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Abstract. In this paper, we focus on the structured multi-frame
vectors in Hilbert C∗- modules. More precisely, it will be shown
that the set of all complete multi-frame vectors for a unitary sys-
tem can be parameterized by the set of all surjective operators, in
the local commutant. Similar results hold for the set of all com-
plete wandering vectors and complete multi-Riesz vectors, when
the surjective operator is replaced by unitary and invertible opera-
tors, respectively. Moreover, we show that new multi-frames (resp.
multi-Riesz bases) can be obtained as linear combinations of known
ones using coefficients which are operators in a certain class.

1. Introduction

Frames in Hilbert spaces were originally introduced by Duffin and
Schaeffer [19] to deal with some problems in nonharmonic Fourier anal-
ysis. Apparently, the importance of this concept was not well realized
by the mathematical community, and it took at least 30 years before
the next treatment appeared in print. In 1985, Daubechies et al. [17]
brought attention to it, which showed that Duffin and Schaeffer’s defini-
tion is an abstraction of the concept introduced by Gabor [21] in 1946.

Frames have been used as a powerful alternative to Hilbert bases, and
they allow a deep theory (for an overview see [9, 11, 24]). They are also
very important for applications, e.g. in physics [1, 13], signal processing
[5, 7, 8], numerical treatment of operator equations [14, 32] and acoustics
[6, 30].
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There have been numerous generalizations of the concept of frames,
see e.g. [1, 10, 12]. One of the most important generalizations of frame
theory is the concept of modular frames which is introduced by Frank
and Larson [20].

Recently, there are many mathematicians who apply operator theory
tools to do research on frame theory in Hilbert spaces, in particular,
they apply operator techniques to consider the construction of frames,
which is a basic problem in theory and applications.

As mentioned, frame theory is a powerful tool in data processing
such as image compression, denoising, etc. Before, only singly gener-
ated frames were used. Alpert [2] and Hervé [25], applied multi-frames
in their works for the first time. Multi-frames naturally generalize the
singly generated frames and gave some advantages in comparison to
singly generated ones. For example, such features as short support, or-
thogonality, symmetry, vanishing moments are known to be important
in signal processing. A singly generated frame cannot posses all these
properties at the same time [16]. On the other hand, a multi-frame sys-
tem can have all them simultaneously. This suggests that multi-frames
can provide perfect reconstruction (orthogonality), good performance
at the boundaries (symmetry) and high order of approximation (van-
ishing moments), so they could perform better than singly generated
ones. There are several literatures on the theory and applications of
multi-frames (see [18, 22, 23, 29]).

This paper is organized as follows. In Section 2, we state some def-
initions and preliminaries. In Section 3, we characterize the set of all
complete wandering vectors, complete multi-frame vectors and complete
multi-Riesz vectors in terms of unitary, surjective and invertible opera-
tors, respectively, in the local commutant. Finally, Section 4 is devoted
to the linear combinations of multi-frame vectors for unitary systems.

2. Notation and Preliminaries

In this section, we recall some definitions and basic properties of
Hilbert C∗-modules and their frames. Throughout this paper, A is a
unital C∗-algebra and E, F are finitely or countably generated Hilbert
A-modules. Moreover, by N we mean a countable index set.

A (left) Hilbert C∗-module over the C∗-algebra A is a left A-module
E equipped with an A-valued inner product ⟨·, ·⟩ : E×E → A satisfying
the following conditions:

(i) ⟨x, x⟩ ≥ 0 for every x ∈ E and ⟨x, x⟩ = 0 if and only if x = 0,
(ii) ⟨x, y⟩ = ⟨y, x⟩∗ for every x, y ∈ E,
(iii) ⟨·, ·⟩ is A-linear in the first argument,
(iv) E is complete with respect to the norm ∥x∥2 = ∥ ⟨x, x⟩ ∥A.
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Given Hilbert C∗-modules E and F , we denote by L (E,F ) the set of
all adjointable operators from E to F (i.e. of all maps T : E → F such
that there exists T ∗ : F → E with the property ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for
all x ∈ E, y ∈ F ). Specially, if E = F , we write L (E).

It is well-known that each adjointable operator is necessarily bounded
and A-linear in the sense T (ax) = aT (x), for all a ∈ A, x ∈ E.

An operator U ∈ L (E,F ) is said to be unitary if

U∗U = 1E , UU∗ = 1F .

A Hilbert A-module E is called finitely generated (resp. countably
generated) if there exists a finite subset {x1, . . . , xn} (resp. countable
set {xn}n∈N ) of E such that E equals the closed A-linear hull of this
set.

Let A be a C∗-algebra. Consider

ℓ2 (A) :=

{
{an}n∈N ⊆ A :

∑
n∈N

ana
∗
n converges in norm in A

}
.

