Sahand Communications in Mathematical Analysis (SCMA) Vol. 15 No. 1 (2019), 91-106 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.72350.288

Convergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces

Mohammad Esmael Samei

ABSTRACT. Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach contraction principle is that it also gives the convergence of an iterative scheme to a unique fixed point. In this paper, we consider (X, M, *) to be fuzzy metric spaces in Park's sense and we show our results for fixed points of contractive and nonexpansive multifunctions on Hausdorff fuzzy metric space.

1. INTRODUCTION

The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in metric fixed point theory. The study is started in 1922, with the work of Banach who proved a classical theorem, known as the Banach contraction principle, for the existence of a unique fixed point for a contraction [3]. The importance of this result is that it also gives the convergence of an iterative scheme to a unique fixed point. Many works have been published about fixed point theory for different kinds of contractions on some spaces such as quasi-metric spaces [5, 10], cone metric spaces [2, 21], partially ordered metric spaces [1, 4, 20], Menger spaces [14], and fuzzy metric spaces [8, 9]. The concept of fuzzy sets introduced by Zadeh in 1965 [25]. In 1975, Kramosil and Michalek introduced the notion of fuzzy metric

²⁰¹⁰ Mathematics Subject Classification. 39B19, 47H10, 37C25.

Key words and phrases. Inexact iterative, Fixed point, Contraction multifunction, Hausdorff fuzzy metric.

Received: 22 September 2017, Accepted: 11 June 2018.

spaces [12], and George and Veeramani modified the concept in 1994 [7]. Some researchers have been provided different fixed point results in fuzzy metric spaces [6, 11, 15, 16]. In this paper, we consider (X, M, *) to be fuzzy metric spaces in Park's sense and by using their idea provide some fixed point results for the contractive mappings on complete fuzzy metric spaces.

2. Preliminaries

Here, we recall some basic notions.

A continuous, commutative and associative map $*: [0,1]^2 \to [0,1]$ is called a continuous t-norm whenever a * 1 = a for all $a \in [0,1]$ and $a * b \leq c * d$ for all $a, b, c, d \in [0,1]$ with $a \leq c$ and $b \leq d$ [16]. For example, $a * b = ab, a * b = min\{a, b\}, a * b = max\{a + b - 1, 0\}$ and

$$a * b = \frac{ab}{\max\{a, b, \lambda\}}, \quad 0 < \lambda < 1,$$

are continuous *t*-norms.

Definition 2.1 ([16]). Let X be a non-empty set, * a continuous be t-norm and M be a fuzzy set on $X^2 \times [0, \infty)$ such that M(x, y, 0) = 0, M(x, y, t) = 1 for all t > 0 if and only if x = y, M(x, y, t) = M(y, x, t),

$$M(x, y, t) * M(y, z, s) \le M(x, z, t+s),$$

for all $x,y,z\in X,\ s,t>0,\ M(x,y,.):[0,\infty)\longrightarrow [0,1]$ is continuous, and

$$\lim_{t \to \infty} M(x, y, t) = 1,$$

for all $x, y \in X$. Then (X, M, *) is called a fuzzy metric space.

Let (X, M, *) be a fuzzy metric space. For each $x \in X$, t > 0 and 0 < r < 1, set

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}$$

Denote the generated topology by the sets B(x, r, t) by τ_M . It has been proved that in a fuzzy metric space every compact set is closed and bounded [16]. A sequence $\{x_n\}$ in (X, M, *) is said to be Cauchy whenever for each $\varepsilon > 0$ and t > 0, there exists a natural number n_0 such that $M(x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_0$. Also, (X, M, *) is called complete whenever every Cauchy sequence is convergent with respect to τ_M . The fuzzy metric M is triangular whenever

$$\frac{1}{M(x,y,t)} - 1 \le \frac{1}{M(x,z,t)} - 1 + \frac{1}{M(z,y,t)} - 1,$$

for all $x, y, z \in X$ and t > 0. A self map f on a fuzzy metric space (X, M, *) is called a Banach fuzzy contraction whenever there exists $k \in (0, 1)$ such that

$$M(f(x), f(y), kt) \ge M(x, y, t),$$

for all $x, y \in X$ and t > 0 [18]. Let B be a nonempty subset of a fuzzy metric space (X, M, *). According to [24], for $x \in X$ and t > 0, define

$$M(x, B, t) = \sup_{b \in B} M(x, b, t).$$

For a fuzzy metric space (X, M, *), denote by $\mathcal{C}(X)$, $\mathcal{CB}(X)$ and $\mathcal{H}(X)$ the set of nonempty closed subsets, the set of nonempty closed bounded subsets and the set of nonempty compact subsets of (X, τ_M) , respectively. Let *B* be a nonempty subset of a fuzzy metric space (X, M, *), $x \in X$ and t > 0. In this case, H_M stands for the Hausdorff fuzzy metric space on $\mathcal{H} \times \mathcal{H} \times (0, \infty)$ which is defined by

$$H_M(A, B, t) = \min\left\{\inf_{a \in A} M(a, B, t), \inf_{b \in B} M(b, A, t)\right\},\$$

for all $A, B \in \mathcal{H}$ and t > 0 [22].

