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Topological Centers and Factorization of Certain Module

Actions

Sedigheh Barootkoob

Abstract. Let A be a Banach algebra and X be a Banach A-
bimodule with the left and right module actions πℓ : A × X → X
and πr : X × A → X, respectively. In this paper, we study the
topological centers of the left module action πℓn : A×X(n) → X(n)

and the right module action πrn : X(n) × A → X(n), which inherit
from the module actions πℓ and πr, and also the topological centers
of their adjoints, from the factorization property point of view, and
then, we investigate conditions under which these bilinear maps are
Arens regular or strongly Arens irregular.

1. Introduction

Let f : X × Y → Z be a bounded bilinear map on normed spaces.
According to [1] and [2], we have two natural extensions f∗∗∗ and f t∗∗∗t

from X ∗∗ × Y∗∗ to Z∗∗, where the adjoint f∗ : Z∗ × X → Y∗ of f is
defined by

⟨f∗(ν, x), y⟩ = ⟨ν, f(x, y)⟩ , (x ∈ X , y ∈ Y and ν ∈ Z∗) .

Also we define f∗∗ = (f∗)∗ and f∗∗∗ = (f∗∗)∗.
It can be readily verified that f∗∗∗ is the unique extension of f for which
the maps

· 7→ f∗∗∗(·, G), · 7→ f∗∗∗(x, ·), (x ∈ X , G ∈ Y∗∗),

are w∗-w∗-continuous.
Let f t : Y×X −→ Z be the flip map of f which is defined by f t(y, x) =

f(x, y), (x ∈ X , y ∈ Y). If we continue the latter process with f t instead
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of f , we come to the bounded bilinear map f t∗∗∗t : X ∗∗ × Y∗∗ → Z∗∗,
which is the unique extension of f such that the maps

· 7→ f t∗∗∗t(F, ·), · 7→ f t∗∗∗t(·, y), (y ∈ Y, F ∈ X ∗∗),

are w∗-w∗-continuous.
We define the left and right topological centers of f by

Zℓ(f) = {F ∈ X ∗∗; f∗∗∗(F,G) = f t∗∗∗t(F,G) for every G ∈ Y∗∗},

and

Zr(f) = {G ∈ Y∗∗; f∗∗∗(F,G) = f t∗∗∗t(F,G) for every F ∈ X ∗∗},

respectively. Clearly, X ⊆ Zℓ(f),Y ⊆ Zr(f) and Zr(f) = Zℓ

(
f t
)
.

A bounded bilinear map f is said Arens regular if f∗∗∗ = f t∗∗∗t. This
is equivalent to Zℓ(f) = X ∗∗ as well as Zr(f) = Y∗∗. The map f is called
left (right) strongly Arens irregular if Zℓ(f) = X (Zr(f) = Y).

In the case where π is the multiplication of a Banach algebra A, π∗∗∗

and πt∗∗∗t are actually the first and second Arens products, respectively.
In this case, we write Zℓ (A∗∗) and Zr (A∗∗) instead of Zℓ(π) and Zr(π),
respectively. We also say that A is Arens regular, left strongly Arens
irregular, and right strongly Arens irregular if the multiplication π of A
has the corresponding property.

Let now X be a Banach A-bimodule, and let πℓ : A × X → X and
πr : X ×A → X be the left and right module actions of A on X . Then
X ∗ is a Banach A-bimodule with module actions πt∗tr and π∗ℓ . Similarly,

for every positive integer n, X (n) is a Banach A-bimodule with the left
module action πℓn : A × X (n) → X (n) and the right module action