It is easy to see that ℓ2 (A) with pointwise operations and the inner
product ⟨

{an}n∈N , {bn}n∈N
⟩
=
∑
n∈N

anb
∗
n,

becomes a Hilbert C∗-module which is called the standard Hilbert C∗-
module over A. For more detail about Hilbert C∗-modules, we refer the
interested readers to the books [28, 31].

Now, we recall the concept of frames in Hilbert C∗-modules which is
defined in [20]. Let E be a countably generated Hilbert module over a
unital C∗-algebra A. A sequence {xn}n∈N ⊂ E is said to be a frame if
there exist two constants C,D > 0 such that

(2.1) C ⟨x, x⟩ ≤
∑
n∈N

⟨x, xn⟩ ⟨xn, x⟩ ≤ D ⟨x, x⟩ ,

for every x ∈ E. The numbers C,D are called frame bounds.
The optimal constants (i.e. maximal for C and minimal for D) are

called optimal frame bounds. If the sum in (2.1) converges in norm, the
frame is called standard frame. If C = D = 1, then {xn}n∈N is said to
be a standard normalized tight frame. The sequence {xn}n∈N is called
a Bessel sequence with bound D if the upper inequality in (2.1) holds
for every x ∈ E.

A Riesz basis in a Hilbert C∗-module E is a frame {xn}n∈N such that
for each n ∈ N , xn ̸= 0 and if an A-linear combination

∑
n∈M⊆N anxn

is equal to zero, it concludes that every summand anxn is equal to zero.
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Suppose that {xn}n∈N is a standard Bessel sequence of a Hilbert A-

module E. The operator T : E → ℓ2 (A) defined by

Tx = {⟨x, xn⟩}n∈N ,

is called the analysis operator. The adjoint operator T ∗ : ℓ2 (A) → E is
given by

T ∗ ({an}n∈N) = ∑
n∈N

anxn,

and it is called the synthesis operator. If {xn}n∈N is a standard frame
for E with bounds C and D, then the frame operator S : E → E defined
by:

Sx = T ∗Tx =
∑
n∈N

⟨x, xn⟩xn,

is a well-defined, positive, invertible and adjointable operator. Further,
it satisfies C ≤ S ≤ D and D−1 ≤ S−1 ≤ C−1. Also, the the recon-
struction formula holds as follows:

(2.2) x =
∑
n∈N

⟨
x, S−1xn

⟩
xn =

∑
n∈N

⟨x, xn⟩S−1xn, (x ∈ E) .

The sequence {x̃}n∈N =
{
S−1xn

}
n∈N , which is a standard frame with

bounds D−1 and C−1, is called the canonical dual frame of {xn}n∈N .
Sometimes, the reconstruction formula for the standard frames is valid
with other (standard) frames {yn}n∈N instead of

{
S−1xn

}
n∈N . They

are said to be alternative dual frames of {xn}n∈N .
Following, we discuss about the concept of orthonormal bases in

Hilbert modules. Actually, we borrow the definition of an orthonormal
system for Hilbert C∗-modules from [4].

Definition 2.1. A collection {en}n∈N of vectors from E is called or-
thogonal if ⟨en, em⟩ = 0 for all n ̸= m. The orthogonal system {en}n∈N
is said to be quasi-orthonormal if ⟨en, en⟩ = pn is a minimal projection in
A in the sense that pnApn = Cpn, for all n ∈ N . In a unital C∗-algebra
A, {en}n∈N is said to be orthonormal if ⟨en, en⟩ = 1A, for all n ∈ N .

An orthonormal system {en}n∈N in E is said to be an orthonormal
basis for E if it generates a dense submodule of E.

In [4, Theorem 1], the authors established some results for quasi-
orthonormal systems in Hilbert modules, such as Fourier expansion and
Parsevals identity. The following proposition gives similar results for
orthonormal systems in Hilbert modules. Because of the similar process,
we have omitted the proof.
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Proposition 2.2. Let E be a Hilbert C∗-module over a unital C∗-algebra
A and let {en}n∈N be an orthonormal system in E. The following state-
ments are mutually equivalent:

(i) {en}n∈N is an orthonormal basis for E.
(ii) x =

∑
n∈N

⟨x, en⟩ en for every x ∈ E.

(iii) ⟨x, x⟩ =
∑
n∈N

⟨x, en⟩ ⟨en, x⟩ for every x ∈ E.

(iv) ⟨x, y⟩ =
∑
n∈N

⟨x, en⟩ ⟨en, y⟩ for all x, y ∈ E.

It should be mentioned that, contrasting to the Hilbert space situa-
tion, an arbitrary Hilbert C∗-module need not possess an orthonormal
basis. The following lemma characterizes all orthonormal bases for a
Hilbert module E which contains an orthonormal basis.

Lemma 2.3. Let {en}n∈N be an orthonormal basis for Hilbert module
E. Then the orthonormal bases for E are precisely the sets {Uen}n∈N ,
where U : E → E is a unitary operator.