3. Main Results

Now, we are ready to state and prove our main results. Throughout this paper, we suppose that 2^X is the family of all nonempty subsets of a fuzzy metric space (X, M, *).

Theorem 3.1. Let (X, M, *) be a complete fuzzy metric space, $T : X \to C(X)$ be a multifunction, and $\{\varepsilon_i\}_{i=0}^{\infty}$ and $\{\delta_i\}_{i=0}^{\infty}$ be two sequences in $(0, \infty)$ such that

and

$$\sum_{i=0}^{\infty} \varepsilon_i < \infty,$$
$$\sum_{i=0}^{\infty} \delta_i < \infty.$$

Suppose that there exist $\alpha, \beta \in (0,1)$ such that $\alpha(3-2\alpha+\beta) \leq 1$ and

$$M\left(x,Tx,\frac{t}{\alpha}\right) \ge M(x,y,t) \quad \Rightarrow \quad H_M(Tx,Ty,t) \ge M\left(x,y,\frac{t}{\beta}\right),$$

for all $x, y \in X$. Let $T_i : X \to 2^X$ satisfies, for each integer $i \ge 0$, $H_M(Tx, T_ix, t) \ge 1 - \varepsilon_i$ for all $x \in X$. Assume that $x_0 \in X$ and for each integer $i \ge 0$,

$$\frac{\varepsilon_i}{t(1-\alpha)} \le \frac{1}{M(x_i, x_{i+1}, t)} - 1$$

$$\leq \frac{1}{M(x,T_ix_i,t)} - 1 + \frac{\delta_i}{t},$$

for $x_{i+1} \in T_i x_i$. Then $\{x_i\}_{i=0}^{\infty}$ converges to a fixed point of T.

Proof. We first show that $\{x_i\}_{i=0}^{\infty}$ is a Cauchy sequence. To this end, let $i \ge 0$ be an integer. Then, we have

$$\begin{aligned} \frac{1}{M(x_{i+1}, x_{i+2}, t)} - 1 &\leq \frac{1}{M(x_{i+1}, T_{i+1}x_{i+1}, t)} - 1 + \frac{\delta_{i+1}}{t} \\ &\leq \frac{1}{M(x_{i+1}, Tx_{i+1}, t)} - 1 \\ &+ \frac{1}{H_M(x_{i+1}, T_{i+1}x_{i+1}, t)} - 1 + \frac{\delta_{i+1}}{t} \\ &\leq \frac{1}{H_M(T_i x_i, Tx_{i+1}, t)} - 1 + \frac{\varepsilon_{i+1}}{t} + \frac{\delta_{i+1}}{t} \\ &\leq \frac{1}{H_M(T_i x_i, Tx_{i}, t)} - 1 \\ &+ \frac{1}{H_M(Tx_i, Tx_{i+1}, t)} - 1 + \frac{\varepsilon_{i+1}}{t} + \frac{\delta_{i+1}}{t} \end{aligned}$$

Hence,

(3.1)
$$\frac{1}{M(x_{i+1}, x_{i+2}, t)} - 1 \le \frac{1}{H_M(Tx_i, Tx_{i+1}, t)} - 1 + \frac{\varepsilon_i + \varepsilon_{i+1} + \delta_{i+1}}{t},$$

for all $i \ge 0$. Since $\alpha(2 - \alpha) < 1$,

$$\varepsilon_i \le t(1-\alpha) \left(\frac{1}{M(x_i, x_{i+1}, t)} - 1\right),$$

and

$$\frac{1}{M(Tx_i, x_i, t)} - 1 \le \frac{1}{M(x_i, T_i x_i, t)} - 1 + \frac{1}{H_M(T_i x_i, Tx_i, t)} - 1$$
$$\le \frac{1}{M(x_i, x_{i+1}, t)} - 1 + \frac{\varepsilon_i}{t}$$
$$\le \frac{1}{M(x_i, x_{i+1}, t)} - 1 + (1 - \alpha) \left(\frac{1}{M(x_i, x_{i+1}, t)} - 1\right)$$
$$= (2 - \alpha) \left(\frac{1}{M(x_i, x_{i+1}, t)} - 1\right).$$

We have

$$\alpha(\frac{1}{M(x_i, Tx_i, t)} - 1) < \frac{1}{M(x_i, x_{i+1}, t)} - 1,$$

and so

(3.2)
$$\frac{1}{H_M(Tx_i, Tx_{i+1}, t)} - 1 \le \beta \left(\frac{1}{M(x_i, x_{i+1}, t)} - 1\right).$$

Now, by using (3.1) and (3.2) we obtain

(3.3)
$$\frac{1}{M(x_{i+1}, x_{i+2}, t)} - 1 \le \beta \left(\frac{1}{M(x_i, x_{i+1}, t)} - 1 \right) + \frac{\varepsilon_i + \varepsilon_{i+1} + \delta_{i+1}}{t},$$

for all $i \ge 0$. Thus,

(3.4)
$$\frac{1}{M(x_1, x_2, t)} - 1 \le \beta \left(\frac{1}{M(x_0, x_1, t)} - 1 \right) + \frac{\varepsilon_0 + \varepsilon_1 + \delta_1}{t},$$

and

(3.5)
$$\frac{1}{M(x_2, x_3, t)} - 1 \le \beta^2 \left(\frac{1}{M(x_0, x_1, t)} - 1\right) + \beta \left(\frac{\varepsilon_0 + \varepsilon_1 + \delta_1}{t}\right) + \frac{\varepsilon_1 + \varepsilon_2 + \delta_2}{t}.$$

