$DOI:\,10.22130/scma.2018.78754.365$

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to n'th Weighted Type Spaces

Kobra Esmaeili

ABSTRACT. Let $\mathcal{H}(\mathbb{D})$ denote the space of analytic functions on the open unit disc \mathbb{D} . For a weight μ and a nonnegative integer n, the n'th weighted type space $\mathcal{W}_{\mu}^{(n)}$ is the space of all $f \in \mathcal{H}(\mathbb{D})$ such that $\sup_{z \in \mathbb{D}} \mu(z) \left| f^{(n)}(z) \right| < \infty$. Endowed with the norm

$$||f||_{\mathcal{W}^{(n)}_{\mu}} = \sum_{i=0}^{n-1} |f^{(j)}(0)| + \sup_{z \in \mathbb{D}} \mu(z) |f^{(n)}(z)|,$$

the n'th weighted type space is a Banach space. In this paper, we characterize the boundedness of generalized weighted composition operators $\mathcal{D}_{\varphi,u}^m$ from logarithmic Bloch type spaces $\mathcal{B}_{\log\beta}^{\alpha}$ to n'th weighted type spaces $\mathcal{W}_{\mu}^{(n)}$, where u and φ are analytic functions on \mathbb{D} and $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. We also provide an estimation for the essential norm of these operators.

1. Introduction

Let \mathbb{D} denote the open unit disc in the complex plane \mathbb{C} and $\mathcal{H}(\mathbb{D})$ be the space of analytic functions on \mathbb{D} . For a weight function $\nu : \mathbb{D} \to \mathbb{R}_+$, a continuous strictly positive and bounded function, the weighted Banach space of analytic functions, denoted by $\mathcal{H}_{\nu}^{\infty}$, is the space of all functions $f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{\nu} = \sup_{z \in \mathbb{D}} \nu(z) |f(z)| < \infty,$$

Received: 04 January 2018, Accepted: 18 July 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B33; Secondary 47B38. Key words and phrases. Essential norms, Generalized weighted composition operators, Logarithmic Bloch type spaces, Nth weighted type spaces.

and \mathcal{H}^0_{ν} is the subspace of $\mathcal{H}^{\infty}_{\nu}$ consisting of all functions f for which $\lim_{|z|\to 1^-} \nu(z) |f(z)| = 0$. Endowed with the norm $\|\cdot\|_{\nu}$, $\mathcal{H}^{\infty}_{\nu}$ and \mathcal{H}^0_{ν} are Banach spaces. For a weight ν , the associated weight $\tilde{\nu}$ is defined by

$$\tilde{\nu}(z) := (\sup\{|f(z)| : f \in \mathcal{H}_{\nu}^{\infty}, ||f||_{\nu} \le 1\})^{-1}, \quad z \in \mathbb{D}.$$

It is known that $\nu(z) \leq \tilde{\nu}(z)$ for every $z \in \mathbb{D}$. Moreover, $\mathcal{H}_{\tilde{\nu}}^{\infty} = \mathcal{H}_{\nu}^{\infty}$ and $\|f\|_{\tilde{\nu}} = \|f\|_{\nu}$, for all $f \in \mathcal{H}_{\nu}^{\infty}$. A weight ν is called essential if for some positive constant c, $\nu(z) \geq c\tilde{\nu}(z)$ for every $z \in \mathbb{D}$. See [2, 3] for more results for the associated weights. The weight ν is called radial if $\nu(|z|) = \nu(z)$ for all $z \in \mathbb{D}$.

For an arbitrary weight ν , the weighted Bloch space \mathcal{B}_{ν} is the space of all functions $f \in \mathcal{H}(\mathbb{D})$ such that $f' \in \mathcal{H}_{\nu}^{\infty}$. By \mathcal{B}_{ν}^{0} we mean the subspace of \mathcal{B}_{ν} consisting of functions f for which $f' \in \mathcal{H}_{\nu}^{0}$. Endowed with the norm $||f||_{\mathcal{B}_{\nu}} := |f(0)| + ||f'||_{\nu}$, the weighted Bloch space \mathcal{B}_{ν} is a Banach space and \mathcal{B}_{ν}^{0} is a closed subspace of \mathcal{B}_{ν} . For the standard weight $\nu_{\alpha}(z) = \left(1 - |z|^{2}\right)^{\alpha}$ $(0 < \alpha < \infty)$, we denote the weighted Bloch space $\mathcal{B}_{\nu_{\alpha}}$, so-called α -Bloch spaces, by \mathcal{B}_{α} (See [9]).

Consider the weight

$$u_{\alpha,\beta}(z) := \left(1 - |z|^2\right)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|^2}\right)^{\beta}, \quad z \in \mathbb{D},$$

where, $\alpha > 0$ and $\beta \geq 0$. The logarithmic Bloch type space, denoted by $\mathcal{B}^{\alpha}_{\log^{\beta}}$, is the weighted Bloch space $\mathcal{B}_{\nu_{\alpha,\beta}}$ and was first introduced by Stević in [12]. The little logarithmic Bloch type space $\mathcal{B}^{0}_{\nu_{\alpha,\beta}}$ is denoted by $\mathcal{B}^{\alpha,0}_{\log^{\beta}}$. For $\beta = 0$, the space $\mathcal{B}^{\alpha}_{\log^{\beta}}$ coincides with α -Bloch spaces \mathcal{B}_{α} and specifically, for every $\alpha > 0$ and $\beta \geq 0$, $\mathcal{B}^{\alpha}_{\log^{\beta}} \subseteq \mathcal{B}_{\alpha}$. For $\alpha = \beta = 1$, $\mathcal{B}^{\alpha}_{\log^{\beta}}$ becomes the logarithmic Bloch space \mathcal{B}_{\log} , which appeared in [1, 4, 16]. Let

$$\mu_{\alpha,\beta}(z) := (1-|z|)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|} \right)^{\beta}, \quad z \in \mathbb{D}.$$

Since the function $h(x)=x^{\alpha}\left(\ln\frac{e^{\frac{\beta}{\alpha}}}{x}\right)^{\beta}$ is increasing on (0,1], we obtain

(1.1)
$$\mu_{\alpha,\beta}(z) \le \nu_{\alpha,\beta}(z) \le 2^{\alpha} \mu_{\alpha,\beta}(z), \quad z \in \mathbb{D}.$$

Therefore, the Bloch spaces $\mathcal{B}_{\mu_{\alpha,\beta}}$ and $\mathcal{B}_{\log^{\beta}}^{\alpha}$ are the same and their norms are equivalent. Furthermore, $\nu_{\alpha,\beta}$ is a non-increasing essential weight tending to zero at the boundary of \mathbb{D} [11].