Proof. Suppose {fn}n∈N is an orthonormal basis for E. Define the op-

erators U1 and U2 from E to ℓ2 (A) as

U1 (x) := {⟨x, en⟩}n∈N , U2 (x) := {⟨x, fn⟩}n∈N .

Since {en}n∈N and {fn}n∈N are both standard normalized tight frames,
the operators U1 and U2 are well-defined and adjointable. Let U :=
U∗
2U1. Then Ux =

∑
n∈N

⟨x, en⟩ fn and so Uen = fn, for each n ∈ N .

Now, we show that U is unitary. For each x, y ∈ E:

⟨U∗Ux, y⟩ = ⟨Ux,Uy⟩

=

⟨∑
n∈N

⟨x, en⟩ fn,
∑
m∈N

⟨y, em⟩ fm

⟩
=
∑
n∈N

⟨x, en⟩ ⟨en, y⟩

= ⟨x, y⟩ .
Therefore U is an isometry. Due to the fact that U is also a surjective
operator, by [27], it is obtained that U is unitary.

Conversely, if U is a unitary operator on E, then

⟨Uen, Uem⟩ = ⟨U∗Uen, em⟩
= ⟨en, em⟩
= δn,m,

it means that {Uen}n∈N is an orthonormal system in E, and it is a basis
by surjectivity of U . □



6 M. MAHMOUDIEH, H. HOSSEINNEZHAD, AND GH. ABBASPOUR TABADKAN

Definition 2.4 ([15]). A unitary system U on E is a set of unitary
operators acting on E which contains the identity operator.

Definition 2.5 ([15]). Let S ⊆ L (E). We denote its commutant
{A ∈ L (E) : AS = SA, S ∈ S} by S ′. Let Ψr = {ψ1, ψ2, . . . , ψr} be a
tuple of elements in E. The local commutant CΨr (S) is defined by

CΨr (S) = {A ∈ L(E) : ASψn = SAψn, n = 1, . . . , r;S ∈ S} .

It is clear that this is a linear subspace of L (E).

Definition 2.6. A tuple Γr = {γ1, γ2, . . . , γr} in E is called a complete
multi-frame vector (resp. complete multi-normalized tight frame vec-
tor, complete multi-Riesz basis vector, complete multi-Bessel sequence
vector) of multiplicity r for a unitary system U if

UΓr = {Uγ1, Uγ2, . . . , Uγr;U ∈ U}
is a frame (resp. normalized tight frame, Riesz basis, Bessel sequence)
for E. If UΓr is an orthonormal basis for E, then Γr is called a complete
wandering r-tuple for U . The set of all complete wandering r-tuples for
U is denoted by Wr(U).

3. Parametrization of Multi-Frame Vectors by Operators
in a Local Commutant

In this section, the results of [22] are extended to Hilbert modules.
Namely, we characterize (complete) multi-frame vectors for a unitary
system U in terms of certain class of operators in a local commutant of
U .

Proposition 3.1. Let U be a unitary system on a Hilbert module E.
Suppose that E has an orthonormal basis and Ψr = {ψ1, ψ2, . . . , ψr} is
a complete wandering r-tuple for U . For a tuple Γr = {γ1, γ2, . . . , γr} in
E, the following statements are satisfying:

(i) Γr is a complete wandering r-tuple for U if and only if there
exists a unitary operator T ∈ CΨr (U) such that γi = Tψi for
i = 1, . . . , r.

(ii) Γr is a complete multi-Riesz basis vector with a unique dual
frame for U if and only if there exists an invertible operator
T ∈ CΨr (U) such that γi = Tψi for i = 1, . . . , r.

(iii) Γr is a complete multi-frame vector for U if and only if there
exists a surjective operator T ∈ CΨr (U) such that γi = Tψi for
i = 1, . . . , r.

(iv) Γr is a complete multi-Bessel sequence vector for U if and only
if there exists an operator T ∈ CΨr (U) such that γi = Tψi for
i = 1, . . . , r.
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(v) Γr is a complete multi-normalized tight frame vector for U if
and only if there exists a co-isometry T ∈ CΨr (U) such that
γi = Tψi for i = 1, . . . , r.

Proof. (i) Firstly, suppose there is a unitary operator T ∈ CΨr (U)
such that for each i = 1, . . . , r, γi = Tψi. Then, Uγi = UTψi =
TUψi, for U ∈ U . Since {Uψ1, . . . , Uψr, U ∈ U} is an orthonor-
mal basis for E and T is a unitary operator, it follows, by
Lemma 2.3, that {Uγ1, . . . , Uγr, U ∈ U} is also an orthonormal
basis for E and so Γr is a complete wandering r-tuple for U .

