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Convergence of an Iterative Scheme for Multifunctions on

Fuzzy Metric Spaces

Mohammad Esmael Samei

Abstract. Recently, Reich and Zaslavski have studied a new inex-
act iterative scheme for fixed points of contractive and nonexpansive
multifunctions. In 2011, Aleomraninejad, et. al. generalized some
of their results to Suzuki-type multifunctions. The study of iter-
ative schemes for various classes of contractive and nonexpansive
mappings is a central topic in fixed point theory. The importance
of Banach contraction principle is that it also gives the convergence
of an iterative scheme to a unique fixed point. In this paper, we
consider (X,M, ∗) to be fuzzy metric spaces in Park’s sense and we
show our results for fixed points of contractive and nonexpansive
multifunctions on Hausdorff fuzzy metric space.

1. Introduction

The study of iterative schemes for various classes of contractive and
nonexpansive mappings is a central topic in metric fixed point theory.
The study is started in 1922, with the work of Banach who proved a
classical theorem, known as the Banach contraction principle, for the
existence of a unique fixed point for a contraction [3]. The importance
of this result is that it also gives the convergence of an iterative scheme
to a unique fixed point. Many works have been published about fixed
point theory for different kinds of contractions on some spaces such as
quasi-metric spaces [5, 10], cone metric spaces [2, 21], partially ordered
metric spaces [1, 4, 20], Menger spaces [14], and fuzzy metric spaces
[8, 9]. The concept of fuzzy sets introduced by Zadeh in 1965 [25].
In 1975, Kramosil and Michalek introduced the notion of fuzzy metric
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spaces [12], and George and Veeramani modified the concept in 1994
[7]. Some researchers have been provided different fixed point results in
fuzzy metric spaces [6, 11, 15, 16]. In this paper, we consider (X,M, ∗)
to be fuzzy metric spaces in Park’s sense and by using their idea provide
some fixed point results for the contractive mappings on complete fuzzy
metric spaces.

2. Preliminaries

Here, we recall some basic notions.
A continuous, commutative and associative map ∗ : [0, 1]2 → [0, 1]

is called a continuous t-norm whenever a ∗ 1 = a for all a ∈ [0, 1] and
a ∗ b ≤ c ∗ d for all a, b, c, d ∈ [0, 1] with a ≤ c and b ≤ d [16]. For
example, a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b = max{a+ b− 1, 0} and

a ∗ b = ab

max{a, b, λ}
, 0 < λ < 1,

are continuous t-norms.

Definition 2.1 ([16]). Let X be a non-empty set, ∗ a continuous be
t-norm and M be a fuzzy set on X2 × [0,∞) such that M(x, y, 0) = 0,
M(x, y, t) = 1 for all t > 0 if and only if x = y, M(x, y, t) = M(y, x, t),

M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s),

for all x, y, z ∈ X, s, t > 0, M(x, y, .) : [0,∞) −→ [0, 1] is continuous,
and

lim
t→∞

M(x, y, t) = 1,

for all x, y ∈ X. Then (X,M, ∗) is called a fuzzy metric space.

Let (X,M, ∗) be a fuzzy metric space. For each x ∈ X, t > 0 and
0 < r < 1, set

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} .

Denote the generated topology by the sets B(x, r, t) by τM . It has been
proved that in a fuzzy metric space every compact set is closed and
bounded [16]. A sequence {xn} in (X,M, ∗) is said to be Cauchy when-
ever for each ε > 0 and t > 0, there exists a natural number n0 such
that M(xn, xm, t) > 1 − ε for all n,m ≥ n0. Also, (X,M, ∗) is called
complete whenever every Cauchy sequence is convergent with respect to
τM . The fuzzy metric M is triangular whenever

1

M(x, y, t)
− 1 ≤ 1

M(x, z, t)
− 1 +

1

M(z, y, t)
− 1,
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for all x, y, z ∈ X and t > 0. A self map f on a fuzzy metric space
(X,M, ∗) is called a Banach fuzzy contraction whenever there exists
k ∈ (0, 1) such that

M(f(x), f(y), kt) ≥ M(x, y, t),

for all x, y ∈ X and t > 0 [18]. Let B be a nonempty subset of a fuzzy
metric space (X,M, ∗). According to [24], for x ∈ X and t > 0, define

M(x,B, t) = sup
b∈B

M(x, b, t).