πrn : X (n) ×A → X (n) where πℓn = πt∗trn−1
and πrn = π∗ℓn−1

. Also we put

πℓ0 = πℓ and πr0 = πr.
It is easy to see that

Zℓ

(
πrn−2

)
⊆ Zℓ (πrn) , Zr

(
πℓn−2

)
⊆ Zr (πℓn) ,

and πrn and πℓn are extensions of πrn−2 and πℓn−2 , respectively.
We say that a bilinear mapping factors if it is onto. Many analysts

have studied factorization of some module actions and their adjoints.
For example in [6] the cases that the second adjoint of a module action
factors and also factorization property of some module actions when A
is an ideal in its second dual are studied. Also in [7] the factorization
property of some approximately unital Banach modules and also the
factorization property of the right module action when the left module
action factors and vice versa are studied. In this paper, we will study
the topological centers of some module actions or their adjoints from the
factorization point of view.
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2. Factorization Property and Arens Regularity

In this section, we will study the relation between topological cen-
ters and factorization property of module actions πℓn and πrn or their
adjoints. The following lemma is useful in this study.

Lemma 2.1. For each integer n ≥ 2,

(i) π∗∗∗ℓn−2
and πt∗∗∗tℓn−2

are extensions of πℓn.

(ii) π∗∗∗rn−2
and πt∗∗∗trn−2

are extensions of πrn.

Proof. We only prove part (i).

Let φ ∈ X (n), and λ ∈ X (n−1) and a ∈ A. Consider a net (να) in X (n−2)

such that it is w∗-convergent to φ. Then we have

⟨πℓn(a, φ), λ⟩ =
⟨
φ, πrn−1(λ, a)

⟩
= lim

α

⟨
πrn−1(λ, a), να

⟩
= lim

α

⟨
λ, πℓn−2 (a, να)

⟩
=

⟨
π∗∗∗ℓn−2

(a, φ), λ
⟩

=
⟨
πt∗∗∗tℓn−2

(a, φ), λ
⟩
.

□

The following example gives some simple examples of bilinear maps
which factor.

Example 2.2. (i) Let A be a unital Banach algebra and X be a
left unital Banach A-module with module action πℓ. Then πℓn
and π∗ℓn factor for each non negative integer n. For example if
H is a Hilbert space and πℓ : B(H)×K(H) → K(H) is defined
by πℓ(T, V ) = T ◦ V , for each T ∈ B(H) and V ∈ K(H) or
πℓ : ℓ

∞×c0 → c0, which is defined by πℓ ((aα) , (bβ)) = (aα) (bβ)
for each nets (aα) ∈ ℓ∞ and (bβ) ∈ c0, then πℓn and π∗ℓn factor
for each non negative integer n.

Similarly if A has a bounded approximate identity and X is
left approximately unital Banach A-module with module action
πℓ, then it is easy to see that π∗∗∗ℓ and πt∗∗∗tℓ factor.

(ii) Let A be a Banach algebra with non empty spectrum σ(A) and
X be a Banach space. For f ∈ σ(A) define the left and right
module actions πℓ : A × X → X and πr : X × A → X by
πℓ(a, x) = ⟨f, a⟩x = πr(x, a), for each a ∈ A, x ∈ X . Then one
can verify that for every positive integer n,

πℓn(a, ϕ) = ⟨f, a⟩ϕ = πrn(ϕ, a),
(
a ∈ A, ϕ ∈ X (n)

)
.
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Now consider a0 ∈ A such that ⟨f, a0⟩ = 1. Then for each

ϕ ∈ X (n) we have πℓn (a0, ϕ) = ϕ = πrn (ϕ, a0). That is πℓn and
πrn factor.

Theorem 2.3. Consider an integer n ≥ 2.

(i) Let πℓn factors. Then F ∈ Zℓ

(
πℓn−2

)
if and only if FA ⊆

Zℓ

(
πℓn−2

)
.

(ii) Let πrn factors. Then F ∈ Zr

(
πrn−2

)
if and only if AF ⊆

Zr

(
πrn−2

)
.

(iii) Let πrn−1 factors. Then F ∈ Zℓ

(
πℓn−2

)
if and only if AF ⊆

Zℓ

(
πℓn−2

)
.

