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Proximity Point Properties for Admitting Center Maps

Mohammad Hosein Labbaf Ghasemi1, Mohammad Reza Haddadi2∗,
and Noha Eftekhari3

Abstract. In this work we investigate a class of admitting center
maps on a metric space. We state and prove some fixed point and
best proximity point theorems for them. We obtain some results
and relevant examples. In particular, we show that if X is a re-
flexive Banach space with the Opial condition and T : C → X is
a continuous admiting center map, then T has a fixed point in X.
Also, we show that in some conditions, the set of all best proximity
points is nonempty and compact.

1. Introduction

Finding fixed points for certain mappings is one of the important
issues in the fixed point theory and plays an important role in nonlinear
analysis and applied mathematical analysis; see [2, 11] and references
therein.

The concept of center of a map was introduced and discussed on
Banach spaces by Garćıa-Falset et al. in [8] and subsequently, this study
was taken up in [4].

Let C be a subset of a metric space (X, d). We say that y0 ∈ X is a
center for a map T : C → X, if for all x ∈ C, we have

(1.1) d(Tx, y0) ≤ d(x, y0).

The map T is called an admitting center map with center y0. The point
y0 ∈ X is called the strict center for the mapping T : C → X if for any
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x ∈ C such that x ̸= T (x), we have

d(Tx, y0) < d(x, y0).

The set of all centers of T is denoted by

Z(T ) := {y0 ∈ X : ∥Tx− y0∥ ≤ ∥x− y0∥, ∀x ∈ C} .

Remark 1.1. The inequality (1.1) may be satisfied even for a nonex-
pansive fixed point free mapping. For example (see [8]), consider the
affine Beal’s mapping. Let c0 be the space of all real sequences converg-
ing to 0 with the supremum norm. Let B be the unit ball of c0 and
T : B → c0 is defined by

T (x1, x2, . . .) = (1, x1, x2, . . .).

Take y0 = (2, 0, 0, . . .). It can be easily seen that T satisfies inequality
(1.1). So for any x = (x1, x2, . . .) ∈ B,

∥Tx− y0∥ = ∥(−1, x1, x2, . . .)∥
= 1

≤ 2− x1

= ∥x− y0∥.
Although y0 is not a fixed point of the nonexpansive map T, but

y0 ∈ c0 is a center of T.

It may be pointed out that T : C → C is quasi nonexpansive provided
that T has at least one fixed point in C and every fixed point is a
center for T. It turns out that the class of all admitting center maps
contains all contraction maps defined on closed subsets of Banach spaces
and even all the so-called quasi nonexpansive mappings introduced by
Tricomi for real functions and further studied by Diaz and Metcalf [?
] and Dotson [6] for mappings on Banach spaces. It is not hard to
see that the class of quasi nonexpansive mappings properly contains the
class of nonexpansive maps having fixed points, although there exists a
continuous admitting center map that is not quasi nonexpansive.

Our purpose is to investigate the class of all mappings admitting a
center. This class contains nonexpansive mappings having fixed points,
although there are nonquasi nonexpansive maps that admit a center (see
[8]).

Remark 1.2 ([8]). If T : C → X has a center y0 ∈ C, then trivially
T (y0) = y0. Thus fixed point results for mappings admitting centers are
nontrivial provided they have a center y0 ∈ X \ C.

In the following, we obtain a Lipschitzian mapping with unique fixed
point, which has not a center.
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Example 1.3. Let T :
[
1
2 , 2
]
→ R be a mapping given by T (x) = 1

x .

Since the derivative T ′(x) = −1
x2 is bounded on C :=

[
1
2 , 2
]
, the mapping

T is a Lipschitzian map on C. It is obvious that x0 = 1 is the an unique
fixed point of T, but x0 is not a center for T because∣∣∣∣T (1

2

)
− 1

∣∣∣∣ = 1

>

∣∣∣∣12 − 1

∣∣∣∣
=

1

2
.