For a fuzzy metric space (X,M, ∗), denote by C(X), CB(X) and H(X)
the set of nonempty closed subsets, the set of nonempty closed bounded
subsets and the set of nonempty compact subsets of (X, τM ), respec-
tively. Let B be a nonempty subset of a fuzzy metric space (X,M, ∗),
x ∈ X and t > 0. In this case, HM stands for the Hausdorff fuzzy metric
space on H×H× (0,∞) which is defined by

HM (A,B, t) = min

{
inf
a∈A

M(a,B, t), inf
b∈B

M(b, A, t)

}
,

for all A,B ∈ H and t > 0 [22].

3. Main Results

Now, we are ready to state and prove our main results. Throughout
this paper, we suppose that 2X is the family of all nonempty subsets of
a fuzzy metric space (X,M, ∗).

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space, T : X →
C(X) be a multifunction, and {εi}∞i=0 and {δi}∞i=0 be two sequences in
(0,∞) such that

∞∑
i=0

εi < ∞,

and
∞∑
i=0

δi < ∞.

Suppose that there exist α, β ∈ (0, 1) such that α(3− 2α+ β) ≤ 1 and

M

(
x, Tx,

t

α

)
≥ M(x, y, t) ⇒ HM (Tx, Ty, t) ≥ M

(
x, y,

t

β

)
,

for all x, y ∈ X. Let Ti : X → 2X satisfies, for each integer i ≥ 0,
HM (Tx, Tix, t) ≥ 1 − εi for all x ∈ X. Assume that x0 ∈ X and for
each integer i ≥ 0,

εi
t(1− α)

≤ 1

M(xi, xi+1, t)
− 1
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≤ 1

M(x, Tixi, t)
− 1 +

δi
t
,

for xi+1 ∈ Tixi. Then {xi}∞i=0 converges to a fixed point of T .

Proof. We first show that {xi}∞i=0 is a Cauchy sequence. To this end, let
i ≥ 0 be an integer. Then, we have

1

M(xi+1, xi+2, t)
− 1 ≤ 1

M(xi+1, Ti+1xi+1, t)
− 1 +

δi+1

t

≤ 1

M(xi+1, Txi+1, t)
− 1

+
1

HM (xi+1, Ti+1xi+1, t)
− 1 +

δi+1

t

≤ 1

HM (Tixi, Txi+1, t)
− 1 +

εi+1

t
+

δi+1

t

≤ 1

HM (Tixi, Txi, t)
− 1

+
1

HM (Txi, Txi+1, t)
− 1 +

εi+1

t
+

δi+1

t
.

Hence,

1

M(xi+1, xi+2, t)
− 1 ≤ 1

HM (Txi, Txi+1, t)
− 1

+
εi + εi+1 + δi+1

t
,(3.1)

for all i ≥ 0. Since α(2− α) < 1,

εi ≤ t(1− α)

(
1

M(xi, xi+1, t)
− 1

)
,

and

1

M(Txi, xi, t)
− 1 ≤ 1

M(xi, Tixi, t)
− 1 +

1

HM (Tixi, Txi, t)
− 1

≤ 1

M(xi, xi+1, t)
− 1 +

εi
t

≤ 1

M(xi, xi+1, t)
− 1 + (1− α)

(
1

M(xi, xi+1, t)
− 1

)
= (2− α)

(
1

M(xi, xi+1, t)
− 1

)
.

We have

α(
1

M(xi, Txi, t)
− 1) <

1

M(xi, xi+1, t)
− 1,
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and so

1

HM (Txi, Txi+1, t)
− 1 ≤ β

(
1

M(xi, xi+1, t)
− 1

)
.(3.2)

Now, by using (3.1) and (3.2) we obtain

1

M(xi+1, xi+2, t)
− 1 ≤ β

(
1

M(xi, xi+1, t)
− 1

)
+

εi + εi+1 + δi+1

t
,(3.3)

for all i ≥ 0. Thus,

1

M(x1, x2, t)
− 1 ≤ β

(
1

M(x0, x1, t)
− 1

)
+

ε0 + ε1 + δ1
t

,(3.4)

and

1

M(x2, x3, t)
− 1 ≤ β2

(
1

M(x0, x1, t)
− 1

)
+ β

(
ε0 + ε1 + δ1

t

)
+

ε1 + ε2 + δ2
t

.(3.5)