(iv) Let πℓn−1 factors. Then F ∈ Zr

(
πrn−2

)
if and only if FA ⊆

Zr

(
πrn−2

)
.

Proof. (i) By Lemma 2.1 and since π∗∗∗ℓn−2
and πt∗∗∗tℓn−2

are left module

actions of A∗∗ on X (n), for each F ∈ A∗∗, a ∈ A and ψ ∈ X (n)

we have

π∗∗∗ℓn−2
(F, πℓn(a, ψ)) = π∗∗∗ℓn−2

(
F, π∗∗∗ℓn−2

(a, ψ)
)

= π∗∗∗ℓn−2
(Fa, ψ),

and

πt∗∗∗tℓn−2
(F, πℓn(a, ψ)) = πt∗∗∗tℓn−2

(
F, πt∗∗∗tℓn−2

(a, ψ)
)

= πt∗∗∗tℓn−2
(Fa, ψ).

Now factorization of πℓn implies (i).
(ii) It is similar to (i).

(iii) If πrn−1 factors, then for each F ∈ A∗∗, φ ∈ X (n) and λ ∈ X (n−1)

that λ = πrn−1(η, a) for some η ∈ X (n−1) and a ∈ A, we have⟨
π∗∗∗ℓn−2

(F,φ), λ
⟩
=

⟨
π∗∗∗ℓn−2

(F,φ), πrn−1(η, a)
⟩

=
⟨
π∗∗∗ℓn−2

(F,φ), π∗ℓn−2
(η, a)

⟩
=

⟨
π∗∗ℓn−2

(
π∗∗∗ℓn−2

(F,φ), η
)
, a
⟩

=
⟨
π∗∗∗ℓn−2

(
a, π∗∗∗ℓn−2

(F,φ)
)
, η
⟩

=
⟨
π∗∗∗ℓn−2

(aF, φ), η
⟩
.

Similarly we can show that⟨
πt∗∗∗tℓn−2

(F,φ), λ
⟩
=

⟨
π∗∗∗ℓn−2

(
a, πt∗∗∗tℓn−2

(F,φ)
)
, η
⟩
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=
⟨
πt∗∗∗tℓn−2

(
a, πt∗∗∗tℓn−2

(F,φ)
)
, η
⟩

=
⟨
πt∗∗∗tℓn−2

(aF, φ), η
⟩
.

These prove (iii).
(iv) It is similar to (iii).

□
Note that the part (i) of the latter theorem says that if for a non

negative integer n, πℓn+2 factors, then Zℓ (πℓn) = {F ∈ A∗∗;FA ⊆
Zℓ (πℓn)} or in other word Zℓ (πℓn)A ⊆ Zℓ (πℓn). This says that in this
case Zℓ (πℓn) is a right Banach A-submodule of A∗∗. In particular if A
is a unital Banach algebra and X is a unital Banach A-module then for
each non negative integer n we have Zℓ (πℓn)A = Zℓ (πℓn) = AZℓ (πℓn).
Also if πℓn is left strongly Arens irregular and πℓn+2 factors, then {F ∈
A∗∗;FA ⊆ A} = A. Note that if A is Arens regular then it is easy to
see that Zℓ (πℓn) is also a subalgebra of A∗∗.

In the following, we give some examples for the part (i) of Theorem
2.3. Also, we have similar examples for other parts of this theorem.