Conversely, let Γr be a complete wandering r-tuple for U .
So {Uγ1, . . . , Uγr, U ∈ U} and {Uψ1, . . . , Uψr, U ∈ U} are two
orthonormal bases for E. Hence, by Lemma 2.3, there exists
a unitary operator T on E such that Uγi = TUψi, for each
i = 1, . . . , r and U ∈ U . Particularly, for U = I, we have
γi = Tψi. Finally, for U ∈ U , we have UTψi = Uγi = TUψi,
i = 1, . . . , r, so T ∈ CΨr (U).

(ii) Assume that there is an invertible operator T ∈ CΨr (U) such
that γi = Tψi, i = 1, . . . , r. We show that {Uγ1, . . . , Uγr, U ∈ U}
is a Riesz basis for E which has a unique dual frame. To do this,
by [26, Theorem4.9], it is enough to prove {Uγ1, . . . , Uγr, U ∈ U}
is a frame for E and the associated analysis operator T ∗

{Uγi} is
surjective. Since Ψr is a complete wandering r-tuple for U , so
{Uψ1, . . . , Uψr, U ∈ U} is an orthonormal basis for E. Hence,
by Proposition 2.2, it is also a normalized tight frame for E.
Now, since for each i = 1, . . . , r, UTψi = TUψi, so it is con-
cluded, by [20, Theorem 5.3], that {Uγ1, . . . , Uγr, U ∈ U} =
{UTψ1, . . . , UTψr, U ∈ U} is a frame for E. Moreover, regard-
ing {Uψ1, . . . , Uψr, U ∈ U} is a generating set for E, clearly
{Uγi, i = 1, . . . , r;U ∈ U} = {UTψi = TUψi, i = 1, . . . , r;U ∈ U}
is also a generating set for E.

To complete the proof it remains to prove that the synthesis

operator T{Uγi} is injective. Assume that
r∑

i=1

∑
U∈U

aiUUγi = 0.

So

0 =

r∑
i=1

∑
U∈U

aiUUTψi

=

r∑
i=1

∑
U∈U

aiUTUψi

= T

(
r∑

i=1

∑
U∈U

aiUUψi

)
.
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Since T is injective, we have

r∑
i=1

∑
U∈U

aiUUψi = 0.

Hence, for some index j and V ∈ U ,

0 =

r∑
i=1

∑
U∈U

aiU ⟨Uψi, V ψj⟩

= ajV ⟨V ψj , V ψj⟩

= ajV .

Since j and V are arbitrary, it follows that the synthesis opera-
tor T{Uγi} is injective and so T ∗

{Uγi} is surjective. Therefore, we

conclude Γr = TΨr is a complete multi-Riesz basis vector with
a unique dual frame.

Conversely, let Γr be a complete multi-Riesz basis vector for
U with a unique dual frame. Define the operator T on E as:

(3.1) Tx :=

r∑
i=1

∑
U∈U

⟨x,Uψi⟩Uγi.

Then T is well-defined and adjointable with

T ∗x =

r∑
i=1

∑
U∈U

⟨x,Uγi⟩Uψi.

Since {Uγ1, . . . , Uγr, U ∈ U} is a Riesz basis (and so a frame)
for E, so there exist 0 < C ≤ D <∞ such that for each x ∈ E,

C ⟨x, x⟩ ≤
r∑

i=1

∑
U∈U

⟨x,Uγi⟩ ⟨Uγi, x⟩ ≤ D ⟨x, x⟩ .

Now, by the fact that

⟨T ∗x, T ∗x⟩ =
r∑

i=1

∑
U∈U

⟨x,Uγi⟩ ⟨Uγi, x⟩ ,

it follows from [3, Proposition 2.1] that T is surjective. For
injectivity, let

Tx :=

r∑
i=1

∑
U∈U

⟨x,Uψi⟩Uγi = 0,

for some x ∈ E. Since {Uγ1, . . . , Uγr, U ∈ U} is a Riesz basis
with a unique dual frame, it follows by [26, Theorem 4.9] that
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⟨x,Uψi⟩ = 0, for each i ∈ I, U ∈ U . Hence

x =

r∑
i=1

∑
U∈U

⟨x,Uψi⟩Uψi = 0.

Therefor, T is also injective. To complete the proof, it remains
to prove that γi = Tψi, i = 1, . . . , r and T ∈ CΨr (U). For every
V,U ∈ U and i = 1, . . . , r,

⟨V γi, TUψi⟩ =

⟨
V γi,

r∑
j=1

∑
W∈U

⟨Uψi,Wψj⟩Wγj

⟩

=
r∑

j=1

∑
W∈U

⟨V γi,Wγj⟩ ⟨Wψj , Uψi⟩

= ⟨V γi, Uγi⟩ .

Hence, TUψi = Uγi, for U ∈ U and i = 1, . . . , r. Particularly,
for U = I, we have Tψi = γi and TUψi = Uγi = UTψi. The
proof is complete.