For an arbitrary weight μ and a nonnegative integer n, the n'th weighted type space $\mathcal{W}_{\mu}^{(n)}$ consists of all $f \in \mathcal{H}(\mathbb{D})$ such that $f^{(n)} \in \mathcal{H}_{\mu}^{\infty}$.

For n = 0 the space becomes $\mathcal{H}_{\mu}^{\infty}$, for n = 1 the weighted Bloch space \mathcal{B}_{μ} and for n = 2 the weighted Zygmund space \mathcal{Z}_{μ} . The *n*'th weighted type space $\mathcal{W}_{\mu}^{(n)}$ with the norm

$$||f||_{\mathcal{W}^{(n)}_{\mu}} = \sum_{j=0}^{n-1} |f^{(j)}(0)| + ||f^{(n)}||_{\mu},$$

is a Banach space.

Let $u \in \mathcal{H}(\mathbb{D})$ and φ be a non-constant analytic self-map on \mathbb{D} . The weighted composition operator uC_{φ} induced by u and φ , is defined by

$$(uC_{\varphi}f)(z) = u(z) \cdot f(\varphi(z)), \quad f \in \mathcal{H}(\mathbb{D}).$$

In the case $u \equiv 1$, we have the composition operator C_{φ} and if φ is the identity map, we have the multiplication operator $M_u: f \mapsto u \cdot f$.

Let m be a nonnegative integer. The generalized weighted composition operator $\mathcal{D}_{\varphi,u}^m$, is defined as following

$$\left(\mathcal{D}_{\varphi,u}^m f\right)(z) = u(z) \cdot f^{(m)}(\varphi(z)), \quad f \in \mathcal{H}(\mathbb{D}), z \in \mathbb{D}.$$

The generalized weighted composition operator was first introduced by Zhu in [19] and it includes many known operators. In the case m=0, we get weighted composition operator uC_{φ} which has been studied by several authors, see [5–8] and references therein. The boundedness and compactness of $\mathcal{D}_{\varphi,u}^m$ between Bers type spaces and α -Bloch spaces have been studied by Zhu in [18]. Stević and Sharma in [14] characterized the boundedness and compactness of $\mathcal{D}_{\varphi,u}^m$ from α - Bloch spaces to weighted BMOA spaces. Qu, et. al. in [10] characterized the boundedness and compactness of $\mathcal{D}_{\varphi,u}^m$ from logarithmic Bloch space \mathcal{B}_{\log} to weighted Zygmund spaces. Ramos-Fernández in [11] has characterized bounded weighted composition operators from logarithmic Bloch type spaces to weighted Bloch spaces and has obtained an essential norm estimate for these operators. In this paper, we provide a characterization for the boundedness and an estimation for the essential norm of $\mathcal{D}_{\varphi,u}^m$ from logarithmic Bloch type spaces $\mathcal{B}^{\alpha}_{\log^{\beta}}$ to nth weighted type space $\mathcal{W}_{\mu}^{(n)}$. Our results are generalization of [10, 11]. In Section 2, we state some lemmas to obtain our main results and we characterize the boundedness of $\mathcal{D}_{\varphi,u}^m:\mathcal{B}_{\log^{\beta}}^{\alpha}\to\mathcal{W}_{\mu}^{(n)}$. Section 3 is devoted to estimates for the essential norms of this operator.

To provide our main results we need the test functions defined as follows. Suppose $\alpha > 0$, $\beta \ge 0$ and let m be a positive integer such that

 $\alpha > m-1$. For a fixed $w \in \mathbb{D}$, define

$$K_w^{m,\alpha}(z) = \frac{\left(1 - |\varphi(w)|^2\right)^m}{\left(1 - \overline{\varphi(w)}z\right)^{\alpha}}, \qquad f_w = \left(\ln\frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(w)|}\right)^{-\beta} K_w^{m,\alpha}.$$

Then

$$f'_w = \alpha \overline{\varphi(w)} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(w)|} \right)^{-\beta} K_w^{m,\alpha+1},$$

and

$$\sup_{z \in \mathbb{D}} \nu_{\alpha - m + 1, \beta}(z) \left| f'_w(z) \right| \leq \alpha 2^m \sup_{z \in \mathbb{D}} \frac{\nu_{\alpha - m + 1, \beta}(z)}{\left(1 - |\varphi(w)z|\right)^{\alpha - m + 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(w)z|}\right)^{\beta}} \times \left(\frac{\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(w)z|}}{\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(w)|}}\right)^{\beta}$$

$$\leq \alpha 2^m \sup_{z \in \mathbb{D}} \frac{\nu_{\alpha - m + 1, \beta}(z)}{H\left(|\varphi(w)z|\right)},$$

where

$$H(z) = (1-z)^{\alpha-m+1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-z} \right)^{\beta}.$$

By [11, Lemma 2.1] we obtain

$$\sup_{z\in\mathbb{D}}\nu_{\alpha-m+1,\beta}(z)\left|f'_w(z)\right|\leq c(\alpha,m)<\infty,$$

where $c(\alpha, m)$ is a positive constant depending on α and m. It follows that $f_w \in \mathcal{B}_{\log^{\beta}}^{\alpha-m+1}$ and $\sup_{w \in \mathbb{D}} \|f_w\|_{\mathcal{B}_{\log^{\beta}}^{\alpha-m+1}} < \infty$. Since

$$\lim_{x \to 0} x^{\alpha - m + 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{x} \right)^{\beta} = 0,$$

an easy computation gives $f_w \in \mathcal{B}_{\log^{\beta}}^{\alpha-m+1,0}$.