Example 2.4. (i) If G is a locally compact group and π is the
convolution of M(G), then since M(G) is unital, πℓ2 factors.
Also we have Zℓ(π) = M(G) [8], and obviously µ ∈ M(G) if
and only if µν ∈M(G), for ν ∈M(G)

(ii) For a locally compact group G, L∞(G) with the pointwise prod-
uct is Arens regular and πℓ2 factors. Also obviously F ∈ L∞(G)∗∗

if and only if FL∞(G) ⊆ L∞(G)∗∗.
(iii) Let X ,Y and Z be normed spaces and f : X × Y → Z be

a bounded bilinear map. Consider the Banach algebra Af =
X ⊕ Y ⊕ Z with the pointwise vector space operations, the
multiplication (x, y, z) (x′, y′, z′) = (0, 0, f (x, y′)) and the norm
∥(x, y, z)∥ = ∥x∥ + ∥y∥ + ∥z∥, (x, x′ ∈ X , y, y′ ∈ Y, z, z′ ∈ Z) .
This algebra was defined for first time in [3]. Now let W be
a left Banach Af -module with the left module action πℓ such
that πℓn factors for some even integer n. Then since for each
(F,G,H) ∈ A∗∗

f and (x, y, z) ∈ Af , we have (F,G,H)(x, y, z) =

(0, 0, f∗∗∗(F, y)), therefore by Theorem 2.3, (F,G,H) ∈ Zℓ

(
πℓn−2

)
if and only if (0, 0, f∗∗∗(F, y)) ∈ Zℓ

(
πℓn−2

)
. That is Zℓ

(
πℓn−2

)
=

B ⊕ Y∗∗ ⊕Z∗∗, where

B = {F ∈ X ∗∗; (0, 0, f∗∗∗(F, y)) ∈ Zℓ

(
πℓn−2

)
, y ∈ Y}.

The parts (i) and (iv) of Theorem 2.3 also imply the following corol-
lary.

Corollary 2.5. For each integer n ≥ 2,



208 S. BAROOTKOOB

(i) If πℓn factors and A is a left ideal of A∗∗, then πℓn−2 and πrn−1

are Arens regular.
(ii) If πℓn factors and A has a left approximate identity (eα) with a

w∗-cluster point E, then E ∈ Zℓ

(
πℓn−2

)
∩ Zr

(
πrn−1

)
.

The part (i) of the latter corollary says that if for some even integer
n, πℓn factors and A is a left ideal of A∗∗, then πℓ and its adjoint are
Arens regular and if for some odd integers n, πℓn factors and A is a left
ideal of A∗∗, then πr and the adjoint of its flip map are Arens regular.
In particular if π is the multiplication of A and for some integers n ≥ 2,
πℓn factors and A is a left ideal of A∗∗, then A is Arens regular.

Note that similar corollaries can be given as above for cases (ii) and
(iii).

Theorem 2.6. Let n be a non zero integer.

(i) If π∗rn factors, then Zr(πrn) ⊆ Zr (A∗∗).
(ii) If πt∗ℓn factors, then Zℓ (πℓn) ⊆ Zℓ (A∗∗).

Proof. We only prove (i).
Let F ∈ Zr (πrn) and f ∈ A∗. Since π∗rn factors, there exist ω ∈

X (n+1) and ϕ ∈ X (n) such that f = π∗rn(ω, ϕ). Also we can verify that

for every a ∈ A, G ∈ A∗∗, υ ∈ X (n+1) and ψ ∈ X (n), πt∗
(
π∗rn(υ, ψ), a

)
=

π∗rn(π
t∗
rn(υ, a), ψ) and π

∗
rn (υ, πrn(ψ, a)) = π∗

(
π∗rn(υ, ψ), a

)
, and so

πt∗∗
(
G, π∗rn(υ, ψ)

)
= πt∗∗rn

(
π∗t∗rn (G,ψ), υ

)
,

and

π∗rn
(
π∗∗rn(G, υ), ψ

)
= π∗∗

(
G, π∗rn(υ, ψ)

)
.