Now, we show by induction that for each $n \ge 1$, we have

(3.6)
$$\frac{1}{M(x_n, x_{n+1}, t)} - 1 \le \beta^n \left(\frac{1}{M(x_0, x_1, t)} - 1\right) + \sum_{i=0}^{n-1} \frac{\beta^i}{t} (\varepsilon_{n-i} + \varepsilon_{n-i-1} + \delta_{n-i}).$$

In view of (3.4) and (3.5), inequality (3.6) holds for n = 1, 2. Assume that $k \ge 1$ is an integer and (3.6) holds for n = k. By using 3.3, we have

$$\frac{1}{M(x_{k+1}, x_{k+2}, t)} - 1 \le \beta \left(\frac{1}{M(x_k, x_{k+1}, t)} - 1 \right) + \frac{\varepsilon_k + \varepsilon_{k+1} + \delta_{k+1}}{t}$$
$$\le \beta^{k+1} \left(\frac{1}{M(x_0, x_1, t)} - 1 \right)$$
$$+ \beta \sum_{i=0}^{k-1} \frac{\beta^i}{t} (\varepsilon_{k-i} + \varepsilon_{k-i-1} + \delta_{k-i})$$
$$+ \frac{\varepsilon_k + \varepsilon_{k+1} + \delta_{k+1}}{t}$$
$$= \beta^{k+1} \left(\frac{1}{M(x_0, x_1, t)} - 1 \right)$$

$$+\sum_{i=1}^{k} \frac{\beta^{i}}{t} (\varepsilon_{k-i+1} + \varepsilon_{k-i} + \delta_{k-i+1}) \\ + \frac{\varepsilon_{k} + \varepsilon_{k+1} + \delta_{k+1}}{t} \\ = \beta^{k+1} \left(\frac{1}{M(x_{0}, x_{1}, t)} - 1\right) \\ + \sum_{i=0}^{k} \frac{\beta^{i}}{t} (\varepsilon_{k-i+1} + \varepsilon_{k-i} + \delta_{k-i+1}).$$

This implies that (3.6) holds for all $n \ge 1$. Now, by using (3.6) we obtain

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{M(x_n, x_{n+1}, t)} &- 1 \leq \sum_{n=1}^{\infty} \beta^n \left(\frac{1}{M(x_0, x_1, t)} - 1 \right) \\ &+ \sum_{n=1}^{\infty} \sum_{i=0}^{n-1} \frac{\beta^i}{t} (\varepsilon_{n-i} + \varepsilon_{n-i-1} + \delta_{n-i}) \\ &= \sum_{n=1}^{\infty} \beta^n \left(\frac{1}{M(x_0, x_1, t)} - 1 \right) \\ &+ \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\beta^{n-i}}{t} (\varepsilon_i + \varepsilon_{i-1} + \delta_i) \\ &\leq \sum_{n=1}^{\infty} \beta^n \left(\frac{1}{M(x_0, x_1, t)} - 1 \right) \\ &+ \frac{\beta^0}{t} (\varepsilon_1 + \varepsilon_0 + \delta_1) + \frac{\beta^0}{t} (\varepsilon_2 + \varepsilon_1 + \delta_2) \\ &+ \frac{\beta^1}{t} (\varepsilon_2 + \varepsilon_1 + \delta_2) + \frac{\beta^2}{t} (\varepsilon_1 + \varepsilon_0 + \delta_1) + \cdots \\ &= \sum_{n=1}^{\infty} \beta^n \left(\frac{1}{M(x_0, x_1, t)} - 1 \right) \\ &+ \left(\frac{\beta^0 + \beta^1 + \beta^2 + \cdots}{t} \right) (\varepsilon_1 + \varepsilon_0 + \delta_1) \\ &+ \left(\frac{\beta^0 + \beta^1 + \beta^2 + \cdots}{t} \right) (\varepsilon_2 + \varepsilon_1 + \delta_2) \\ &+ \left(\frac{\beta^0 + \beta^1 + \beta^2 + \cdots}{t} \right) (\varepsilon_3 + \varepsilon_2 + \delta_3) + \cdots \end{split}$$

$$= \left(\sum_{n=1}^{\infty} \beta^n\right) \left(\frac{1}{M(x_0, x_1, t)} - 1\right) + \sum_{i=1}^{\infty} \left(\frac{\varepsilon_i + \varepsilon_{i-1} + \delta_i}{t}\right) < \infty.$$