We shall use the following results to provide our main theorems.

Theorem 1.1 ([8, Theorem 2.1]). Let ν and ω be weights. Then the weighted composition operator uC_{φ} maps $\mathcal{H}_{\nu}^{\infty}$ into $\mathcal{H}_{\omega}^{\infty}$ if and only if

$$||uC_{\varphi}||_{\mathcal{H}_{\nu}^{\infty} \to \mathcal{H}_{\omega}^{\infty}} = \sup_{z \in \mathbb{D}} \frac{\omega(z)}{\tilde{\nu}(\varphi(z))} |u(z)| < \infty.$$

Moreover, $\|uC_{\varphi}\|_{e,\mathcal{H}_{\nu}^{\infty}\to\mathcal{H}_{\omega}^{\infty}} = \limsup_{|\varphi(z)|\to 1} \frac{\omega(z)}{\bar{\nu}(\varphi(z))} |u(z)|$.

Lemma 1.2 ([13, Lemma 4]). Assume $n \in \mathbb{N}_0$, $g, u \in \mathcal{H}(\mathbb{D})$ and φ is an analytic self-map on \mathbb{D} . Then

$$(u(z)g(\varphi(z)))^{(n)} = \sum_{k=0}^{n} g^{(k)}(\varphi(z)) \sum_{l=k}^{n} C_{l}^{n} u^{(n-l)}(z) B_{l,k} \left(\varphi'(z), \dots, \varphi^{(l-k+1)}(z) \right),$$

where, $B_{l,k}(x_1, \ldots, x_{l-k+1})$ is the Bell polynomial.

Recall that the essential norm $\|T\|_{e;X\to Y}$ of a bounded linear operator $T:X\to Y$ is defined as the distance from T to $\mathcal{K}(X,Y)$, the space of compact operators from X into Y. The norm of a bounded operator $T:X\to Y$ is denoted by $\|T\|_{X\to Y}$. The notation $A\lesssim B$ means that for some constant $c,A\leq cB$ and $A\approx B$ means that $A\lesssim B$ and $B\lesssim A$.

2. Boundedness

In this section, we provide the necessary and sufficient conditions for $\mathcal{D}_{\varphi,u}^m: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ to be bounded, where $m \in \mathbb{N}_0$, $\alpha > 0$, $\beta \geq 0$ such that $\alpha + m > 1$ and μ is an arbitrary weight. Before stating our main results, we need some preliminary lemmas as follows. The following lemma is used frequently in this paper.

Lemma 2.1 ([12, Lemma 2 (a)]). Assume $\alpha > 1$ and $\beta \geq 0$. Then

$$\int_0^x \frac{dt}{(1-t)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-t}\right)^{\beta}} \approx \frac{1}{(1-x)^{\alpha-1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-x}\right)^{\beta}},$$

as $x \to 1^-$.

The following result may be proved in the same way as [10, Lemma 1].

Lemma 2.2. Let $\alpha > 0$, $\beta \geq 0$ and $n \in \mathbb{N}_0$ such that $\alpha + n > 1$. There exists a constant c such that

$$\left| f^{(n)}(z) \right| \le \frac{c \left\| f \right\|_{\mathcal{B}_{\log \beta}^{\alpha}}}{\left(1 - \left| z \right|^{2} \right)^{\alpha + n - 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - \left| z \right|^{2}} \right)^{\beta}}, \quad z \in \mathbb{D}.$$

In the next lemma, which is a generalization of [17, Proposition 7], we show that $\mathcal{H}^{\infty}_{\nu_{\alpha,\beta}} = \mathcal{B}^{\alpha+1}_{\log^{\beta}}$ and their norms are equivalent.

Lemma 2.3. Suppose $\alpha > 1$ and $\beta \geq 0$. Then f is in $\mathcal{B}^{\alpha}_{\log^{\beta}}$ if and only if f is in $\mathcal{H}^{\infty}_{\nu_{\alpha-1,\beta}}$. Specifically, $\|f\|_{\mathcal{B}^{\alpha}_{\log^{\beta}}} \approx \|f\|_{\nu_{\alpha-1,\beta}}$.

Proof. Let $\alpha > 1$ and $f \in \mathcal{B}^{\alpha}_{\log^{\beta}}$. Using (1.1) and Lemma 2.1 we have

$$|f(z) - f(0)| \lesssim ||f||_{\mathcal{B}^{\alpha}_{\log^{\beta}}} \int_{0}^{1} \frac{|z| dt}{(1 - |z| t)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z| t}\right)^{\beta}}$$

$$\lesssim \frac{||f||_{\mathcal{B}^{\alpha}_{\log^{\beta}}}}{(1 - |z|)^{\alpha - 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|}\right)^{\beta}}$$

$$\lesssim \frac{||f||_{\mathcal{B}^{\alpha}_{\log^{\beta}}}}{\nu_{\alpha - 1, \beta}(z)}.$$