Therefore, by above discussion, we have⟨
πt∗∗∗t(G,F ), f

⟩
=

⟨
πt∗∗∗t(G,F ), π∗rn(ω, ϕ)

⟩
=

⟨
F, πt∗∗

(
G, π∗rn(ω, ϕ)

)⟩
=

⟨
F, πt∗∗rn

(
π∗t∗rn (G,ϕ), ω

)⟩
=

⟨
πt∗∗∗trn

(
π∗t∗rn (G,ϕ), F

)
, ω

⟩
=

⟨
π∗∗∗rn

(
π∗t∗rn (G,ϕ), F

)
, ω

⟩
=

⟨
G, π∗rn

(
π∗∗rn(F, ω), ϕ

)⟩
=

⟨
G, π∗∗

(
F, π∗rn(ω, ϕ)

)⟩
=

⟨
π∗∗∗(G,F ), π∗rn(ω, ϕ)

⟩
= ⟨π∗∗∗(G,F ), f⟩ .

Therefore πt∗∗∗t(G,F ) = π∗∗∗(G,F ), as required. □
Lemma 2.7. Consider the Banach algebra A as an A-module.
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(i) If A has a bounded right approximate identity, then π∗rn factors
for every positive odd integer n.

(ii) If A has a bounded left approximate identity, then π∗rn factors
for every positive even integer n.

(iii) If A has a bounded right approximate identity, then πt∗ℓn factors
for every positive even integer n.

(iv) If A has a bounded left approximate identity, then πt∗ℓn factors
for every positive odd integer n.

Proof. (i) Let (eα) be a bounded right approximate identity in A
with a cluster point E ∈ A∗∗. We argue by induction and prove
that π∗r2k−1

(E, f) = f for every k ∈ N and f ∈ A∗.
Let k = 1, for each a ∈ A we have⟨

π∗r1(E, f), a
⟩
= ⟨E, πr1(f, a)⟩
= lim

α
⟨πr1(f, a), eα⟩

= lim
α

⟨π∗(f, a), eα⟩

= lim
α

⟨f, π(a, eα)⟩

= ⟨f, a⟩ ,

hence π∗r1(E, f) = f , and so π∗r1 factors.
Now we show that for every f ∈ A∗ and a ∈ A, we have⟨

π∗r2k+1
(E, f), a

⟩
=

⟨
π∗r2k−1

(E, f), a
⟩
, (k ≥ 1),

which will clearly yield our claim. We have⟨
π∗r2k+1

(E, f), a
⟩
=

⟨
E, πr2k+1

(f, a)
⟩

=
⟨
π∗ℓ2k(f, a), E

⟩
= ⟨f, πℓ2k(a,E)⟩

=
⟨
πt∗tr2k−1

(a,E), f
⟩

=
⟨
E, πr2k−1

(f, a)
⟩

=
⟨
π∗r2k−1

(E, f), a
⟩
,

as required. Therefore for every odd integer n ≥ 1, π∗rn factors.
(ii) Suppose now that E is a cluster point in A∗∗ of bounded left

approximate identity (eα) of A. Then for n = 2 we have⟨
π∗r2(f,E), a

⟩
= ⟨f, πr2(E, a)⟩
=

⟨
π∗ℓ1(E, a), f

⟩
= ⟨E, πℓ1(a, f)⟩



210 S. BAROOTKOOB

= lim
α

⟨
πt∗t(a, f), eα

⟩
= lim

α
⟨f, π (eα, a)⟩

= ⟨f, a⟩ ,
and so π∗r2 factors. Also, we have for k ≥ 2,⟨

π∗r2k(f,E), a
⟩
= ⟨f, πr2k(E, a)⟩

=
⟨
π∗ℓ2k−1

(E, a), f
⟩

=
⟨
E, πℓ2k−1

(a, f)
⟩

=
⟨
πt∗tr2k−2

(a, f), E
⟩

=
⟨
f, πr2k−2

(E, a)
⟩

=
⟨
π∗r2k−2

(f,E), a
⟩
,

Therefore π∗rn factors for every even integer n ≥ 2.
The proofs of (iii) and (iv) are similar. □

Theorem 2.8. Let A be a Banach algebra with the product π and let
k ≥ 1.