Thus, $\{x_i\}_{i=0}^{\infty}$ is a Cauchy sequence and so there exists $x \in X$ such that $x = \lim_{n \to \infty} x_n$. Now, we claim that for each $n \ge 1$ either

$$M\left(x_n, Tx_n, \frac{t}{\alpha}\right) \ge M(x_n, x, t),$$

or

$$M\left(x_{n+1}, Tx_{n+1}, \frac{t}{\alpha}\right) \ge M(x_{n+1}, x, t),$$

holds. If $M\left(x_n, Tx_n, \frac{t}{\alpha}\right) \ge M(x_n, x, t)$ and

$$M\left(x_{n+1}, Tx_{n+1}, \frac{t}{\alpha}\right) \ge M(x_{n+1}, x, t),$$

for some $n \ge 1$, then we obtain

$$\frac{1}{M(x_{n+1}, x_n, t)} - 1 \leq \frac{1}{M(x_{n+1}, x, t)} - 1 + \frac{1}{M(x, x_n, t)} - 1$$

$$< \alpha \left(\frac{1}{M(x_{n+1}, Tx_{n+1}, t)} - 1\right)$$

$$+ \alpha \left(\frac{1}{M(x_n, Tx_n, t)} - 1\right)$$

$$\leq \alpha \left[\left(\frac{1}{H_M(T_n x_n, Tx_{n+1}, t)} - 1\right) + (2 - \alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \right]$$

$$\leq \alpha \left[\left(\frac{1}{H_M(T_n x_n, Tx_{n+1}, t)} - 1\right) + \left(\frac{1}{H_M(Tx_n, Tx_{n+1}, t)} - 1\right) + (2 - \alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) + (2 - \alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \right]$$

$$\leq \alpha \left[\frac{\varepsilon_n}{t} + \beta \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) + (2 - \alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \right]$$

$$\leq \alpha \left[(1-\alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right) + \beta \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right) + (2-\alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right) \right]$$
$$= \alpha (3 - 2\alpha + \beta) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right),$$

because

$$\varepsilon_n \le t(1-\alpha) \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right).$$

It implies that $\alpha(3 - 2\alpha + \beta) > 1$, which is a contradiction. Hence, our claim is proved. Thus, by using the assumption of the theorem, for each $n \ge 1$, either

$$H_M(Tx_n, Tx, t) \ge M\left(x_n, x, \frac{t}{\beta}\right),$$

or

$$H_M(Tx_{n+1}, Tx, t) \ge M\left(x_{n+1}, x, \frac{t}{\beta}\right),$$

holds Therefore, one of the following cases holds.

(i) There exists an infinite subset $I \subseteq \mathbb{N}$ such that

$$H_M(Tx_n, Tx, t) \ge M\left(x_n, x, \frac{t}{\beta}\right),$$

for all $n \in I$.

(ii) There exists an infinite subset $J \subseteq \mathbb{N}$ such that

$$H_M(Tx_{n+1}, Tx, t) \ge M\left(x_{n+1}, x, \frac{t}{\beta}\right),$$

for all $n \in J$.

In case (i), we obtain

$$\frac{1}{M(x,Tx,t)} - 1 \le \frac{1}{M(x,x_n,t)} - 1 + \frac{1}{M(x_n,Tx,t)} - 1$$
$$\le \frac{1}{M(x,x_n,t)} - 1 + \frac{1}{M(x_n,Tx_n,t)} - 1$$
$$+ \frac{1}{H_M(Tx_n,Tx,t)} - 1$$
$$\le \frac{1}{M(x,x_n,t)} - 1 + \frac{1}{\alpha} \left(\frac{1}{M(x_n,x_{n+1},t)} - 1\right)$$

$$+\beta\left(\frac{1}{M(x,x_n,t)}-1\right),$$

for all $n \in I$, and so M(x, Tx, t) = 1. Hence $x \in Tx$. Similar to (i), we obtain $x \in Tx$, from case (ii). This completes the proof.

The following example shows that there are some multifunctions which satisfy the assumption of Theorem 3.1 while there are not contractive multifunctions.

Example 3.2. Let $X = [-4,3] \cup \{0\} \cup [3,4], M(x,y,t) = \frac{t}{t+|x-y|}$ and $T: X \to \mathcal{C}(X)$ be defined by

$$T(x) = \begin{cases} \left[3, \frac{5(-x)-6}{-x}\right], & -4 \le x < -3.4, \\ \{0\}, & x \in [-3.4, -3] \cup \{0\} \cup [3, 3.4], \\ \left\{-\frac{5x-6}{x}\right\}, & 3.4 < x \le 4. \end{cases}$$

We show that T satisfies the assumption of Theorem 3.1 for $\alpha = \frac{2}{7}$ and $\beta = \frac{90}{91}$ while T is not a contractive multifunction. If $3.4 < x \leq 4$, then

$$3 < 3 + \frac{2x - 6}{x} = \frac{5x - 6}{x} \le \frac{7}{2},$$

and

$$\frac{90}{91}x - \frac{5x - 6}{x} > 0.$$

If $-4 \le x < -3.4$, then

$$M(0, Tx, t) = \frac{t}{t+3} > \frac{t}{t-\frac{90}{91}x} = \frac{t}{t+\frac{90}{91}|x|}$$

 $Tx \subset [3, 3.5]$ and

$$H_M(\{0\}, Tx, t) = M(0, Tx, t) = \frac{t}{t + \frac{5(-x)-6}{-x}} > \frac{t}{t - \frac{90}{91}x} = \frac{t}{t + \frac{90}{91}|x|}$$

If $3.4 < x \le 4$, then $Tx \subset [-3.5, -3)$ and

$$H_M(\{0\}, Tx, t) = M(0, Tx, t) = \frac{t}{t + \frac{5x-6}{x}} > \frac{t}{t + \frac{90}{91}x} = \frac{t}{t + \frac{90}{91}|x|}.$$