Thus $f \in \mathcal{H}^{\infty}_{\nu_{\alpha-1,\beta}}$ and $\|f\|_{\nu_{\alpha-1,\beta}} \lesssim \|f\|_{\mathcal{B}^{\alpha}_{\log\beta}}$. Now let $f \in \mathcal{H}^{\infty}_{\nu_{\alpha-1,\beta}}$. To show that $f \in \mathcal{B}^{\alpha}_{\log\beta}$, we apply the arguments given in the proof of [10, Lemma 1]. Fixing $z \in \mathbb{D}$, let $r = \frac{1+|z|}{2}$. Then r < 1 and $\frac{z}{r} \in \mathbb{D}$. The Cauchy formula yields

$$\begin{aligned} \left| f'(z) \right| &= \frac{1}{2\pi} \left| \int_0^{2\pi} \frac{f\left(re^{i\theta}\right)}{\left(re^{i\theta} - z\right)^2} rie^{i\theta} d\theta \right| \\ &\lesssim \frac{r \left\| f \right\|_{\nu_{\alpha-1,\beta}}}{(1 - r^2)^{\alpha - 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - r^2}\right)^{\beta}} \int_0^{2\pi} \frac{d\theta}{2\pi \left| re^{i\theta} - z \right|^2} \\ &= \frac{r \left\| f \right\|_{\nu_{\alpha-1,\beta}}}{(1 - r^2)^{\alpha - 1} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - r^2}\right)^{\beta} \left(r^2 - |z|^2\right)} \\ &\lesssim \frac{\left\| f \right\|_{\nu_{\alpha-1,\beta}}}{(1 - r^2)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - r^2}\right)^{\beta}}. \end{aligned}$$

The last inequality holds since

$$\frac{r^2 - |z|^2}{r} > r - |z|$$

$$= \frac{1 - |z|}{2}$$

$$= 1 - r.$$

Thus

$$\left|f'(z)\right|\lesssim rac{\left\|f
ight\|_{
u_{lpha-1,eta}}}{(1-r^2)^lpha\left(\lnrac{e^{rac{eta}{lpha}}}{1-r^2}
ight)^eta}.$$

Since $\frac{1-|z|^2}{4} \le 1-r^2 \le 1-|z|^2$ and $h(x)=x^{\alpha}\left(\ln\frac{e^{\frac{\beta}{\alpha}}}{x}\right)^{\beta}$ is increasing on [0,1), we provide that

$$\left|f'(z)\right|\lesssim rac{\left\|f
ight\|_{
u_{lpha-1,eta}}}{\left(1-|z|^2
ight)^{lpha}\left(\lnrac{e^{rac{eta}{lpha}}}{1-|z|^2}
ight)^{eta}}.$$

This shows that

$$|f(0)| + \sup_{z \in \mathbb{D}} \left(1 - |z|^2\right)^{\alpha} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|^2}\right)^{\beta} |f'(z)| \lesssim ||f||_{\nu_{\alpha-1,\beta}},$$

which completes the proof.

In the following lemma we show that [17, Proposition 8] holds for the logarithmic Bloch type spaces.

Lemma 2.4. Suppose $\alpha > 0$, $\beta \geq 0$ and $n \in \mathbb{N}_0$. A function $f \in \mathcal{H}(\mathbb{D})$ belongs to $\mathcal{B}_{\log^{\beta}}^{\alpha}$ if and only if $f^{(n)} \in \mathcal{B}_{\log^{\beta}}^{\alpha+n}$. Furthermore,

(2.1)
$$||f||_{\mathcal{B}^{\alpha}_{\log^{\beta}}} \approx \sum_{i=0}^{n} \left| f^{(j)}(0) \right| + \sup_{z \in \mathbb{D}} \nu_{\alpha+n,\beta}(z) \left| f^{(n+1)}(z) \right|.$$

Proof. For n=0 it is trivial, thus we assume that $n\in\mathbb{N}$. Let $f\in\mathcal{B}_{\log^{\beta}}^{\alpha}$. It follows from Lemma 2.2 that $f^{(n)}\in\mathcal{B}_{\log^{\beta}}^{\alpha+n}$ and $\|f^{(n)}\|_{\mathcal{B}_{\log^{\beta}}^{\alpha+n}}\lesssim \|f\|_{\mathcal{B}_{\log^{\beta}}^{\alpha}}$. For $k=1,2,\ldots,n$, by the Cauchy formula we have

$$\left| f^{(k)}(0) \right| \le \frac{2^{k+2\alpha}(k-1)!}{3^{\alpha} \left(\ln \frac{4e^{\frac{\beta}{\alpha}}}{3} \right)^{\beta}} \left\| f' \right\|_{\nu_{\alpha,\beta}}.$$

Thus

$$\sum_{j=0}^{n} \left| f^{(j)}(0) \right| + \sup_{z \in \mathbb{D}} \nu_{\alpha+n,\beta}(z) \left| f^{(n+1)}(z) \right| \lesssim |f(0)| + \left\| f' \right\|_{\nu_{\alpha,\beta}} + \left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}}$$
$$\lesssim \|f\|_{\mathcal{B}_{\log\beta}^{\alpha}}.$$

Now let $f^{(n)} \in \mathcal{B}^{\alpha+n}_{\log^{\beta}}$. Then

$$\left| f^{(n)}(z) - f^{(n)}(0) \right| \le \int_0^1 |z| \left| f^{(n+1)}(tz) \right| dt \le \left\| f^{(n)} \right\|_{\mathcal{B}^{\alpha+n}_{\log \beta}} \int_0^1 \frac{|z| dt}{\nu_{\alpha+n,\beta}(tz)}.$$

Noticing that $\alpha + n > 1$, then using Lemma 2.1, we get

(2.2)
$$\left| f^{(n)}(z) \right| \lesssim \left| f^{(n)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log \beta}^{\alpha + n}}}{\nu_{\alpha + n - 1, \beta}(z)}.$$

By induction, we show that for every nonnegative integer k with $n-k \ge 1$.