(i) If A has a bounded right approximate identity, then Zr

(
πr2k−1

)
⊆

Zr (A∗∗) and Zℓ (πℓ2k) ⊆ Zℓ (A∗∗).
(ii) If A has a bounded left approximate identity, then Zr (πr2k) ⊆

Zr (A∗∗) and Zℓ

(
πℓ2k−1

)
⊆ Zℓ (A∗∗).

Proof. Apply Theorem 2.6 and Lemma 2.7. □
Theorem 2.8 implies that if A has a bounded right (left) approximate

identity and the right module action of A on A(n) is Arens regular for
some positive odd (even) integers n, then A is Arens regular. And if
A has a bounded right (left) approximate identity and the left module

action of A on A(n) is Arens regular for some positive even (odd) integer
n, thenA is Arens regular. Also ifA has a bounded approximate identity
and it is right (left) strongly Arens irregular (for example, L1(G) [9] or
M(G) [8], for some locally compact groups G), then for every n ≥ 1,

the right (left) module action of A on A(n) is right (left) strongly Arens
irregular.

In the sequel we study some restricted factorizations. Let f : X×Y →
Z be a bilinear mapping and M,N and W be subspaces of X ,Y and
Z, respectively. We say that f factors W on M×N if for each w ∈ W
there are m ∈ M and n ∈ N such that f(m,n) = w.

Theorem 2.9. Consider an integer n ≥ 2, a subspace B in A∗∗ and a
subspace V of X (n).



TOPOLOGICAL CENTERS AND FACTORIZATION OF CERTAIN ... 211

(i) If πt∗∗∗tℓn−2
factors V on B × Zr

(
πt∗ℓn−2

)
and π∗∗∗ℓn−2

(
B,X (n−2)

)
⊆

X (n−2), then V ⊆ X (n−2).

(ii) If π∗∗∗rn−2
factors V on Zr

(
π∗rn−2

)
× B and π∗∗∗rn−2

(X (n−2), B) ⊆
X (n−2), then V ⊆ X (n−2).

Proof. We only prove (i). Proof of the other part can be done similarly.

For each ϕ ∈ V there are F ∈ B and ψ ∈ Zr

(
πt∗ℓn−2

)
such that

ϕ = πt∗∗∗tℓn−2
(F,ψ) and so for every ω ∈ X (n+1),

⟨ω, ϕ⟩ =
⟨
ω, πt∗∗∗tℓn−2

(F, ψ)
⟩

=
⟨
πt∗∗∗∗ℓn−2

(ω, ψ), F
⟩
.

Now if (φα) and (λβ) are two nets in X (n−2) and X (n−1) respectively,

such that φα →w∗
ψ and λβ →w∗

ω, then since for each G ∈ A∗∗, φ ∈ X (n−2)

and λ ∈ X (n−1), ⟨
πt∗ℓn−2

(λ, φ), G
⟩
=

⟨
λ, π∗∗∗ℓn−2

(G,φ)
⟩
,

we have

⟨ω, ϕ⟩ =
⟨
πt∗∗∗∗ℓn−2

(ω, ψ), F
⟩

= lim
α

lim
β

⟨
F, πt∗ℓn−2

(λβ, φα)
⟩

= lim
α

lim
β

⟨
λβ, π

∗∗∗
ℓn−2

(F,φα)
⟩

= lim
α

⟨
ω, π∗∗∗ℓn−2

(F,φα)
⟩
.

Therefore π∗∗∗ℓn−2
(F,φα) →wϕ and so ϕ ∈ X (n−2)

w
= X (n−2). □

Note that if A has an approximate identity, X is left (right) approx-
imately unital, E is a w∗-cluster point of the approximate identity and
B in Theorem 2.9 is the subspace generated by E, then we have the
following corollary, which is also a combination of [5] and Theorem 3.4
of [4].

Corollary 2.10. If A has an approximate identity.

(i) If X is left approximately unital, then πt∗ℓ is right strongly Arens
irregular.

(ii) If X is right approximately unital, then π∗r is right strongly
Arens irregular.