Thus,

$$H_M\left(Tx,Ty,\frac{90}{91}t\right) > M(x,y,t),$$

whenever x = 0 and $y \neq 0$, or y = 0 and $x \neq 0$. If $x \in [3, 4]$ and $y \in [-4, -3]$, then

$$M\left(x, Tx, \frac{7}{2}t\right) \ge \frac{t}{t + \frac{2 \times *6.5}{7}} > \frac{t}{t+6} \ge M(x, y, t),$$

and so

$$\frac{1}{H_M(Tx,Ty,t)} - 1 \le \frac{1}{M(Tx,0,t)} - 1 + \frac{1}{H_M(Ty,\{0\},t)} - 1$$
$$\le \frac{90}{91} \left(\frac{|x| + |y|}{t}\right)$$
$$= \frac{90}{91} \left(\frac{1}{M(x,y,t)} - 1\right).$$

If $x, y \in [3, 3.4]$ or $x, y \in [-3.4, -3]$, then

$$M\left(x, Tx, \frac{7}{2}t\right) \ge \frac{t}{t + \frac{2*3}{7}} > M(x, y, t).$$

If $x \in [3, 3.4]$ and $y \in [3.4, 6]$, or $x \in [-3.4, -3]$ and $y \in [-4, -3.4]$, or $y \in [3, 3.4]$ and $x \in [3.4, 4]$, or $y \in [-3.4, -3]$ and $x \in [-4, -3.4]$, then we have

$$M\left(x, Tx, \frac{7}{2}t\right) \ge \frac{t}{t + \frac{2*3}{7}} > \frac{t}{t+1} \ge M(x, Tx, t).$$

If x = 3 and y = 4, then

$$H_M(Tx, Ty, t) = M(x, y, t) = \frac{t}{t + \frac{7}{2}} < M\left(x, y, \frac{91}{90}t\right).$$

Lemma 3.3. Let $x \in X$, F be a nonempty closed subset of X, p be a natural number, $\delta > 0$, $\{x_0, x_1, \ldots, x_p\} \subset X$ such that $x_0 = x$ and $x_{i+1} \in T_i x_i \ (i = 0, 1, \ldots, p-1)$. Then there is a natural number q > pand $\{x_p, x_{p+1}, \ldots, x_q\} \subset X$ such that $x_{i+1} \in T_i x_i \ (i = p, \ldots, q-1)$ and $M(x_q, F, t) \ge 1 - \delta$.

Proof. Choose a natural number $p_1 > p$ such that $\sum_{i=p_1}^{\infty} \varepsilon_i < \frac{\delta}{8}$ and a sequence $\{x_p, x_{p+1}, \ldots, x_{p_1}\} \subset X$ such that $x_{i+1} \in T_i x_i \ (i = p, \ldots, p_1 - 1)$. By using the assumptions of the lemma, there is a sequence $\{y_i\}_{i=p_1}^{\infty} \subset X$, such that $y_{p_1} = x_{p_1}, y_{i+1} \in Ty_i$ for all $i \ge p_1$ and $\lim_{i\to\infty} M(y_i, F, t) = 1$. Now, we define by induction a sequence $\{x_i\}_{i=p_1}^{\infty} \subset X$. To this end, assume that $k \ge p_1$ is an integer and we have already defined $x_i \in X$, $i = p_1, \ldots, k$, such that $x_{i+1} \in T_i x_i \ (i = p_1, \ldots, k - 1)$ and

$$\frac{1}{\max\{M(x_k, y_k, t), M(x_k, y_{k+1}, t)\}} - 1 \le \sum_{i=p_1}^{k-1} \frac{\varepsilon_i}{t}.$$

Clearly this assumption holds for $k = p_1$. Since $y_{k+1} \in Ty_k$, by using a similar proof as the one for Theorem 3.1, it is easy to show that for each k, one of the following cases holds:

(i) $M(y_k, Ty_k, \frac{t}{\alpha}) \ge M(y_k, x_k, t)$ (ii) $M\left(y_{k+1}, Ty_{k+1}, \frac{t}{\alpha}\right) \ge M(y_{k+1}, x_k, t).$

By case (i), we obtain $H_M(Ty_k, Tx_k, t) \ge M(x_k, y_k, t)$ and so

$$M(y_{k+1}, Tx_k, t) \ge M(x_k, y_k, t).$$

Hence, there exists $\widetilde{y}_{k+1} \in Tx_k$ such that

$$\frac{1}{M(y_{k+1},\widetilde{y}_{k+1},t)} - 1 \le \frac{1}{M(x_k,y_k,t)} - 1 + \frac{\varepsilon_k}{t}.$$

This implies that

$$\frac{1}{M(\widetilde{y}_{k+1}, T_k x_k, t)} - 1 \le \frac{1}{H_M(T x_k, T_k x_k, t)} - 1 \le \frac{\varepsilon_k}{t},$$

and so there exists $x_{k+1} \in T_k x_k$ such that

$$\frac{1}{M(\widetilde{y}_{k+1}, x_{k+1}, t)} - 1 \le \frac{2\varepsilon_k}{t}.$$