(2.3)
$$\left| f^{(n-k)}(z) \right| \lesssim \sum_{j=0}^{k} \left| f^{(n-j)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log \beta}^{\alpha+n}}}{\nu_{\alpha+n-k-1,\beta}(z)}.$$

The relation (2.2) implies that for k = 0, (2.3) is valid. Let k = 1 such that $n - k \ge 1$. By (2.2) we have

$$\left| f^{(n-1)}(z) - f^{(n-1)}(0) \right| \leq \int_{0}^{1} |z| \left| f^{(n)}(tz) \right| dt
\lesssim \left| f^{(n)}(0) \right| |z| + \left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}} \int_{0}^{1} \frac{|z| dt}{\nu_{\alpha+n-1,\beta}(tz)}
\lesssim \left| f^{(n)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}}}{\nu_{\alpha+n-2,\beta}(z)},$$

where the latter holds by Lemma 2.1. Thus

$$\left| f^{(n-1)}(z) \right| \lesssim \left| f^{(n-1)}(0) \right| + \left| f^{(n)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log \beta}^{\alpha+n}}}{\nu_{\alpha+n-2,\beta}(z)}.$$

Assume (2.3) holds for every nonnegative integer k with $n-k \geq 1$; we will prove it for k+1 with $n-k-1 \geq 1$. For $z \in \mathbb{D}$ we have

$$\left| f^{(n-k-1)}(z) - f^{(n-k-1)}(0) \right| \leq \int_{0}^{1} |z| \left| f^{(n-k)}(tz) \right| dt
\lesssim \left(\sum_{j=0}^{k} \left| f^{(n-j)}(0) \right| \right) |z|
+ \left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}} \int_{0}^{1} \frac{|z| dt}{\nu_{\alpha+n-k-1,\beta}(tz)}
\lesssim \sum_{j=0}^{k} \left| f^{(n-j)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}}}{\nu_{\alpha+n-k-2,\beta}(z)},$$

from which we get that

$$\left| f^{(n-k-1)}(z) \right| \lesssim \sum_{j=0}^{k+1} \left| f^{(n-j)}(0) \right| + \frac{\left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}}}{\nu_{\alpha+n-k-2,\beta}(z)}.$$

Thus (2.3) is true. Taking k = n - 1, the relation (2.3) yields

$$|f'(z)| \lesssim \sum_{j=1}^{n} |f^{(j)}(0)| + \frac{||f^{(n)}||_{\mathcal{B}_{\log\beta}^{\alpha+n}}}{\nu_{\alpha,\beta}(z)},$$

which implies that

$$\nu_{\alpha,\beta}(z) \left| f'(z) \right| \lesssim \|\nu_{\alpha,\beta}\|_{\infty} \sum_{j=1}^{n} \left| f^{(j)}(0) \right| + \left\| f^{(n)} \right\|_{\mathcal{B}_{\log\beta}^{\alpha+n}}.$$

Therefore,

$$||f||_{\mathcal{B}_{\log^{\beta}}^{\alpha}} \lesssim \sum_{i=0}^{n} \left| f^{(j)}(0) \right| + \sup_{z \in \mathbb{D}} \nu_{\alpha+n,\beta}(z) \left| f^{(n+1)}(z) \right|,$$

from which we get the desired result.

For convenience, hereafter we assume that

$$\Phi_{k,n}^{u,\varphi}(z) = \sum_{l=k}^{n} C_l^n u^{(n-l)}(z) B_{l,k} \left(\varphi'(z), \dots, \varphi^{(l-k+1)}(z) \right),$$

where $k \in \{0, ..., n\}$. By Lemma 1.2, for every $f \in \mathcal{B}^{\alpha}_{\log^{\beta}}$,

$$(\mathcal{D}_{\varphi,u}^m f)^{(n)} = \left(u \cdot f^{(m)} \circ \varphi \right)^{(n)}$$

$$= \sum_{k=0}^n \Phi_{k,n}^{u,\varphi} \cdot f^{(m+k)} \circ \varphi.$$

Hence

(2.4)
$$\mathcal{D}^{n}\left(\mathcal{D}_{\varphi,u}^{m}\right) = \sum_{k=0}^{n} \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \mathcal{D}^{m+k},$$

where \mathcal{D} is the differentiation operator on $\mathcal{H}(\mathbb{D})$. Let $\alpha > 0$, $\beta \geq 0$ and $m \in \mathbb{N}_0$ such that $\alpha + m > 1$. For every $f \in \mathcal{B}_{\log^{\beta}}^{\alpha}$ with $||f||_{\mathcal{B}_{\log^{\beta}}^{\alpha}} \leq 1$ we have

(2.5)
$$\|\mathcal{D}_{\varphi,u}^{m}f\|_{\mathcal{W}_{\mu}^{(n)}} = \sum_{j=0}^{n-1} \left| \left(\mathcal{D}_{\varphi,u}^{m}f \right)^{(j)}(0) \right| + \|\mathcal{D}^{n} \left(\mathcal{D}_{\varphi,u}^{m}f \right) \|_{\mu}.$$

Fixing $j \in \{1, \ldots, n-1\}$, by Lemma 2.2 we have

$$\left| \left(\mathcal{D}_{\varphi,u}^{m} f \right)^{(j)}(0) \right| = \left| \sum_{k=0}^{j} \Phi_{k,j}^{u,\varphi}(0) f^{(m+k)}(\varphi(0)) \right|$$

$$\lesssim \sum_{k=0}^{j} \frac{\left| \Phi_{k,j}^{u,\varphi}(0) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(0))}.$$