Now, we show by induction that for each n ≥ 1, we have

1

M(xn, xn+1, t)
− 1 ≤ βn

(
1

M(x0, x1, t)
− 1

)
+

n−1∑
i=0

βi

t
(εn−i + εn−i−1 + δn−i).(3.6)

In view of (3.4) and (3.5), inequality (3.6) holds for n = 1, 2. Assume
that k ≥ 1 is an integer and (3.6) holds for n = k. By using 3.3, we have

1

M(xk+1, xk+2, t)
− 1 ≤ β

(
1

M(xk, xk+1, t)
− 1

)
+

εk + εk+1 + δk+1

t

≤ βk+1

(
1

M(x0, x1, t)
− 1

)
+ β

k−1∑
i=0

βi

t
(εk−i + εk−i−1 + δk−i)

+
εk + εk+1 + δk+1

t

= βk+1

(
1

M(x0, x1, t)
− 1

)



96 M. E. SAMEI

+
k∑

i=1

βi

t
(εk−i+1 + εk−i + δk−i+1)

+
εk + εk+1 + δk+1

t

= βk+1

(
1

M(x0, x1, t)
− 1

)
+

k∑
i=0

βi

t
(εk−i+1 + εk−i + δk−i+1).

This implies that (3.6) holds for all n ≥ 1. Now, by using (3.6) we obtain

∞∑
n=1

1

M(xn, xn+1, t)
− 1 ≤

∞∑
n=1

βn

(
1

M(x0, x1, t)
− 1

)

+

∞∑
n=1

n−1∑
i=0

βi

t
(εn−i + εn−i−1 + δn−i)

=

∞∑
n=1

βn

(
1

M(x0, x1, t)
− 1

)

+

∞∑
n=1

n∑
i=1

βn−i

t
(εi + εi−1 + δi)

≤
∞∑
n=1

βn

(
1

M(x0, x1, t)
− 1

)
+

β0

t
(ε1 + ε0 + δ1) +

β0

t
(ε2 + ε1 + δ2)

+
β1

t
(ε1 + ε0 + δ1) +

β0

t
(ε3 + ε2 + δ3)

+
β1

t
(ε2 + ε1 + δ2) +

β2

t
(ε1 + ε0 + δ1) + · · ·

=

∞∑
n=1

βn

(
1

M(x0, x1, t)
− 1

)
+

(
β0 + β1 + β2 + · · ·

t

)
(ε1 + ε0 + δ1)

+

(
β0 + β1 + β2 + · · ·

t

)
(ε2 + ε1 + δ2)

+

(
β0 + β1 + β2 + · · ·

t

)
(ε3 + ε2 + δ3) + · · ·
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=

( ∞∑
n=1

βn

)(
1

M(x0, x1, t)
− 1

)

+

∞∑
i=1

(
εi + εi−1 + δi

t
)

< ∞.

Thus, {xi}∞i=0 is a Cauchy sequence and so there exists x ∈ X such that
x = limn→∞ xn. Now, we claim that for each n ≥ 1 either

M

(
xn, Txn,

t

α

)
≥ M(xn, x, t),

or

M

(
xn+1, Txn+1,

t

α

)
≥ M(xn+1, x, t),

holds. If M
(
xn, Txn,

t
α

)
≥ M(xn, x, t) and

M

(
xn+1, Txn+1,

t

α

)
≥ M(xn+1, x, t),

for some n ≥ 1, then we obtain

1

M(xn+1, xn, t)
− 1 ≤ 1

M(xn+1, x, t)
− 1 +

1

M(x, xn, t)
− 1

< α

(
1

M(xn+1, Txn+1, t)
− 1

)
+ α

(
1

M(xn, Txn, t)
− 1

)
≤ α

[(
1

HM (Tnxn, Txn+1, t)
− 1

)
+(2− α)

(
1

M(xn, xn+1, t)
− 1

)]
≤ α

[(
1

HM (Tnxn, Txn, t)
− 1

)
+

(
1

HM (Txn, Txn+1, t)
− 1

)
+(2− α)