Furthermore, if y0 > 2, then |T (2) − y0| = |1/2 − y0| > |2 − y0|, and
thus y0 is not a center for T. If y0 < 1/2, then |T (1/2)− y0| = |2− y0| >
|1/2− y0|. Finally, if y0 ∈ C, then we must have |T (y0)− y0| ≤ |y0 − y0|
and so y0 = 1, which is not a center of T. Therefore, Z(T ) = ∅.

Let A and B be nonempty subsets of normed space (X, ∥.∥). Put

d(A,B) = inf{∥x− y∥ : x ∈ A, y ∈ B},
A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A}.

We can find the best proximity points of the set A, by considering a
map T : A → B. We say that x ∈ A is a best proximity point of the pair
(A,B), if d(A,B) = d(x, Tx) and the set of all best proximity points of
(A,B) denoted by PT (A), i.e.

PT (A) := {x ∈ A : d(x, Tx) = d(A,B)}.

The notion of the best proximity point is an important tool for solving
some optimization equations and many authors have been worked on it
[9, 10, 13–15].

Our main results are in two sections. In Section 2, we give some fixed
point theorems for the admitting center maps. In section 3, we introduce
a center for a mapping T : A → B and proximity point property for
(A,B), a pair of two nonempty subsets of the Banach space X, and show
that if (A,B) has a proximity point property for continuous mappings
admitting a center, then the set of all best proximity points is nonempty
and compact.

2. Fixed Point Theorems for Admitting Center Maps

In this section, we state and prove some fixed point theorems for
admitting center maps. Let C be a nonempty subset of a Banach space
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X. For x ∈ C, the inward set of x relative to C is the set

IC(x) = {x+ t(y − x) : y ∈ C and t ≥ 0}.
Let C be a nonempty subset of a Banach space X and T : C → X a
mapping. Then T is said to be a weakly inward map, if Tx ∈ IC(x), for
all x ∈ C.

Let C be a nonempty subset of a metric space (X, d). A mapping
T : C → X is said to satisfy the Lipschitz admitting center condition on
C, if there exists a constant L > 0 and y0 ∈ X such that

d(Tx, y0) ≤ Ld(x, y0),∀x ∈ C.

If L is the smollest number for which the Lipschitz admitting center
condition holds, then L is called the Lipschitz admitting center constant.
In this case, we say that T is an L-Lipschitz admitting center mapping or
simply a Lipschitzian admitting center map with the Lipschitz constant
L. An L-Lipschitz admitting center map T is said to be a contraction
admitting center if L < 1 and an admitting center if L = 1. The mapping
T is said to be a strict admitting center if

d(Tx, y0) < Ld(x, y0), ∀x ∈ C.

Lemma 2.1. Let C be a nonempty closed convex subset of a Banach
space X and mapping T : C → X admits a center y0 ∈ X, then there
exists a sequence {xn} ⊆ C such that xn − Txn → 0 as n → ∞.

Proof. Let t ∈ (0, 1). The mapping Tt : C → X defined by Ttx =
(1− t)y0 + tTx is a contraction and has a fixed point xt in C. Now the
result follows by Theorems 4.1.3 and 5.1.2 in [3] and Propositions 5.1.1
and 5.2.1 in [3]. □

We need the following definition of [3].

Definition 2.2. Let C be a nonempty subset of a Banach space X and
T : C → X be a map. Then T is said to be demiclosed at v ∈ X, if for
any sequence {xn} in C the following implication holds:

xn ⇀ u ∈ X and Txn → v imply Tu = v.

A normed space X is said to be satisfied the Opial’s condition if for
any sequence {xn} ⊆ X weakly convergent to x ∈ X, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,(2.1)

holds, for all y ∈ X, not equal to x.

Theorem 2.3. Let X be a Banach space satisfies the Opial condition,
C a nonempty weakly compact subset of X, and T : C → X a mapping
admitting a center y0 ∈ X. Then the mapping I − T is demiclosed at
zero.
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Proof. Let {xn} be a sequence in Z(T ) ̸= ∅ such that xn ⇀ x ∈ X and
(I − T )xn → 0. We show that (I − T )x = 0.
Let x ̸= Tx. The Opial condition implies that

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − Tx∥.