For j = 0,

$$\left| \left(\mathcal{D}_{\varphi,u}^{m} f \right)(0) \right| = \left| u(0) f^{(m)}(\varphi(0)) \right|$$

$$\lesssim \frac{|u(0)|}{\nu_{\alpha+m-1,\beta}(\varphi(0))}.$$

Using (2.5) we provide that

(2.6)
$$\left\| \mathcal{D}_{\varphi,u}^{m} f \right\|_{\mathcal{W}_{u}^{(n)}} \lesssim c(\alpha, n, m) + \left\| \mathcal{D}^{n} \left(\mathcal{D}_{\varphi,u}^{m} f \right) \right\|_{\mu},$$

where, $c(\alpha, n, m)$ is a positive constant depending on α, n and m. According to Lemma 2.4, for $k \in \{0, \ldots, n\}$, the operator $\mathcal{D}^{m+k} : \mathcal{B}^{\alpha}_{\log^{\beta}} \to \mathcal{B}^{\alpha+m+k}_{\log^{\beta}}$ is bounded. Therefore,

$$\begin{split} \left\| \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \mathcal{D}^{m+k} \right\|_{\mathcal{B}^{\alpha}_{\log\beta} \to \mathcal{H}^{\infty}_{\mu}} &\lesssim \left\| \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \right\|_{\mathcal{B}^{\alpha+m+k}_{\log\beta} \to \mathcal{H}^{\infty}_{\mu}} \\ &\approx \left\| \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \right\|_{\mathcal{H}^{\infty}_{\nu_{\alpha+m+k-1,\beta}} \to \mathcal{H}^{\infty}_{\mu}}, \end{split}$$

and by (2.4)

$$(2.7) \qquad \left\| \mathcal{D}^n \left(\mathcal{D}_{\varphi, u}^m \right) \right\|_{\mathcal{B}_{\log \beta}^{\alpha} \to \mathcal{H}_{\mu}^{\infty}} \lesssim \sum_{k=0}^{n} \left\| \Phi_{k, n}^{u, \varphi} \cdot C_{\varphi} \right\|_{\mathcal{H}_{\nu_{\alpha+m+k-1, \beta}}^{\infty} \to \mathcal{H}_{\mu}^{\infty}}.$$

By relations (2.6) and (2.7) we have (2.8)

$$\left\| \mathcal{D}_{\varphi,u}^{m} \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}} \lesssim c(\alpha, n, m) + \sum_{k=0}^{n} \left\| \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \right\|_{\mathcal{H}_{\nu_{\alpha}+m+k-1,\beta}^{\infty} \to \mathcal{H}_{\mu}^{\infty}}.$$

The relation (2.8) gives a sufficient condition for $\mathcal{D}_{\varphi,u}^m: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ to be bounded.

In the next theorem we characterize the boundedness of $\mathcal{D}_{\varphi,u}^m:\mathcal{B}_{\log^{\beta}}^{\alpha}\to\mathcal{W}_{\mu}^{(n)}$.

Theorem 2.5. Let $u, \varphi \in \mathcal{H}(\mathbb{D})$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and μ be an arbitrary weight. Suppose that $\alpha > 0$, $\beta \geq 0$ and $m \in \mathbb{N}_0$ such that $\alpha + m > 1$. Then the following statements are equivalent.

- (i) $\mathcal{D}_{\varphi,u}^m: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ is bounded; (ii) For every $k \in \{0, \dots, n\}, \ \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi}: \mathcal{H}_{\nu_{\alpha+m+k-1,\beta}}^{\infty} \to \mathcal{H}_{\mu}^{\infty}$ is
- $\text{(iii)} \ \textit{For every } k \in \{0,\dots,n\}, \ \sup_{z \in \mathbb{D}} \frac{\mu(z) \big| \Phi_{k,n}^{u,\varphi}(z) \big|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))} < \infty.$

Proof. By Theorem 1.1 and (2.8) the implications (ii) \Leftrightarrow (iii) and (ii) \Rightarrow (i) are valid.

Let $\mathcal{D}_{\varphi,u}^m: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ be bounded. We show that (iii) is necessary. For a fixed $z \in \mathbb{D}$ and constants C_1, \ldots, C_{n+1} , define

$$g_z = \sum_{j=1}^{n+1} \frac{C_j K_z^{j+1,\alpha+j}}{\prod_{l=0}^{m-1} (\alpha+j+l)} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|} \right)^{-\beta}.$$

As pointed out in Section 1, it follows that $g_z \in \mathcal{B}_{\log^{\beta}}^{\alpha,0}$ and

$$\sup_{z\in\mathbb{D}}\|g_z\|_{\mathcal{B}^{\alpha,0}_{\log^{\beta}}}<\infty.$$

Fix $z \in \mathbb{D}$ and $k \in \{0, ..., n\}$. Applying the arguments of [13, Theorem 1], we may choose the constants $C_{1,k}, \ldots, C_{n+1,k}$ and the function

$$g_{z,k} = \sum_{j=1}^{n+1} \frac{C_{j,k} K_z^{j+1,\alpha+j}}{\prod_{l=0}^{m-1} (\alpha+j+l)} \left(\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|} \right)^{-\beta},$$

satisfying

$$g_z^{(m+k)}(\varphi(z)) = \frac{\overline{\varphi(z)}^{m+k}}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))},$$

and

$$g_z^{(m+t)}(\varphi(z)) = 0, \quad t \in \{0,\dots,n\} \setminus \{k\}.$$

Therefore,

$$\frac{\mu(z) |\varphi(z)|^{m+k} |\Phi_{k,n}^{u,\varphi}(z)|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))} \leq \sup_{z \in \mathbb{D}} \|\mathcal{D}_{\varphi,u}^{m} (g_{z,k})\|_{\mathcal{W}_{\mu}^{(n)}} \\ \lesssim \|\mathcal{D}_{\varphi,u}^{m}\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}},$$

from which we get

(2.9)
$$\sup_{|\varphi(z)| > \frac{1}{\alpha}} \frac{\mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))} \lesssim \left\| \mathcal{D}_{\varphi,u}^m \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}}.$$

As in the proof of [13, Theorem 1] for $k \in \{0, ..., n\}$ one shows that

$$\sup_{z \in \mathbb{D}} \mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right| \lesssim \left\| \mathcal{D}_{\varphi,u}^m \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}}.$$

Thus

(2.10)

$$\sup_{|\varphi(z)| \leq \frac{1}{2}} \frac{\mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))} \lesssim \sup_{z \in \mathbb{D}} \mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right| \lesssim \left\| \mathcal{D}_{\varphi,u}^m \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}}.$$

Addition of (2.9) and (2.10) yields

$$\sup_{z \in \mathbb{D}} \frac{\mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))} \lesssim \left\| \mathcal{D}_{\varphi,u}^m \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}},$$

which completes the proof.