Corollary 2.11. Let V be a subspace of A∗∗.
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(i) If A is a left ideal of A∗∗ and V ⊆ A∗∗♢Zr

(
πt∗

)
, then V ⊆ A.

(ii) If A is a right ideal of A∗∗ and V ⊆ Zr

(
πt∗

)
□A∗∗, then V ⊆ A.

In particular if in Corollary 2.11 we put V = A∗∗, then A is reflexive
and if V = Zr (A∗∗) (V = Zℓ (A∗∗)) then A is right (left) strongly Arens
irregular. Consequently if V = Zr (A∗∗) (V = Zℓ (A∗∗)) satisfies the
conditions of the corollary, then A is Arens regular if and only if it is
reflexive.

In the following, we give some examples which satisfy in part (i) of
Corollary 2.11. Also, we may give similar examples which satisfy in part
(ii) of this corollary.

Example 2.12. (i) Let H be a Hilbert space and π be the product
of K(H), the algebra of compact operators on H. By Corollary
2.10, πt∗ is right strongly Arens irregular. Now since K(H) is
an ideal of B(H), B(H)♢Zr

(
πt∗

)
= B(H)K(H) ⊆ K(H).

(ii) Let H be a Hilbert space. Consider the Banach algebra A◦ =
K(H)⊕K(H)⊕K(H), with the product and norm as follows

(r, s, t)(u, v, w) = (0, 0, r ◦ v), ∥(u, v, w)∥ = ∥u∥+ ∥v∥+ ∥w∥,

for each r, s, t, u, v, w ∈ K(H).
Let F be the transpose of the product ◦, of K(H). Then

Corollary 2.10 implies that F ∗ is right strongly Arens irregular.
If we denote the product of A◦ by π, then it is easy to see that
for every f, g, h ∈ K(H)∗ and u, v, w ∈ K(H),

πt∗((f, g, h), (u, v, w)) = (F ∗(h, v), 0, 0) .

Therefore Zr

(
πt∗

)
= B(H)⊕K(H)⊕B(H). On the other hand

A◦ is a left ideal of A∗∗
◦ and we have for each (T,R, S) ∈ A∗∗

◦
and (U, u, V ) ∈ Zr

(
πt∗

)
,

(T,R, S)♢(U, u, V ) = (0, 0, T ◦ u) ∈ A◦.

The following theorem implies that when X is not reflexive, then
πℓn |A×Zr

(
πt∗
ℓn−2

) and also πrn |Zr

(
π∗
rn−2

)
×A do not factor.

Theorem 2.13. Let n ≥ 2 and V be a subspace of X (n).

(i) If πℓn factors V on A× Zr

(
πt∗ℓn−2

)
, then V ⊆ X (n−2).

(ii) If πrn factors V on Zr

(
π∗rn−2

)
×A, then V ⊆ X (n−2).

Proof. (i) For each Ψ ∈ V , there are a ∈ A and Φ ∈ Zr

(
πt∗ℓn−2

)
such that Ψ = πℓn(a,Φ). Now if the net (ϕα) ⊆ X (n−2) is
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w∗-convergent to Φ, then for each ω ∈ X (n+1) we have

lim
α

⟨
ω, πℓn−2 (a, ϕα)

⟩
= lim

α
lim
β

⟨
λβ, πℓn−2 (a, ϕα)

⟩
= lim

α
lim
β

⟨
πt∗ℓn−2

(λβ, ϕα) , a
⟩

=
⟨
πt∗t∗∗∗tℓn−2

(ω,Φ), a
⟩

=
⟨
πt∗∗∗∗ℓn−2

(ω,Φ), a
⟩

=
⟨
ω, πt∗∗∗tℓn−2

(a,Φ)
⟩

= ⟨ω, πℓn(a,Φ)⟩
= ⟨ω,Ψ⟩ ,

where (λβ) ⊆ X (n−1) is a w∗-convergent net to ω. Now since

X (n−2) is complete, Ψ ∈ X (n−2)
w
= X (n−2).