(iii) Suppose that there exists a surjective operator T ∈ CΨr (U) on
E such that γi = Tψi, i = 1, . . . , r. Thus Uγi = UTψi = TUψi,
for i = 1, . . . , r. Since {Uψ1, . . . , Uψr;U ∈ U} is an orthonor-
mal basis (and so a normalized tight frame) for E, and T is
surjective, it follows that {Uγ1, . . . , Uγr;U ∈ U} is a frame for
E, by [3, Theorem 3.5], and hence Γr is a complete multi-frame
vector for U .

Conversely, let Γr be a complete multi-frame vector for U
with lower bound C. Define the operator T on E as (3.1).
Thus, for each x ∈ E, we have:

⟨T ∗x, T ∗x⟩ =

⟨
r∑

i=1

∑
U∈U

⟨x,Uγi⟩Uψi,
r∑

j=1

∑
V ∈U

⟨x, V γj⟩V ψj

⟩

=
r∑

i=1

∑
U∈U

⟨x,Uγi⟩ ⟨Uγi, x⟩

≥ C ⟨x, x⟩ .

Hence, by [3, Proposition 2.1], T is a surjective operator. The
rest of proof is similar to the proof of part (ii).

(iv) It is obtained by a similar argument as part (iii).
(v) Suppose there is a co-isometry T ∈ CΨr (U) such that Γr = TΨr.

Then, for every x ∈ E:

⟨x, x⟩ = ⟨T ∗x, T ∗x⟩
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=

r∑
i=1

∑
U∈U

⟨T ∗x,Uψi⟩ ⟨Uψi, T
∗x⟩

=

r∑
i=1

∑
U∈U

⟨x, TUψi⟩ ⟨TUψi, x⟩

=
r∑

i=1

∑
U∈U

⟨x,UTψi⟩ ⟨UTψi, x⟩

=
r∑

i=1

∑
U∈U

⟨x,Uγi⟩ ⟨Uγi, x⟩ ,

which implies that {Uγi} is a normalized tight frame for E and
hence Γr is a complete multi-normalized tight frame vector for
U .

Conversely, define the operator T on E as (3.1). Then, for
every x ∈ E:

⟨T ∗x, T ∗x⟩ =

⟨
r∑

i=1

∑
U∈U

⟨x, Uγi⟩Uψi,
r∑

j=1

∑
U∈U

⟨x,Uγj⟩Uψj

⟩

=
r∑

i=1

∑
U∈U

⟨x,Uγi⟩ ⟨Uγi, x⟩

= ⟨x, x⟩ .

Therefore, T is a co-isometry on E. The proof of T ∈ CΨr (U)
and γi = Tψi, i = 1, . . . , r, is similar to the previous parts.

□
Remark 3.2. It is well-known that in Hilbert spaces every Riesz basis has
a unique dual which is also a Riesz basis. But in Hilbert C∗-modules,
due to the zero divisors, not all Riesz bases have unique duals and not
every dual is a Riesz basis. For example, let A = M2×2 (C) denote
the C∗-algebra of all 2 × 2 complex matrices. Let E = A and for any
B,C ∈ E define

⟨B,C⟩ = BC∗.

Then E is a Hilbert A-module. Let Fij be the 2 × 2 matrix with 1 in
the ij-th entry and 0 elsewhere, where 1 ≤ i, j ≤ 2. Then {F11, F22}
is a Riesz basis of E and it is a dual of itself. One can check that
{F11 + F21, F22} is also a dual Riesz basis of {F11, F22}.

In part (2) of [26, Proposition 5.1], it was claimed that for a unitary
system U on a Hilbert module E, every complete Riesz basis is the im-
age of a complete wandering vector under an invertible and adjointable
operator. It seems that this is not true in general. Indeed, assume that
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U is a unitary system on E and γ is a complete Riesz basis vector for U .
So, part (2) of [26, Proposition 5.1] implies that there is an invertible and
adjointable operator T on E such that {Uγ : U ∈ U} = {TUψ : U ∈ U},
where ψ is a complete wandering vector in E. Now, if

∑
U∈U aUUγ = 0,

for some {aU}U ∈ ℓ2U (A), then

0 =
∑
U∈U

aUUγ = T

(∑
U∈U

aUUψ

)
.

Since T is injective, we have
∑

U∈U aUUψ = 0. Therefore, for every
V ∈ U ,

0 =

⟨∑
U∈U

aUUψ, V ψ

⟩
= aV .

Now, [26, Theorem 4.9] implies that {Uγ}U∈U has a unique dual frame,
which does not hold in general.

