the proof of our problem. O
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4. APPLICATION IN AN IMPORTANT EQUATION

Consider the following equation

DBu(t) = wAu(t),
(4.1) {U(O) .

where f € C (0 < Re(8) < 1), w and ug are constants belonging to

B1(0), and A is a bounded linear operator on X := C([0, 1],B1(0)).
This equation is a special case of (IZ3) with 0 := 3, f(t,s) :=1, g(t,s) :=
wAs. Obviously, the assumptions (C1)-(C3) are satisfied using v := 0
and h(t) := ||A||. Now, we are going to ensure the condition (C4). We
know that Fy := supy 3 |f(¢,0)| = 1 and

r 1Al

hilr1 <
- IPll s < fool +

o
'f(O,:vo) m |T(0)] (8) IT(B)I°
Al

Clearly, there exists r > 0 such that r > |zo| + W. These show

that the equation (D) has a mild solution on [0, 1]. In practical view,
o8
BiP
and w by (—i)?, the following one-dimensional fractional Schrédinger
equation is obtained:

in equation (E0), if we replace 8 by a positive real number, D? by

(4.2) {863%” = (=i)7 Au(t), (8> 0),
u(0) = o,

in which (—1)% = e~2". The Schrodinger equation is a basic mathe-

matical equation in quantum mechanics, that describes the changes over
time of a physical system in which quantum effects, such as wave-particle
duality, are significant. Gorka et al. [9] proved existence and uniqueness
of equation (B=2), where A is a positive self-adjoint operator on a Hilbert
space H. They also introduced an example of equation (EZI) with the
operator A := —A, the Laplace operator, on L*(R). A special case of
equation (E0) can be presented as

43) {Dﬂu(t) = wu(t),

u(0) = uo,

where 0 < 8 < 1 and w,ug € B;1(0). After taking Laplace transforma-
tion of equation (E=3), we can determined the solution u(t) in terms of
the Mittag-Leffler function in the form

uo

(4.4) u(s) = F—w)
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where %(s) is the Laplace transform of u. Recall that the Laplace trans-
form of Caputo’s fractional derivative gives an interesting formula as

n—1
£[D§ u(t)] = s*u(s) — > ulh(0)s*F1.
k=0

By calculating the inverse Laplace transform of both sides of (£4), the
unique solution of equation (E=3) is given by

u(t) = ugEg(wt?),

where Fjg(z) is the Mittag-Leffler function, that is

o Zk

m, (8>0, z€C).

Eg(z) =
k=0

Moreover, the uniqueness of the solution of equation (E=3) follows by the
uniqueness theorem for the Laplace transform.
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