Since xn ∈ Z(T ), we have

∥xn − Tx∥ ≤ ∥xn − x∥,
which is a contradiction. Therefore, (I − T )x = 0. □
Theorem 2.4. Let X be a reflexive Banach space with the Opial con-
dition. Let C be a nonempty closed convex bounded subset of X and
T : C → X a continuous mapping admitting a center y0 ∈ X. Then T
has a fixed point in X.

Proof. By Lemma 2.1, there exists a sequence {xn} in C such that ∥xn−
Txn∥ → 0. By the reflexivity of X, there exists a subsequence {xnk

} of
{xn} such that xnk

⇀ x ∈ X. By Theorem 2.3, I − T is demiclosed
at zero, i.e., xnk

⇀ x ∈ X and xnk
− Txnk

→ 0 imply x − Tx = 0.
Therefore, x is a fixed point of T. □

In the following, we give nonexpansive and non-Lipschitzian, J-type
mappings.

Example 2.5. For n ∈ N, the mappings Tn : [0, 1] → [0, 1] given by
Tn(x) = xn admits the point y0 ≤ 0 as a center. Of course, for n ≥ 2, Tn

is not nonexpansive on [0, 1]. Note that any Tn has two fixed points in
[0, 1], namely y1 = 1 and y2 = 0. While y2 is a center for Tn, y1 is not a
center for Tn and hence such mappings can not be quasi nonexpansive.
On the other hand, the non-Lipschitzian mapping T : [0, 1] → [0, 1] given

by T (x) = x
1
2 admits the fixed point y1 = 1 as a center.

Example 2.6. The mapping T : R → R defined by

T (x) =

{
x− x2−1

x4+2
,

x,

|x| ≥ 1,
otherwise,

is not nonexpansive on R (see x = 2, y = 3). But T has x = ±1 as
fixed points in |x| ≤ 1, and admits at x = 0 as a center.

Theorem 2.7. Let C be a nonempty closed subset of a compact metric
space (X, d) and T : C → C be a continuous map admitting a strict
center at y0 ∈ X. Then T has a fixed point v in C.

Proof. For each x ∈ C, define φ : C → R+ ∪ {0} by φ(x) = d(y0, Tx).
Then φ is continuous on C and by compactness of C, φ attains its
minimum on C. Let φ(v) = minx∈C φ(x). If v ̸= Tv, then

φ(Tv) = d(y0, TTv)
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< d(y0, T v)

= φ(v),

which contradicts the minimality of φ(v). Hence v = Tv. □

3. Best Proximity Point for Admitting Center Maps

We start with a new definition of center for a map and then we discuss
the proximity point property for admitting center maps.

Definition 3.1. Let (A,B) be a pair of two nonempty bounded closed
convex subsets of a normed space (X, ∥.∥). A pair (a, b) ∈ A×B is said
to be a center for a mapping T : A → B, if for each x ∈ A, we have

∥Tx− b∥ ≤ ∥x− a∥.

Definition 3.2. Let (A,B) be the pair of two nonempty subsets of X.
We say that (A,B) has a proximity point property if for every continuous
admitting center map T : A → B, the pair (A,B) has a best proximity
point.

Let M be a subset of a normed space (X, ∥.∥). We remember that
a point g0 ∈ M is said to be a best coapproximation of x ∈ X, if
∥g0 − g∥ ≤ ∥x− g∥, for all g ∈ M. Let

RM (x) = {g0 ∈ M : ∥g0 − g∥ ≤ ∥x− g∥ , ∀g ∈ M} ,
be the set of all best coapproximations of x ∈ X. The set M is called
coproximinal in X if RM (x) is nonempty for any x ∈ X. If RM (x) is
singleton for any x ∈ X, then M is the called co-Chebyshev (see [12]).

In the following we give an important theorem that is generalization
of Theorem 3.3, [4] we give some conditions on T and A so that PT (A)
be a nonempty compact set.