Example 3.3. Let {en}+∞
n=−∞ be an orthonormal basis for a Hilbert

module E and S ∈ L (E) be the bilateral shift operator of multiplicity
2; Sen = en+2, for any n ∈ N . Let U = {Sn : n ∈ Z}. Then U is a
unitary system on E. Clearly, Ψ2 = {e0, e1} is a complete wandering
2-tuple vector for U . Now, Proposition 3.1 implies that

N =
{
VΨ2 = {V e0, V e1} ;V ∈ CΨ2 (U) and V is a co-isometry on E

}
,

F =
{
VΨ2 = {V e0, V e1} ;V ∈ CΨ2 (U) and V is a surjective operator on E

}
,

are the sets of complete multi-normalized tight frame vector and com-
plete multi-frame vector for U , respectively.

As it is seen, in part (iii) of Proposition 3.1, the set of complete
multi-frame vectors was characterized by surjective operators in local
commutant. The following proposition gives another characterization of
complete multi-frame vectors for unitary systems.

Proposition 3.4. Let Ψr be a complete multi-normalized tight frame
vector for a unitary system U and let Γr be a tuple of elements of E.
Then, Γr is a complete multi-frame vector for U if and only if there
exists an invertible operator T ∈ CΨr (U) such that Γr = TΨr, i.e,
γi = Tψi, i = 1, . . . , r.

Proof. Assume that Γr is a complete multi-frame vector for U . Then,
{Uγ1, . . . , Uγr, U ∈ U} is a frame for E. So, by [20, Theorem 5.3], there
is an invertible operator T on E such that Uγi = TUψi, i = 1, . . . , r.
Hence, for U = I, γi = Tψi, i = 1, . . . , r, and then TUψi = Uγi =
UTψi, i = 1, . . . , r, so T ∈ CΨr (U).

Conversely, if there exists an invertible operator T ∈ CΨr (U) such
that γi = Tψi, i = 1, . . . , r. Then Uγi = UTψi = TUψi, i = 1, . . . , r. So,
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by [20, Theorem 5.3], {Uγ1, . . . , Uγr, U ∈ U} is a frame for E and then
Γr is a complete multi-frame vector for U . □

The following proposition shows that if S is a unitary system which
is not a group, and if S has a complete multi-normalized tight frame
vector, then S could be a group. This generalizes [26, Proposition 5.2].

Proposition 3.5. Let S be a unital semigroup of unitary operators on
a Hilbert module E. Suppose that S has a complete multi-normalized
tight frame vector. Then S is a group.

Proof. Let U0 ∈ S and Γr = {γ1, . . . , γr} be a complete multi-normalized
tight frame. Then for every x ∈ E,

r∑
i=1

∑
V ∈S

⟨x, V γi⟩ ⟨V γi, x⟩ = ⟨x, x⟩

= ⟨U∗
0x,U

∗
0x⟩

=

r∑
i=1

∑
V ∈S

⟨U∗
0x, V γi⟩ ⟨V γi, U∗

0x⟩

=

r∑
i=1

∑
V ∈S

⟨x, U0V γi⟩ ⟨U0V γi, x⟩ .

Since U0S ⊆ S, it follows that

(3.2)
r∑

i=1

∑
V ∈S−U0S

⟨x, V γi⟩ ⟨V γi, x⟩ = 0.

Assume by contradiction that U−1
0 /∈ S. Then, Id /∈ U0S and so by

(3.2), it is concluded that ⟨x, γi⟩ ⟨γi, x⟩ = 0. Particularly, for x = γi, we
have γi = 0, a contradiction. □

4. Linear Combinations of Multi-Frame Vectors for
Unitary Systems in Hilbert C∗-modules

The main idea in operator-theoretic interpolation of frames is new
frames that can be obtained as linear combinations of known ones using
coefficients which are operators in a certain class. Both the ideas and the
essential computations extend naturally to more general unitary systems
and wandering vectors. In the sequel, by given results in section [3], we
investigate some conditions under which some linear combinations of
complete wandering (multi-Riesz basis) vectors also belong to the same
class of vectors.

The following two results are the most elementary case of operator-
theoretic interpolation of multi-vectors.
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Proposition 4.1. Suppose that Ψr = {ψ1, . . . , ψr} and Γr = {γ1, . . . , γr}
are complete wandering r-tuples for a unitary system U . Then Γr+αΨr

is a complete multi-Riesz basis for U , where α ∈ C with |α| ̸= 1. More
generally, if Ψr and Γr are complete multi-Riesz bases, then there are
positive numbers b > a > 0 such that Γr+αΨr is a complete multi-Riesz
basis for all α ∈ C that either |α| < a or |α| > b.

Proof. By the first part of Proposition 3.1, there exists a unitary oper-
ator T ∈ CΨr (U) such that Γr = TΨr. So

Γr + αΨr = TΨr + αΨr = (T + αI)Ψr.

Since T is a unitary operator, T + αI is invertible if |α| ̸= 1 and the
result is obtained by part (ii) of Proposition 3.1.

Now, assume that Ψr and Γr are complete multi-Riesz bases. Then,
there is an invertible adjointable operator T on E with TΨr = Γr. So

Γr + αΨr = TΨr + αΨr = (T + αI)Ψr.