3. Essential Norm

In this section we estimate the essential norm of generalized weighted composition operators from logarithmic Bloch type spaces to the n'th weighted type spaces.

Let $\mathcal{D}_{\varphi,u}^m: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ be bounded. Define $\Lambda: \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ by

$$\Lambda(f) = \sum_{l=0}^{n-1} \left(\mathcal{D}_{\varphi,u}^m f \right)^{(l)} (0) \frac{z^l}{l!}, \quad f \in \mathcal{B}_{\log^{\beta}}^{\alpha}.$$

Clearly, $\Lambda \in \mathcal{K}\left(\mathcal{B}_{\log^{\beta}}^{\alpha}, \mathcal{W}_{\mu}^{(n)}\right)$ and $(\Lambda f)^{(j)}(0) = \left(\mathcal{D}_{\varphi, u}^{m} f\right)^{(j)}(0)$. For $K \in \mathcal{K}\left(\mathcal{B}_{\log^{\beta}}^{\alpha}, \mathcal{W}_{\mu}^{(n)}\right)$ and $f \in \mathcal{B}_{\log^{\beta}}^{\alpha}$,

$$\begin{split} \left\| \left(\mathcal{D}_{\varphi,u}^{m} - \Lambda - K \right) f \right\|_{\mathcal{W}_{\mu}^{(n)}} &= \sum_{j=0}^{n-1} \left| \left(\mathcal{D}_{\varphi,u}^{m} f - \Lambda f \right)^{(j)} (0) - (Kf)^{(j)} (0) \right| \\ &+ \left\| \left(\left(\mathcal{D}_{\varphi,u}^{m} - K \right) f \right)^{(n)} \right\|_{\mu} \\ &= \sum_{j=0}^{n-1} \left| \left(Kf \right)^{(j)} (0) \right| + \left\| \left(\mathcal{D}^{n} \left(\mathcal{D}_{\varphi,u}^{m} - K \right) \right) f \right\|_{\mu}. \end{split}$$

Using (2.4) we obtain the following

$$\left\|\mathcal{D}_{\varphi,u}^{m}-\Lambda\right\|_{e;\mathcal{B}_{\log\beta}^{\alpha}\to\mathcal{W}_{\mu}^{(n)}}=\inf_{K\in\mathcal{K}\left(\mathcal{B}_{\log\beta}^{\alpha},\mathcal{W}_{\mu}^{(n)}\right)}\left\|\mathcal{D}^{n}\left(\mathcal{D}_{\varphi,u}^{m}-K\right)\right\|_{\mathcal{B}_{\log\beta}^{\alpha}\to\mathcal{H}_{\mu}^{\infty}}$$

$$\begin{split} &=\inf_{K\in\mathcal{K}\left(\mathcal{B}_{\log\beta}^{\alpha},\mathcal{W}_{\mu}^{(n)}\right)}\left\|\sum_{k=0}^{n}\Phi_{k,n}^{u,\varphi}\cdot C_{\varphi}\mathcal{D}^{m+k}-\mathcal{D}^{n}K\right\|_{\mathcal{B}_{\log\beta}^{\alpha}\to\mathcal{H}_{\mu}^{\infty}} \\ &=\inf_{K\in\mathcal{K}\left(\mathcal{B}_{\log\beta}^{\alpha},\mathcal{H}_{\mu}^{\infty}\right)}\left\|\sum_{k=0}^{n}\Phi_{k,n}^{u,\varphi}\cdot C_{\varphi}\mathcal{D}^{m+k}-K\right\|_{\mathcal{B}_{\log\beta}^{\alpha}\to\mathcal{H}_{\mu}^{\infty}}. \end{split}$$

Accordingly,

The latter holds because $\mathcal{D}^{m+k}:\mathcal{B}^{\alpha}_{\log^{\beta}}\to\mathcal{H}^{\infty}_{\nu_{\alpha+m+k-1,\beta}}$ is bounded. The relation (3.1) gives an upper bound for the essential norm of $\mathcal{D}^{m}_{\varphi,u}:\mathcal{B}^{\alpha}_{\log^{\beta}}\to\mathcal{W}^{(n)}_{\mu}$. In the preceding theorem, we show that

$$\left\| \mathcal{D}_{\varphi,u}^{m} \right\|_{e;\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}} \approx \sum_{k=0}^{n} \left\| \Phi_{k,n}^{u,\varphi} \cdot C_{\varphi} \right\|_{e;\mathcal{H}_{\nu_{\alpha+m+k-1,\beta}}^{\infty} \to \mathcal{H}_{\mu}^{\infty}}.$$

Theorem 3.1. Let $u, \varphi \in \mathcal{H}(\mathbb{D})$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and μ be an arbitrary weight. Suppose that $\alpha > 0$, $\beta \geq 0$, $m \in \mathbb{N}_0$ such that $\alpha + m > 1$ and $\mathcal{D}_{\varphi,u}^m : \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}$ is bounded. Then

$$\left\| \mathcal{D}_{\varphi,u}^{m} \right\|_{e;\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}} \approx \sum_{k=0}^{n} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))}.$$

Proof. Since $\mathcal{D}_{\varphi,u}^m:\mathcal{B}_{\log^{\beta}}^{\alpha}\to\mathcal{W}_{\mu}^{(n)}$ is bounded, Theorem 1.1 and (3.1) imply that

$$\left\| \mathcal{D}^m_{\varphi,u} \right\|_{e;\mathcal{B}^{\alpha}_{\log\beta} \to \mathcal{W}^{(n)}_{\mu}} \lesssim \sum_{k=0}^{n} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) \left| \Phi^{u,\varphi}_{k,n}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))}.$$