(
1

M(xn, xn+1, t)
− 1

)]
≤ α

[
εn
t

+ β

(
1

M(xn, xn+1, t)
− 1

)
+(2− α)

(
1

M(xn, xn+1, t)
− 1

)]
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≤ α

[
(1− α)

(
1

M(xn, xn+1, t)
− 1

)
+ β

(
1

M(xn, xn+1, t)
− 1

)
+(2− α)

(
1

M(xn, xn+1, t)
− 1

)]
= α(3− 2α+ β)

(
1

M(xn, xn+1, t)
− 1

)
,

because

εn ≤ t(1− α)

(
1

M(xn, xn+1, t)
− 1

)
.

It implies that α(3− 2α+ β) > 1, which is a contradiction. Hence, our
claim is proved. Thus, by using the assumption of the theorem, for each
n ≥ 1, either

HM (Txn, Tx, t) ≥ M

(
xn, x,

t

β

)
,

or

HM (Txn+1, Tx, t) ≥ M

(
xn+1, x,

t

β

)
,

holds Therefore, one of the following cases holds.

(i) There exists an infinite subset I ⊆ N such that

HM (Txn, Tx, t) ≥ M

(
xn, x,

t

β

)
,

for all n ∈ I.
(ii) There exists an infinite subset J ⊆ N such that

HM (Txn+1, Tx, t) ≥ M

(
xn+1, x,

t

β

)
,

for all n ∈ J .

In case (i), we obtain

1

M(x, Tx, t)
− 1 ≤ 1

M(x, xn, t)
− 1 +

1

M(xn, Tx, t)
− 1

≤ 1

M(x, xn, t)
− 1 +

1

M(xn, Txn, t)
− 1

+
1

HM (Txn, Tx, t)
− 1

≤ 1

M(x, xn, t)
− 1 +

1

α

(
1

M(xn, xn+1, t)
− 1

)
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+ β

(
1

M(x, xn, t)
− 1

)
,

for all n ∈ I, and so M(x, Tx, t) = 1. Hence x ∈ Tx. Similar to (i), we
obtain x ∈ Tx, from case (ii). This completes the proof. □

The following example shows that there are some multifunctions which
satisfy the assumption of Theorem 3.1 while there are not contractive
multifunctions.

Example 3.2. Let X = [−4, 3] ∪ {0} ∪ [3, 4], M(x, y, t) = t
t+|x−y| and

T : X → C(X) be defined by

T (x) =



[
3, 5(−x)−6

−x

]
, −4 ≤ x < −3.4,

{0}, x ∈ [−3.4,−3] ∪ {0} ∪ [3, 3.4],{
−5x−6

x

}
, 3.4 < x ≤ 4.

We show that T satisfies the assumption of Theorem 3.1 for α = 2
7 and

β = 90
91 while T is not a contractive multifunction. If 3.4 < x ≤ 4, then

3 < 3 +
2x− 6

x
=

5x− 6

x
≤ 7

2
,

and
90

91
x− 5x− 6

x
> 0.

If −4 ≤ x < −3.4, then

M(0, Tx, t) =
t

t+ 3
>

t

t− 90
91x

=
t

t+ 90
91 |x|

,

Tx ⊂ [3, 3.5] and

HM ({0}, Tx, t) = M(0, Tx, t) =
t

t+ 5(−x)−6
−x

>
t

t− 90
91x

=
t

t+ 90
91 |x|

.

If 3.4 < x ≤ 4, then Tx ⊂ [−3.5,−3) and

HM ({0}, Tx, t) = M(0, Tx, t) =
t

t+ 5x−6
x

>
t

t+ 90
91x

=
t

t+ 90
91 |x|

.

Thus,

HM

(
Tx, Ty,

90

91
t

)
> M(x, y, t),

whenever x = 0 and y ̸= 0, or y = 0 and x ̸= 0. If x ∈ [3, 4] and
y ∈ [−4,−3], then

M

(
x, Tx,

7

2
t

)
≥ t

t+ 2×∗6.5
7

>
t

t+ 6
≥ M(x, y, t),
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and so
1

HM (Tx, Ty, t)
− 1 ≤ 1

M(Tx, 0, t)
− 1 +

1

HM (Ty, {0}, t)
− 1

≤ 90

91

(
|x|+ |y|

t

)
=

90

91

(
1

M(x, y, t)
− 1

)
.