Since T is invertible, there are b > a > 0 such that

σ (T ) ⊆ {α ∈ C, a < |α| < b} ,
where σ (T ) denotes the spectrum of T , and the same argument applies.

□
Proposition 4.2. Suppose that Ψr = {ψ1, . . . , ψr} and Γr = {γ1, . . . , γr}
are complete wandering r-tuples for a unitary system U . Then, αΨr +
(1− α) Γr, α ∈ C with |α| ̸= |α− 1|, is a complete multi-Riesz basis for
U .

Proof. It is assumed that α ̸= 1. Since Ψr and Γr are complete wan-
dering r-tuples, there exists a unitary operator T such that Γr = TΨr.
Thus, αΨr + (1− α) Γr = (αI + (1− α)T )Ψr. It is enough to show
that S = αI + (1− α)T is invertible. Since T is unitary, σ (T ) ⊆
{α ∈ C, |α| = 1}. So for α ∈ C with |α| ̸= |α−1|, we have α (α− 1)−1 /∈
σ (T ) and so

S = (1− α)
[
T − α (α− 1)−1 I

]
,

is invertible and the proof is complete. □
In the next proposition, we are going to find the conditions such

that the linear combinations of complete wandering multi-vectors for a
unitary system U is also a complete wandering multi-vector.

Proposition 4.3. Suppose that Ψr = {ψ1, . . . , ψr} ,Γr = {γ1, . . . , γr}
and Λr = {λ1, . . . , λr} are complete wandering r-tuples for a unitary
system U . Suppose that A1, A2 ∈ CΨr (U) are unitary operators such that
Γr = A1Ψ

r,Λr = A2Ψ
r. Moreover, let Bi ∈ CAiΨr (U) , (i = 1, 2), be two
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normal operators with BiAi = AiBi, (i = 1, 2) and B1B
∗
2 = B∗

1B2 = 0.
Then B1Γ

r +B2Λ
r is a complete wandering r-tuple for U if and only if

B1B
∗
1 +B2B

∗
2 = I.

Proof. Since Γr = A1Ψ
r and Λr = A2Ψ

r, so B1Γ
r +B2Λ

r = B1A1Ψ
r +

B2A2Ψ
r = (B1A1 +B2A2)Ψ

r. SinceBi ∈ CAiΨr (U), soBiAi ∈ CΨr (U) ,
(i = 1, 2) and hence B1A1+B2A2 ∈ CΨr (U). By the first part of Propo-
sition 3.1, B1Γ

r + B2Λ
r is a complete wandering r-tuple if and only if

B1A1 +B2A2 is a unitary operator. Since

(B1A1 +B2A2) (B1A1 +B2A2)
∗

= (B1A1 +B2A2) (A
∗
1B

∗
1 +A∗

2B
∗
2)

= B1A1A
∗
1B

∗
1 +B1A1A

∗
2B

∗
2 +B2A2A

∗
1B

∗
1 +B2A2A

∗
2B

∗
2

= B1B
∗
1 +A1B1B

∗
2A

∗
2 +A2B2B

∗
1A

∗
1 +B2B

∗
2

= B1B
∗
1 +B2B

∗
2 ,

and

(B1A1 +B2A2)
∗ (B1A1 +B2A2)

= (A∗
1B

∗
1 +A∗

2B
∗
2) (B1A1 +B2A2)

= A∗
1B

∗
1B1A1 +A∗

1B
∗
1B2A2 +A∗

2B
∗
2B1A1 +A∗

2B
∗
2B2A2

= B∗
1A

∗
1A1B1 +B∗

2A
∗
2A2B2

= B∗
1B1 +B∗

2B2

= B1B
∗
1 +B2B

∗
2 ,

so B1A1+B2A2 is a unitary operator if and only if B1B
∗
1+B2B

∗
2 = I. □

For complete normalized multi-tight frame vectors, we have the fol-
lowing sufficient conditions for their linear combinations keep to be com-
plete normalized multi-tight frame vectors. Because of the same process
as [22, Theorem 4.1], the proof is omitted.

Proposition 4.4. Suppose that Ψr = {ψ1, . . . , ψr} is complete wander-
ing r-tuples for a unitary system U and Γr = {γ1, . . . , γr} and Λr =
{λ1, . . . , λr} are complete multi-normalized tight frame vectors for U .
Suppose that A1, A2 ∈ CΨr (U) are co-isometries such that Γr = A1Ψ

r,Λr

= A2Ψ
r and A1A

∗
2 = 0. Moreover, let Bi ∈ CAiΨr (U) , (i = 1, 2). Then,

B1Γ
r + B2Λ

r is a complete multi-normalized tight frame for U if and
only if B1B

∗
1 +B2B

∗
2 = I.