Thus, we have

$$\frac{1}{M(x_{k+1}, y_{k+1}, t)} - 1 \le \frac{1}{M(x_{k+1}, \widetilde{y}_{k+1}, t)} - 1 + \frac{1}{M(y_{k+1}, \widetilde{y}_{k+1}, t)} - 1$$
$$\le \frac{2\varepsilon_k}{t} + \left(\frac{1}{M(x_k, y_k, t)} - 1\right) + \frac{\varepsilon}{t}$$
$$= \frac{3\varepsilon_k}{t} + \left(\frac{1}{M(x_k, y_k, t)} - 1\right).$$

By case (ii), we obtain

$$H_M(Ty_{k+1}, Tx_k, t) \ge M(x_k, y_{k+1}, t),$$

and so $M(y_{k+2}, Tx_k, t) \ge M(x_k, y_{k+1}, t)$. Hence, there exists $\widetilde{y}_{k+1} \in Tx_k$ such that

$$\frac{1}{M(y_{k+2}, \widetilde{y}_{k+1}, t)} - 1 \le \frac{1}{M(x_k, y_{k+1}, t)} - 1 + \frac{\varepsilon_k}{t}.$$

This implies that

$$\frac{1}{M(\tilde{y}_{k+1}, T_k x_k, t)} - 1 \le \frac{1}{H_M(T x_k, T_k x_k, t)} - 1 \le \frac{\varepsilon_k}{t}$$

and so there exists $x_{k+1} \in T_k x_k$ such that

$$\frac{1}{M(\widetilde{y}_{k+1}, x_{k+1}, t)} - 1 \le \frac{2\varepsilon_k}{t}.$$

Thus, we have

$$\frac{1}{M(x_{k+1}, y_{k+2}, t)} - 1 \le \frac{1}{M(x_{k+1}, \widetilde{y}_{k+1}, t)} - 1 + \frac{1}{M(y_{k+1}, \widetilde{y}_{k+2}, t)} - 1$$
$$\le \frac{2\varepsilon_k}{t} + \left(\frac{1}{M(x_k, y_{k+1}, t)} - 1\right) + \frac{\varepsilon}{t}$$

$$=\frac{3\varepsilon_k}{t}+\left(\frac{1}{M(x_k,y_{k+1},t)}-1\right).$$

Thus, by considering the above two cases, we have

$$\frac{1}{\max\{M(x_{k+1}, y_{k+1}, t), M(x_{k+1}, y_{k+2}, t)\}} - 1$$

$$\leq \frac{1}{\max\{M(x_k, y_k, t), M(x_k, y_{k+1}, t)\}} - 1 + \frac{3\varepsilon}{t}$$

$$\leq \sum_{i=p_1}^{k-1} \frac{\varepsilon_i}{t} + \frac{3\varepsilon_k}{t}$$

$$= 3\sum_{i=p_1}^k \frac{\varepsilon_i}{t}.$$

Therefore, we have indeed defined by induction a sequence $\{x_i\}_{i=p_1}^{\infty} \subset X$ such that $x_{i+1} \in Tx_i$ $(i = p_1, ...)$ and

$$\frac{1}{\max\{M(x_k, y_k, t), M(x_k, y_{k+1}, t)\}} - 1 \le \sum_{i=p_1}^{k-1} \frac{\varepsilon_i}{t}$$

Hence, there exists an integer $q > p_1 + 2$ such that $M(y_q, F, t) > 1 - \frac{\delta}{4}$ and $M(y_{q+1}, F, t) > 1 - \frac{\delta}{4}$. Thus, we obtain

(3.7)
$$\frac{1}{M(x_q, F, t)} - 1 \le \frac{1}{M(x_q, y_q, t)} - 1 + \frac{1}{M(y_q, F, t)} - 1 \\ \le \frac{1}{M(x_q, y_q, t)} - 1 + \frac{\delta}{4t},$$

and

(3.8)
$$\frac{1}{M(x_q, F, t)} - 1 \le \frac{1}{M(x_q, y_{q+1}, t)} - 1 + \frac{1}{M(y_{q+1}, F, t)} - 1 \le \frac{1}{M(x_q, y_{q+1}, t)} - 1 + \frac{\delta}{4t}.$$

Combining (3.7) with (3.8) implies that

$$\frac{1}{M(x_q, F, t)} - 1 \le \frac{1}{\max\{M(x_q, y_q, t), M(x_q, y_{q+1}, t)\}} - 1 + \frac{\delta}{4t}$$
$$\le \sum_{i=p_1}^{k-1} \frac{\varepsilon_i}{t} + \frac{\delta}{4t} \le \frac{\delta}{8t} + \frac{\delta}{4t}.$$

This completes the proof of the lemma.

102

Lemma 3.4. Let $\{x_i\}_{i=0}^{\infty}$ be a sequence in X, $x_{i+1} \in T_i x_i$ for all $i \ge 0$, $\delta > 0$, p be a natural number, F be a nonempty closed subset of X, $M(x_p, F, t) \ge 1 - \delta$, and $\sum_{i=p}^{\infty} \varepsilon_i < \delta$. Then $M(x_i, F, t) \ge 1 - 3\delta$ for all $i \ge p$.