If x, y ∈ [3, 3.4] or x, y ∈ [−3.4,−3], then

M

(
x, Tx,

7

2
t

)
≥ t

t+ 2∗3
7

> M(x, y, t).

If x ∈ [3, 3.4] and y ∈ [3.4, 6], or x ∈ [−3.4,−3] and y ∈ [−4,−3.4], or
y ∈ [3, 3.4] and x ∈ [3.4, 4], or y ∈ [−3.4,−3] and x ∈ [−4,−3.4], then
we have

M

(
x, Tx,

7

2
t

)
≥ t

t+ 2∗3
7

>
t

t+ 1
≥ M(x, Tx, t).

If x = 3 and y = 4, then

HM (Tx, Ty, t) = M(x, y, t) =
t

t+ 7
2

< M

(
x, y,

91

90
t

)
.

Lemma 3.3. Let x ∈ X, F be a nonempty closed subset of X, p be
a natural number, δ > 0, {x0, x1, . . . , xp} ⊂ X such that x0 = x and
xi+1 ∈ Tixi (i = 0, 1, . . . , p − 1). Then there is a natural number q > p
and {xp, xp+1, . . . , xq} ⊂ X such that xi+1 ∈ Tixi (i = p, . . . , q − 1) and
M(xq, F, t) ≥ 1− δ.

Proof. Choose a natural number p1 > p such that
∑∞

i=p1
εi <

δ
8 and a se-

quence {xp, xp+1, . . . , xp1} ⊂ X such that xi+1 ∈ Tixi (i = p, . . . , p1−1).
By using the assumptions of the lemma, there is a sequence {yi}∞i=p1

⊂
X, such that yp1 = xp1 , yi+1 ∈ Tyi for all i ≥ p1 and limi→∞M(yi, F, t) =
1. Now, we define by induction a sequence {xi}∞i=p1

⊂ X. To this end,
assume that k ≥ p1 is an integer and we have already defined xi ∈ X,
i = p1, . . . , k, such that xi+1 ∈ Tixi (i = p1, . . . , k − 1) and

1

max{M(xk, yk, t),M(xk, yk+1, t)}
− 1 ≤

k−1∑
i=p1

εi
t
.

Clearly this assumption holds for k = p1. Since yk+1 ∈ Tyk, by using
a similar proof as the one for Theorem 3.1, it is easy to show that for
each k, one of the following cases holds:

(i) M(yk, T yk,
t
α) ≥ M(yk, xk, t)

(ii) M
(
yk+1, T yk+1.

t
α

)
≥ M(yk+1, xk, t).
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By case (i), we obtain HM (Tyk, Txk, t) ≥ M(xk, yk, t) and so

M(yk+1, Txk, t) ≥ M(xk, yk, t).

Hence, there exists ỹk+1 ∈ Txk such that

1

M(yk+1, ỹk+1, t)
− 1 ≤ 1

M(xk, yk, t)
− 1 +

εk
t
.

This implies that

1

M(ỹk+1, Tkxk, , t)
− 1 ≤ 1

HM (Txk, Tkxk, t)
− 1 ≤ εk

t
,

and so there exists xk+1 ∈ Tkxk such that

1

M(ỹk+1, xk+1, t)
− 1 ≤ 2εk

t
.

Thus, we have

1

M(xk+1, yk+1, t)
− 1 ≤ 1

M(xk+1, ỹk+1, t)
− 1 +

1

M(yk+1, ỹk+1, t)
− 1

≤ 2εk
t

+

(
1

M(xk, yk, t)
− 1

)
+

ε

t

=
3εk
t

+

(
1

M(xk, yk, t)
− 1

)
.

By case (ii), we obtain

HM (Tyk+1, Txk, t) ≥ M(xk, yk+1, t),

and soM(yk+2, Txk, t) ≥ M(xk, yk+1, t). Hence, there exists ỹk+1 ∈ Txk
such that

1

M(yk+2, ỹk+1, t)
− 1 ≤ 1

M(xk, yk+1, t)
− 1 +

εk
t
.