The next proposition gives a sufficient condition under which the lin-
ear combination of complete multi-Riesz bases is also a complete multi-
Riesz basis.
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Proposition 4.5. Suppose that Ψr = {ψ1, . . . , ψr} is a complete wan-
dering r-tuple for a unitary system U , Γr = {γ1, . . . , γr} and Λr =
{λ1, . . . , λr} are complete multi-Riesz bases for U and A1, A2 ∈ CΨr (U)
are invertible operators such that Γr = A1Ψ

r,Λr = A2Ψ
r. Moreover, let

Bi ∈ CAiΨr (U) , (i = 1, 2) be two operators with BiAi = AiBi, (i = 1, 2)
and B1B2 = B2B1 = 0. Then B1Γ

r + B2Λ
r is a complete multi-Riesz

basis for U if B2
1 +B2

2 = I.

Proof. Since Γr = A1Ψ
r and Λr = A2Ψ

r, so B1Γ
r +B2Λ

r = B1A1Ψ
r +

B2A2Ψ
r = (B1A1 +B2A2)Ψ

r. SinceBi ∈ CAiΨr (U), soBiAi ∈ CΨr (U) ,
(i = 1, 2) and hence B1A1 +B2A2 ∈ CΨr (U). Moreover,

(B1A1 +B2A2)
(
A−1

1 B1 +A−1
2 B2

)
= B2

1 +B1A1A
−1
2 B2 +B2A2A

−1
1 B1 +B2

2

= B2
1 +A1B1B2A

−1
2 +A2B2B1A

−1
1 +B2

2

= B2
1 +B2

2 .

and(
A−1

1 B1 +A−1
2 B2

)
(B1A1 +B2A2)

= A−1
1 B1B1A1 +A−1

1 B1B2A2 +A−1
2 B2B1A1 +A−1

2 B2B2A2

= B1A
−1
1 A1B1 +B2A

−1
2 A2B2

= B2
1 +B2

2 .

Hence, if B2
1 +B

2
2 = I, it follows that B1A1+B2A2 is invertible and so by part

(ii) of Proposition 3.1, B1Γ
r +B2Λ

r is a complete multi-Riesz basis for U . □

Proposition 4.6. Let Ψr be a complete wandering r-tuple for a unitary
system U , Γr be a complete multi-normalized tight frame vector for U and
U ∈ CΨr (U) be a co-isometry for which Γr = UΨr. Moreover, suppose
that V ∈ U ′ is a co-isometry operator. Then V Γr − Ψr is a complete
multi-normalized tight frame vector for U if and only if V U+U∗V ∗ = I.

Proof. We have:

V Γr −Ψr = V UΨr −Ψr = (V U − I)Ψr.

It is obvious that V U − I ∈ CΨr . By part (v) of Proposition 3.1, it is
enough to check that V U − I is a co-isometry operator.

(V U − I) (V U − I)∗ = (V U − I) (U∗V ∗ − I)

= V UU∗V ∗ − V U − U∗V ∗ + I

= I,

and so the proof is complete. □
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Birkhäuser, 2016.

12. O. Christensen and D. Stoeva, p-frames in separable Banach spaces,
Adv. Comput. Math., 18 (2003), pp. 117-126.

13. N. Cotfas and J.P. Gazeau, Finite tight frames and some applica-
tions, J. Phys. A., 43 (2010), p. 193001.

14. S. Dahlke, M. Fornasier, and T. Raasch, Adaptive Frame Methods
for Elliptic Operator Equations, Adv. Comput. Math., 27 (2007),
pp. 27-63.

15. X. Dai and D.R. Larson, Wandering vectors for unitary systems
and orthogonal wavelets, Amer. Math. Soc., 640, 1998.

16. I. Daubechies, Ten lectures on wavelet, SIAM, Philadelphia, 27,
1992.



MULTI-FRAME VECTORS FOR UNITARY SYSTEMS 17

17. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthog-
onal expansions, J. Math. Phys., 27 (1986), pp. 1271-1283.

18. M. Dorfler and H. Feichtinger, Quilted Gabor families I: Reduced
multi-Gabor frames, Appl. Comput. Harmon. Anal., 356 (2004),
pp. 2001-2023.

19. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier
series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.

20. M. Frank and D. Larson, Frames in Hilbert C∗-modules and C∗-
algebras, J. Operator Theory., 48 (2002), pp. 273-314.

21. D. Gabor, Theory of communication. Part 1: The analysis of in-
formation, Journal of the Institution of Electrical Engineers-Part
III: Radio and Communication Engineering 93 (1946), pp. 429-441.

22. X. Guo, Multi-frame vectors for unitary systems, Indian J. Pure
Appl. Math., 43 (2012), pp. 391-409.

23. D. Han, Tight frame approximation for multi-frames and supper-
frames, J. Approx. Theory., 129 (2004), pp. 78-93.

24. C. Heil, A Basis Theory Primer. expanded edition. Springer Sci-
ence & Business Media, 2010.
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