Proof. We intend to show by induction that

(3.9)
$$\frac{1}{M(x_n, F, t)} - 1 \le \frac{\delta}{t} + \sum_{i=p}^{n-1} \frac{2\varepsilon_i}{t},$$

for all $n \ge p$. Clearly, (3.9) holds for n = p. Assume that (3.9) holds for $n \ge p$. Then there exists $y_n \in F$ such that

$$\frac{1}{M(x_n, y_n, t)} - 1 \le \frac{\delta}{t} + \sum_{i=p}^{n-1} \frac{2\varepsilon_i}{t} + \frac{2\varepsilon_n}{4t}.$$

By assumption, $M(x_{n+1}, Tx_n, t) \ge 1 - \varepsilon_n$ and so there exists $\widetilde{x}_{n+1} \in Tx_n$ such that $M(x_{n+1}, \widetilde{x}_{n+1}, t) \ge 1 - \frac{3\varepsilon_n}{2}$. If $x_n \in F$ then

$$\frac{1}{M(x_{n+1},F,t)} - 1 \le \frac{1}{M(x_{n+1},Tx_n,t)} - 1 \le \frac{\varepsilon_n}{t} \le \frac{\delta}{t} + \sum_{i=p}^n \frac{2\varepsilon_i}{t}.$$

On the other hand,

$$\alpha \left(\frac{1}{M(y_n, Ty_n, t)} - 1\right) \le \alpha \left[\frac{1}{M(x_n, y_n, t)} - 1 + \frac{1}{M(x_n, Ty_n, t)} - 1\right]$$
$$\le 2\alpha \left(\frac{1}{M(x_n, y_n, t)} - 1\right)$$
$$< \frac{1}{M(x_n, y_n, t)} - 1,$$

and so $H_M(Tx_n, Ty_n, t) \ge M(x_n, y_n, t)$. Hence, there exists $\tilde{y}_{n+1} \in Ty_n$ such that

$$\frac{1}{M(\widetilde{y}_{n+1},\widetilde{x}_{n+1},t)} - 1 \le \frac{1}{M(x_n,y_n,t)} - 1 + \frac{\varepsilon_n}{4},$$

and so

$$\alpha \left(\frac{1}{M(x_{n+1}, F, t)} - 1 \right) \leq \frac{1}{M(x_{n+1}, \widetilde{y}_{n+1}, t)} - 1$$

$$\leq \frac{1}{M(x_{n+1}, \widetilde{x}_{n+1}, t)} - 1 + \frac{1}{M(\widetilde{y}_{n+1}, \widetilde{x}_{n+1}, t)} - 1$$

$$\leq \frac{7\varepsilon_n}{4t} + \frac{1}{M(x_n, y_n, t)} - 1$$

$$\leq \frac{\delta}{t} + \sum_{i=p}^{n} \frac{2\varepsilon_i}{t}.$$

This implies that

$$\frac{1}{M(x_n, F, t)} - 1 \le \frac{\delta}{t} + 2\sum_{i=p}^{n-1} \frac{\varepsilon_i}{t} \le \frac{\delta}{t} + 2\sum_{i=p}^{\infty} \frac{\varepsilon_i}{t} \le \frac{\delta}{t} + \frac{2\delta}{t} = \frac{3\delta}{t} < 3\delta,$$

for all n > p.

Theorem 3.5. Let (X, M, *) be a complete fuzzy metric space, F be a nonempty closed subset of $X, T : X \to C(X)$ be a multifunction, and $\{\varepsilon_i\}_{i=0}^{\infty}$ be a sequence in $(0, \infty)$ such that $\sum_{i=0}^{\infty} \varepsilon_i < \infty$. Suppose that $T(F) \subset F, M(x, Ty, t) \geq M(x, y, t)$ for every $x \in F^c$, $y \in F$, and there exists $\alpha \in (0, \frac{1}{2})$ such that

$$M(x, Tx, \frac{t}{\alpha}) \ge M(x, y, t) \quad \Rightarrow \quad H_M(Tx, Ty, t) \ge M(x, y, t),$$

for all $x, y \in X$. Let $T_i : X \to 2^X$ satisfy, for each integer $i \ge 0$, $H_M(Tx, T_ix, t) \ge 1 - \varepsilon_i$ for all $x \in X$. Assume that for each $x \in X$ there exists a sequence $\{x_i\}_{i=0}^{\infty}$ in X such that $x_0 = x$, $x_{i+1} \in Tx_i$ for all $i \ge 0$ and $\lim_{i\to\infty} M(x_i, F, t) = 1$. Then for each $x \in X$ there exists a sequence $\{x_i\}_{i=0}^{\infty}$ in X such that $x_0 = x$, $x_{i+1} \in T_ix_i$ for all $i \ge 0$ and $\lim_{i\to\infty} M(x_i, F, t) = 1$.

Proof. Let $x \in X$. By using Lemma 3.3, there exist a sequence $\{x_i\}_{i=0}^{\infty}$ and a strictly increasing sequence of natural numbers $\{n_k\}_{k=1}^{\infty}$ such that $x_{i+1} \in T_i x_i$ for all $i \geq 0$ and for each $k \geq 1$,

$$M(x_{n_k}, F, t) \ge 1 - 2^{-k},$$

and $\sum_{i=n_k}^{\infty} \varepsilon_i < 2^{-k}$. Hence, by using Lemma 3.4, we have

$$\lim_{n \to \infty} M(x_n, F, t) = 1$$

This completes the proof.