This implies that

1

M(ỹk+1, Tkxk, t)
− 1 ≤ 1

HM (Txk, Tkxk, t)
− 1 ≤ εk

t
,

and so there exists xk+1 ∈ Tkxk such that

1

M(ỹk+1, xk+1, t)
− 1 ≤ 2εk

t
.

Thus, we have

1

M(xk+1, yk+2, t)
− 1 ≤ 1

M(xk+1, ỹk+1, t)
− 1 +

1

M(yk+1, ỹk+2, t)
− 1

≤ 2εk
t

+

(
1

M(xk, yk+1, t)
− 1

)
+

ε

t
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=
3εk
t

+

(
1

M(xk, yk+1, t)
− 1

)
.

Thus, by considering the above two cases, we have

1

max{M(xk+1, yk+1, t),M(xk+1, yk+2, t)}
− 1

≤ 1

max{M(xk, yk, t),M(xk, yk+1, t)}
− 1 +

3ε

t

≤
k−1∑
i=p1

εi
t
+

3εk
t

= 3

k∑
i=p1

εi
t
.

Therefore, we have indeed defined by induction a sequence {xi}∞i=p1
⊂ X

such that xi+1 ∈ Txi (i = p1, . . .) and

1

max{M(xk, yk, t),M(xk, yk+1, t)}
− 1 ≤

k−1∑
i=p1

εi
t
.

Hence, there exists an integer q > p1 + 2 such that M(yq, F, t) > 1 − δ
4

and M(yq+1, F, t) > 1− δ
4 . Thus, we obtain

1

M(xq, F, t)
− 1 ≤ 1

M(xq, yq, t)
− 1 +

1

M(yq, F, t)
− 1(3.7)

≤ 1

M(xq, yq, t)
− 1 +

δ

4t
,

and

1

M(xq, F, t)
− 1 ≤ 1

M(xq, yq+1, t)
− 1 +

1

M(yq+1, F, t)
− 1(3.8)

≤ 1

M(xq, yq+1, t)
− 1 +

δ

4t
.

Combining (3.7) with (3.8) implies that

1

M(xq, F, t)
− 1 ≤ 1

max{M(xq, yq, t),M(xq, yq+1, t)}
− 1 +

δ

4t

≤
k−1∑
i=p1

εi
t
+

δ

4t
≤ δ

8t
+

δ

4t
.

This completes the proof of the lemma. □
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Lemma 3.4. Let {xi}∞i=0 be a sequence in X, xi+1 ∈ Tixi for all i ≥ 0,
δ > 0, p be a natural number, F be a nonempty closed subset of X,

M(xp, F, t) ≥ 1 − δ, and
∞∑
i=p

εi < δ. Then M(xi, F, t) ≥ 1 − 3δ for all

i ≥ p.

Proof. We intend to show by induction that

(3.9)
1

M(xn, F, t)
− 1 ≤ δ

t
+

n−1∑
i=p

2εi
t
,

for all n ≥ p. Clearly, (3.9) holds for n = p. Assume that (3.9) holds for
n ≥ p. Then there exists yn ∈ F such that

1

M(xn, yn, t)
− 1 ≤ δ

t
+

n−1∑
i=p

2εi
t

+
2εn
4t

.

By assumption, M(xn+1, Txn, t) ≥ 1−εn and so there exists x̃n+1 ∈ Txn
such that M(xn+1, x̃n+1, t) ≥ 1− 3εn

2 . If xn ∈ F then

1

M(xn+1, F, t)
− 1 ≤ 1

M(xn+1, Txn, t)
− 1 ≤ εn

t
≤ δ

t
+

n∑
i=p

2εi
t
.

On the other hand,

α

(
1

M(yn, T yn, t)
− 1

)
≤ α

[
1

M(xn, yn, t)
− 1 +

1

M(xn, T yn, t)
− 1

]
≤ 2α

(
1

M(xn, yn, t)
− 1

)
<

1

M(xn, yn, t)
− 1,

and so HM (Txn, T yn, t) ≥ M(xn, yn, t). Hence, there exists ỹn+1 ∈ Tyn
such that

1

M(ỹn+1, x̃n+1, t)
− 1 ≤ 1

M(xn, yn, t)
− 1 +

εn
4
,

and so

α

(
1

M(xn+1, F, t)
− 1

)
≤ 1

M(xn+1, ỹn+1, t)
− 1

≤ 1

M(xn+1, x̃n+1, t)
− 1 +

1

M(ỹn+1, x̃n+1, t)
− 1

≤ 7εn
4t

+
1

M(xn, yn, t)
− 1
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≤ δ

t
+

n∑
i=p

2εi
t
.