Theorem 3.3. Let X be a Banach space and A,B be nonempty closed,
bounded and convex subsets of X such that A0 is co-Chebyshev. If (A,B)
has the proximity point property for continuous admitting center maps
T : A → B, then PT (A) is nonempty and compact.

Proof. On the contrary, suppose that there exists B ⊆ X such that
either PT (A) is noncompact or PT (A) = ∅. In the first case, there exists
a nonexpansive map S : A0 → B0 without any best proximity points.
Since A0 is a co-Chebyshev set, there exists a continuous mapping r :
A → A0 such that r(x) = x, for all x ∈ A0. Define T : A → B0 by
T (x) = S(r(x)). Clearly T is a continuous map. Moreover,

∥T (x)− S(y)∥ = ∥S(r(x))− S(y)∥
≤ ∥r(x)− y∥
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≤ ∥x− y∥ ,

i.e., (y, S(y)) is a center for T. Therefore, T has a best proximity point
x ∈ PT (A) ⊆ A0. Hence

d(A,B0) = ∥x− T (x)∥
= ∥x− S(r(x))∥
= ∥x− S(x)∥ ,

which contradicts the fact that S has no best proximity point.
Now for the case, PT (A) = ∅, we proceed as follows. Let d :=

d(A,B) > 0. We take a > 0 such that

a+ d < sup {∥x− y∥ : x ∈ A, y ∈ B} .

For each m ∈ N, we consider the following nonempty sets:

Bm = B
[
A, d+

a

m

]
∩B, Am = B

[
B, d+

a

m

]
∩A,

where B[B, r] := {x ∈ X : inf
y∈B

∥y − x∥ < r}. Set

B′
m := Bm \Bm+1, A′

m := Am \Am+1,

Sm :=

{
x ∈ B : inf

y∈A
∥x− y∥ = d+

a

m

}
.

Since A0 = B0 = ∅, we have

A1 =
∞∪

m=1

A′
m, B1 =

∞∪
m=1

B′
m.

Fix an arbitrary y1 ∈ S1 and by induction, define a sequence {ym} such
that ym ∈ Sm and the segment (ym+1, ym] does not meet Bm+1.

For x ∈ A1 there exists a unique positive integer n such that x ∈
A′

n. Also there exists an unique y ∈ B1 such that d(x,B) = d(y,A),
∥x− y∥ = 2d(x,B)− d(A,B). In this case, we define

S(x) =
d(y,A)− (d+ a

m+1)
a

m(m+1)

ym+1 +

(
1−

d(y,A)− (d+ a
m+1)

a
m(m+1)

)
ym+2.

It is routine to check that S is a continuous mapping from A1 to B1.
Furthermore, S(A′

m) ⊂ (ym+2, ym+1] ⊂ B′
m+1, for any m ≥ 1.

Let r be a continuous retraction from A into the closed convex subset
A1. We can define T : A → B by T (x) = S(r(x)). Hence T has a center
without any best proximity point. □

Theorem 3.4. Let A,B be weakly compact convex subsets of a Banach
space X. Then A0 is a nonempty weakly compact set.
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Proof. Since A,B are weakly compact convex sets and (x, y) 7→ ∥y−x∥ is
a continuous function on A×B, hence A0 is nonempty and closed. Now
we show that A0 is a convex set. Let x1, x2 ∈ A0 and λ ∈ (0, 1). So there
exist y1, y2 ∈ B such that ∥x1− y1∥ = d(A,B) = ∥x2− y2∥. Since A and
B are convex sets, we have λx1+(1−λ)x2 ∈ A and λy1+(1−λ)y2 ∈ B.
Thus

d(A,B) ≤ ∥λx1 + (1− λ)x2 − (λy1 + (1− λ)y2) ∥
= ∥λ(x1 − y1) + (1− λ)(x2 − y2)∥
≤ λ∥x1 − y1∥+ (1− λ)∥x2 − y2∥
= d(A,B).

That is ∥λx1 + (1− λ)x2 − (λy1 + (1− λ)y2) ∥ = d(A,B). Thus A0 is a
convex set. Therefore A0 is weakly compact. □
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