(ii) It is similar.
□

Example 2.14. (i) Let G be a locally compact group and π be
the product of M(G)

(
resp. L1(G)

)
. Then by Corollary 2.10,

πt∗ is right strongly Arens irregular and so

πℓ2
(
M(G), Zr

(
πt∗

))
⊆M(G),(

resp. πℓ2
(
L1(G), Zr

(
πt∗

))
⊆ L1(G)

)
.

(ii) Let X be a normed space and ”.” be the scaler multiplication
on X . If π is the product of the Banach algebra A. = X ⊕
C ⊕ X , then it is easy to see that πt∗ is Arens regular and
πℓ2

(
A., Zr

(
πt∗

))
⊆ A.. For some other special examples, see

Example 2.12, where a Banach algebra A is an ideal of A∗∗.

Corollary 2.15. Consider an integer n ≥ 2.

(i) Let πℓn factors Zr

(
πt∗ℓn−2

)
on A × Zr

(
πt∗ℓn−2

)
. Then πt∗ℓn−2

is

right strongly Arens irregular.

(ii) Let πrn factors Zr

(
π∗rn−2

)
on Zr

(
π∗rn−2

)
× A. Then π∗rn−2

is

right strongly Arens irregular.

(iii) Let πℓn factors Zr

(
πℓn−2

)
on A × Zr

(
πt∗ℓn−2

)
. Then πℓn−2 is

right strongly Arens irregular.

(iv) Let πrn factors Zℓ

(
πrn−2

)
on Zr

(
π∗rn−2

)
× A. Then π∗rn−2

is

left strongly Arens irregular.
(v) If πℓn |A×Zr

(
πt∗
ℓn−2

) factors, then X is reflexive.
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(vi) If πrn |Zr

(
π∗
rn−2

)
×A factors, then X is reflexive.

Proposition 2.16. Let n ≥ 2.

(i) If for each ϕ ∈ X (n) there are ψ ∈ X (n) and F,G ∈ A∗∗ such
that ϕ = πt∗∗∗tℓn−2

(F, ψ) and ψ = πt∗∗∗tℓn−2
(G,ϕ), then πt∗ℓn−2

is left

strongly Arens irregular.
(ii) If for each ϕ ∈ X (n) there are ψ ∈ X (n) and F,G ∈ A∗∗ such

that ϕ = π∗∗∗rn−2
(ψ,F ) and ψ = πrn−2(ϕ,G), then π∗rn−2

is left
strongly Arens irregular.

Proof. Let ω ∈ Zℓ(π
t∗
ℓn−2

) and ϕ ∈ X (n), and F,G and ψ are as above.

Then we have

⟨ω, ϕ⟩ =
⟨
ω, πt∗∗∗tℓn−2

(F,ψ)
⟩

=
⟨
πt∗∗∗∗ℓn−2

(ω, ψ), F
⟩

=
⟨
πt∗t∗∗∗tℓn−2

(ω, ψ), F
⟩

=
⟨
ψ, πt∗t∗∗ℓn−2

(ω, F )
⟩
,

therefore ω = πt∗∗ℓn−2

(
G, πt∗t∗∗ℓn−2

(ω, F )
)
∈ χ(n−1).

Proof of (ii) is similar. □
Note that the given conditions in part (i) (resp. part (ii)) of Proposi-

tion 2.16 are equivalent to “for each ϕ ∈ X (n) there is F ∈ A∗∗ such that
ϕ = πt∗∗∗tℓn−2

(F, ϕ) (respectively ϕ = π∗∗∗rn−2
(ϕ, F ))”. So if A has a bounded

approximate identity and X is approximately unital, then πt∗ℓn and π∗rn
are left and right strongly Arens irregular. However by combination of
the results of [4] and [5] we give this result for n = 2.
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