This implies that

1

M(xn, F, t)
− 1 ≤ δ

t
+ 2

n−1∑
i=p

εi
t
≤ δ

t
+ 2

∞∑
i=p

εi
t
≤ δ

t
+

2δ

t
=

3δ

t
< 3δ,

for all n > p. □
Theorem 3.5. Let (X,M, ∗) be a complete fuzzy metric space, F be a
nonempty closed subset of X, T : X → C(X) be a multifunction, and
{εi}∞i=0 be a sequence in (0,∞) such that

∑∞
i=0 εi < ∞. Suppose that

T (F ) ⊂ F , M(x, Ty, t) ≥ M(x, y, t) for every x ∈ F c, y ∈ F , and there
exists α ∈ (0, 12) such that

M(x, Tx,
t

α
) ≥ M(x, y, t) ⇒ HM (Tx, Ty, t) ≥ M(x, y, t),

for all x, y ∈ X. Let Ti : X → 2X satisfy, for each integer i ≥ 0,
HM (Tx, Tix, t) ≥ 1 − εi for all x ∈ X. Assume that for each x ∈ X
there exists a sequence {xi}∞i=0 in X such that x0 = x, xi+1 ∈ Txi for
all i ≥ 0 and limi→∞M(xi, F, t) = 1. Then for each x ∈ X there exists
a sequence {xi}∞i=0 in X such that x0 = x, xi+1 ∈ Tixi for all i ≥ 0 and
limi→∞M(xi, F, t) = 1.

Proof. Let x ∈ X. By using Lemma 3.3, there exist a sequence {xi}∞i=0
and a strictly increasing sequence of natural numbers {nk}∞k=1 such that
xi+1 ∈ Tixi for all i ≥ 0 and for each k ≥ 1,

M(xnk
, F, t) ≥ 1− 2−k,

and
∑∞

i=nk
εi < 2−k. Hence, by using Lemma 3.4, we have

lim
n→∞

M(xn, F, t) = 1.

This completes the proof. □
The following example of Suzuki [23] shows that T satisfies the as-

sumptions of Theorem 3.5 for α = 1
2 while T is not a nonexpansive

multifunction.

Example 3.6. Let X = {(0, 0), (6, 0), (0, 6), (6, 7), (7, 6)},

M(x, y, t) =
t

t+ d(x, y)
,

where the metric d is defined by d((x1, x2), (y1, y2)) = |x1−y1|+|x2−y2|.
Define T on X by

T (x) =

{
{(0, x1)}, x1 ≤ x2,
{(x2, 0)}, x2 < x1.
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Put F = {(0, 0)}. Then T Satisfies the assumptions of Theorems 3.5
while T is not a nonexpansive multifunction. First note that,

HM (Tx, Ty, t) ≥ M(x, y, t),

if (x, y) ̸= ((3, 4), (4, 3)) and (x, y) ̸= ((4, 3), (3, 4)). Also, for each x ∈ X
there exists a sequence {xi}∞i=0 in X such that x0 = x, xi+1 ∈ Txi for
all i ≥ 0, limi→∞

1
M(xi,F,t)

− 1 = 0 and M(x, Ty, t) ≥ M(x, y, t) for all

x ∈ F c and y ∈ F . Thus,

M

(
(6, 7), T ((6, 7)),

1

2
t

)
<

t

t+ 7
2

<
t

t+ 2
= M ((6, 7), (7, 6), t) ,

M

(
(7, 6), T ((7, 6)),

1

2
t

)
<

t

t+ 7
2

<
t

t+ 2
= M ((7, 6), (6, 7), t) .

Hence, T satisfies the assumptions of Theorem 3.5 while T is not a
nonexpansive multifunction because

HM (T ((6, 7)), T ((7, 6)), t) =
t

t+ 12
<

t

t+ 2
= M((6, 7), (7, 6), t).
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