Now, let $\{z_l\}$ be a sequence in $\mathbb D$ such that $|\varphi(z_l)| > \frac{1}{2}$ and $|\varphi(z_l)| \to 1$. Fixing $k \in \{0, \dots, n\}$ and let $h_{l,k} = g_{z_l,k}$, defined in the proof of Theorem 2.5. Then, $\{h_{l,k}\}$ is a bounded sequences in $\mathcal{B}_{\log^{\beta}}^{\alpha,0}$ which converges to zero uniformly on compact subsets of \mathbb{D} . Let $M = \sup_{l} \|h_{l,k}\|_{\mathcal{B}_{\log^{\beta}}^{\alpha}}$ and

 $K \in \mathcal{K}(\mathcal{B}^{\alpha}_{\log^{\beta}}, \mathcal{W}^{(n)}_{\mu})$. It follows from [15, Lemma 2.10] that

$$\lim_{l \to \infty} \|Kh_{l,k}\|_{\mathcal{W}^{(n)}_{\mu}} = 0.$$

Thus

$$\begin{split} M \left\| \mathcal{D}_{\varphi,u}^{m} - K \right\|_{\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}} &\geq \limsup_{l \to \infty} \left\| \left(\mathcal{D}_{\varphi,u}^{m} - K \right) h_{l,k} \right\|_{\mathcal{W}_{\mu}^{(n)}} \\ &\geq \limsup_{l \to \infty} \left\| \mathcal{D}_{\varphi,u}^{m} h_{l,k} \right\|_{\mathcal{W}_{\mu}^{(n)}} - \limsup_{l \to \infty} \left\| K h_{l,k} \right\|_{\mathcal{W}_{\mu}^{(n)}} \\ &\geq \limsup_{l \to \infty} \mu \left(z_{l} \right) \left| \sum_{j=0}^{n} h_{l,k}^{(m+j)} \left(\varphi(z_{l}) \right) \Phi_{j,n}^{u,\varphi}(z_{l}) \right| \\ &= \limsup_{l \to \infty} \frac{\mu(z_{l}) \left| \varphi(z_{l}) \right|^{m+k} \left| \Phi_{k,n}^{u,\varphi}(z_{l}) \right|}{\nu_{\alpha+m+k-1,\beta} \left(\varphi(z_{l}) \right)} \\ &= \limsup_{l \to \infty} \frac{\mu(z_{l}) \left| \Phi_{k,n}^{u,\varphi}(z_{l}) \right|}{\nu_{\alpha+m+k-1,\beta} \left(\varphi(z_{l}) \right)}. \end{split}$$

Therefore

$$\left\| \mathcal{D}_{\varphi,u}^m \right\|_{e;\mathcal{B}_{\log\beta}^{\alpha} \to \mathcal{W}_{\mu}^{(n)}} \gtrsim \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) \left| \Phi_{k,n}^{u,\varphi}(z) \right|}{\nu_{\alpha+m+k-1,\beta}(\varphi(z))},$$

which completes the proof.

References

- 1. K. Attele, Toeplitz and Hankel operators on Bergman one space, Hokkaido Math. J., 21 (1992), pp. 279-293.
- K.D. Bierstedt, J. Bonet, and J. Taskinen, Associated weights and spaces of holomorphic functions, Stud. Math., 127 (1998), pp. 137-168.
- 3. J. Bonet, P. Domański, and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull., 42 (1999), pp. 139-148.
- 4. L. Brown and A.L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Math. J., 38 (1991), pp. 141-146.
- 5. K. Esmaeili and M. Lindström, Weighted composition operators between Zygmund type spaces and their essential norms, Integr. Equ. Oper. Theory, 75 (2013), pp. 473-490.

- O. Hyvärinen, M. Kemppainen, M. Lindström, A. Rautio, and E. Saukko, The essential norms of weighted composition operators on weighted Banach spaces of analytic function, Integr. Equ. Oper. Theory, 72 (2012), pp. 151-157.
- 7. B. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mount. J. Math., 33 (2003), pp. 1437-1458.
- 8. A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. (3), 61 (2000), pp. 872-884.
- 9. S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mount. J. Math., 33 (2003), pp. 191-215.
- 10. H. Qu, Y. Liu, and S. Cheng, Weighted differentiation composition operator from logarithmic Bloch spaces to Zygmund-type spaces, Abstr. Appl. Anal., 2014, Art. ID 832713, 14 pp.
- 11. J.C. Ramos-Fernández, Logarithmic Bloch spaces and their weighted composition operators, Rend. Circ. Mat. Palermo (2), 65 (2016), pp. 159-174.
- 12. S. Stević, On new Bloch-type spaces, Appl. Math. Comput., 215 (2009), pp. 841-849.
- 13. S. Stević, Weighted differentiation composition operators from H[∞] and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), pp. 3634-3641..
- 14. S. Stević and A.K. Sharma, *Iterated differentiation followed by composition from Bloch-type spaces to weighted BMOA spaces*, Appl. Math. Comput., 218 (2011), pp. 3574-3580.
- 15. M. Tjani, Compact composition operators on some Möbius invariant Banach spaces [Ph.D. thesis], Michigan State University, 1996.
- 16. R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. (Basel), 78 (2002), pp. 310-317.
- 17. K. Zhu, Bloch type spaces of analytic functions, Rocky Mount. J. Math., 23 (1993), pp. 1143-1177.
- 18. X. Zhu, Generalized weighted composition operators from Bers- type spaces into Bloch-type spaces, Math. Inequal. Appl., 17 (2014), pp. 187-195.
- 19. X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to bers type space, Integ. Tran. Spec. Funct., 18 (2007), pp. 223-231.

 $E ext{-}mail\ address: esmaeili@ardakan.ac.ir}$

FACULTY OF ENGINEERING, ARDAKAN UNIVERSITY, P.O. BOX 184, ARDAKAN, IRAN.