The following example of Suzuki [23] shows that T satisfies the assumptions of Theorem 3.5 for $\alpha = \frac{1}{2}$ while T is not a nonexpansive multifunction.

Example 3.6. Let $X = \{(0,0), (6,0), (0,6), (6,7), (7,6)\},\$

$$M(x, y, t) = \frac{t}{t + d(x, y)},$$

where the metric d is defined by $d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$. Define T on X by

$$T(x) = \begin{cases} \{(0, x_1)\}, & x_1 \le x_2, \\ \{(x_2, 0)\}, & x_2 < x_1. \end{cases}$$

104

Put $F = \{(0,0)\}$. Then T Satisfies the assumptions of Theorems 3.5 while T is not a nonexpansive multifunction. First note that,

$$H_M(Tx, Ty, t) \ge M(x, y, t),$$

if $(x, y) \neq ((3, 4), (4, 3))$ and $(x, y) \neq ((4, 3), (3, 4))$. Also, for each $x \in X$ there exists a sequence $\{x_i\}_{i=0}^{\infty}$ in X such that $x_0 = x, x_{i+1} \in Tx_i$ for all $i \geq 0$, $\lim_{i\to\infty} \frac{1}{M(x_i, F, t)} - 1 = 0$ and $M(x, Ty, t) \geq M(x, y, t)$ for all $x \in F^c$ and $y \in F$. Thus,

$$M\left((6,7), T((6,7)), \frac{1}{2}t\right) < \frac{t}{t+\frac{7}{2}} < \frac{t}{t+2} = M\left((6,7), (7,6), t\right),$$
$$M\left((7,6), T((7,6)), \frac{1}{2}t\right) < \frac{t}{t+\frac{7}{2}} < \frac{t}{t+2} = M\left((7,6), (6,7), t\right).$$

Hence, T satisfies the assumptions of Theorem 3.5 while T is not a nonexpansive multifunction because

$$H_M(T((6,7)), T((7,6)), t) = \frac{t}{t+12} < \frac{t}{t+2} = M((6,7), (7,6), t).$$

References

- R.P. Agarwal, M.A. El-Gebeily, and D. O'Regan, *Generalized con*tractions in partially ordered metric spaces, Appl. Analysis, 87 (2008), pp. 109-116.
- I. Altun and G. Durmaz, Some fixed point results in cone metric spaces, Rend Circ. Math. Palermo, 58 (2009), pp. 319-325.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), pp. 133-181.
- V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Analysis, 74 (2011), pp. 7347-7355.
- 5. J. Caristi, Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), pp. 241-251.
- C. Di Bari and C. Vetro, A fixed point theorem for a family of mappings in a fuzzy metric space, Rend Circ. Math. Palermo, 52 (2003), pp. 315-321.
- A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), pp. 395-399.
- M. Grabiec, *Fixed points in fuzzy metric spaces*, Fuzzy Sets and Systems, 27 (1988), pp. 385-389.
- V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), pp. 245-252.

- 10. T.L. Hicks, *Fixed point theorems for quasi-metric spaces*, Math. Japon. 33 (1988), pp. 231-236.
- H. Karayilan and M. Telci, Common fixed point theorem for contractive type mappings in fuzzy metric spaces, Rend. Circ. Mat. Palermo., 60 (2011), pp. 145-152.
- O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), pp. 326-334.
- M. Lessonde, Fixed point of Kakutani factorizable multifunctions, J. Math. Anal. Appl., 152 (1990), pp. 46-60.
- K. Menger, *Statistical metrices*, Proc. Natl. Acad. Sci., 28 (1942), pp. 535–537.
- 15. D. Mihet, A banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2004), pp. 431-439.
- J.H. Park, *Intiutionistic fuzzy metric spaces*, Chaos, Solitons and Fractals, 22 (2004), pp. 1039-1046.
- J.S. Park, Y.C. Kwun, and J.H. Park, A fixed point theorem in the intiutionistic fuzzy metric spaces, Far East J. Math. Sci. 16 (2005), pp. 137-149.
- M. Rafi and M.S.M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iranian J. of Fuzzy Systems, 3 (2006), pp. 23-29.
- 19. D. Reem, S. Reich, and A. Zaslavski, *Two results in metric fixed point theory*, J. Fixed Point Theory Appl. 1 (2007), pp. 149-157.
- 20. Sh. Rezapour and P. Amiri, Some fixed point results for multivalued operators in generalized metric spaces, Computers and Mathematics with Applications 61 (2011), pp. 2661-2666.
- Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Analysis Appl. 345 (2008), pp. 719-724.
- 22. J. Rodrígues-López and S. Romaguera, *The Hausdorff fuzzy metric* on compact sets, Fuzzy Sets and Systems, 147 (2004), pp. 273-283.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), pp. 1861-1869.
- P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzzy Math., 9 (2001), pp. 75-80.
- 25. L.A. Zadeh, *Fuzzy sets*, Information and Control, 8 (1965), pp. 338-353.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, BU-ALI SINA UNIVER-SITY, 6517838695, HAMEDAN, IRAN.

E-mail address: mesamei@basu.ac.ir