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Primitive Ideal Space of Ultragraph C∗-algebras

Mostafa Imanfar1, Abdolrasoul Pourabbas2∗, and Hossein Larki3

Abstract. In this paper, we describe the primitive ideal space of
the C∗-algebra C∗(G) associated to the ultragraph G. We investi-
gate the structure of the closed ideals of the quotient ultragraph
C∗-algebra C∗ (G/(H,S)) which contain no nonzero set projections
and then we characterize all non gauge-invariant primitive ideals.
Our results generalize the Hong and Szymański’s description of the
primitive ideal space of a graph C∗-algebra by a simpler method.

1. Introduction

Let E be a countable directed graph and C∗(E) be the associated
C∗-algebra [2, 7, 10]. Using a special representation of C∗(E), Hong
and Szymański characterized the primitive ideal space of C∗(E) and
it’s hull-kernel topology [8]. They constructed a family of irreducible
representations of C∗(E) associated to each maximal tail containing a
cycle without exits. Theorem 2.10 of [8] shows that every non gauge-
invariant primitive ideal of C∗(E) is the kernel of such representation.
Furthermore, there is a completely different approach for the primitive
ideal space of graph C∗-algebras [4] (see also [3, 12]).

The motivation of the definition of ultragraph C∗-algebras [13] is to
unify the theory of graph C∗-algebras and Exel-Laca algebras [5, 6].
The structure of ultragraph C∗-algebras is more complicated, because
in ultragraphs the range of each edge is allowed to be a nonempty set
of vertices rather than a single vertex. Any graph C∗-algebra can be
considered as an ultragraph C∗-algebra and the C∗-algebras of ultra-
graphs with no singular vertices are precisely the Exel-Laca algebras.
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Furthermore, the class of ultragraph C∗-algebras are strictly lager than
this class of directed graphs as well as the class of Exel-Laca algebras.

The aim of this paper is twofold. First, obtaining the Hong and
Szymański’s description of the primitive ideal space of C∗(E) by a quite
different and simpler method. Secondly, characterizing all primitive
ideals of the ultragraph C∗-algebra C∗(G) which are not invariant un-
der the gauge action. The gauge-invariant primitive ideals of C∗(G) are
characterized in [11].

We start by recalling the definition of the quotient ultragraph G/(H,S)
and its C∗-algebra C∗(G/(H,S)) from [11]. To achieve our main re-
sult, we investigate the structure of the closed ideals of C∗(G/(H,S))
which contain no nonzero projections. In particular, we show that if
G/(H,S) contains a unique loop α without exits and I is a closed ideal of
C∗(G/(H,S)) containing no nonzero set projections, then I is contained
in Iα0 (the closed ideal of C∗(G/(H,S)) generated by the projections
associated to the vertices of α). We then use this fact to show that
there is a bijection between the downward directed sets containing a
loop without exits and the set of all non gauge-invariant primitive ideals
of C∗(G).

2. Preliminaries

We begin by reviewing some background material on ultragraph, quo-
tient ultragraph and their C∗-algebras. For more details see [11, 13].

An ultragraph G = (G0,G1, rG , sG) consists of countable sets G0 of
vertices and G1 of edges, the source map sG : G1 → G0 and the range
map rG : G1 → P(G0) \ {∅}, where P(G0) is the collection of all subsets
of G0.

For a set X, a subcollection of P(X) is called an algebra if it is closed
under the set operations ∪, ∩ and \. If G is an ultragraph, we write G0 for
the smallest algebra in P(G0) containing

{
{v}, rG(e) : v ∈ G0 and e ∈ G1

}
.

Definition 2.1. Let G be an ultragraph. A subcollection H ⊆ G0 is
hereditary if

(i) {sG(e)} ∈ H implies rG(e) ∈ H for all e ∈ G1,
(ii) A ∪B ∈ H for all A,B ∈ H,
(iii) A ∈ H, B ∈ G0 and B ⊆ A, imply B ∈ H.

The hereditary subcollection H ⊆ G0 is saturated if for every v ∈ G0

with 0 <
∣∣s−1

G (v)
∣∣ <∞ we have{

rG(e) : e ∈ G1 and sG(e) = v
}
⊆ H implies {v} ∈ H.
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For a saturated hereditary subcollectionH ⊆ G0, the breaking vertices
of H is denoted by

BH :=
{
v ∈ G0 :

∣∣s−1
G (v)

∣∣ =∞ but 0 <
∣∣s−1

G (v) ∩ {e : rG(e) /∈ H}
∣∣ <∞} .

An admissible pair in G is a pair (H,S) of a saturated hereditary sub-
collection H ⊆ G0 and some S ⊆ BH .

In order to define the quotient of ultragraphs we need to recall and
introduce some notation. Let G =

(
G0,G1, rG , sG

)
be an ultragraph and

let (H,S) be an admissible pair in G. Given A ∈ P(G0), denote by

A := A ∪ {w′ : w ∈ A ∩ (BH \ S)}. Also, we write G0 for the algebra

in P(G0) generated by the sets {v}, {w′} and {rG(e)}, where v ∈ G0,
w ∈ BH \ S and e ∈ G1.

Let ∼ be the relation on G0 defined by A ∼ B if and only if there
exists V ∈ H such that A ∪ V = B ∪ V . Then, by [11, Lemma 3.5], ∼
is an equivalent relation on G0 and the operations

[A] ∪ [B] := [A ∪B], [A] ∩ [B] := [A ∩B], [A] \ [B] := [A \B],

are well-defined on the equivalent classes
{
[A] : A ∈ G0

}
. One can see

that [A] = [B] if and only if both A \B and B \A belong to H.

Definition 2.2. Let G =
(
G0,G1, rG , sG

)
be an ultragraph and let (H,S)

be an admissible pair in G. The quotient ultragraph of G by (H,S) is
the quadruple G/(H,S) :=

(
Φ(G0),Φ(G1), r, s

)
, where

Φ(G0) :=
{
[{v}] : v ∈ G0 \H

}
∪
{
[{w′}] : w ∈ BH \ S

}
,

Φ(G1) :=
{
e ∈ G1 : rG(e) /∈ H

}
,

and s : Φ(G1) → Φ(G0) and r : Φ(G1) → {[A] : A ∈ G0} are the maps

defined by s(e) := [{sG(e)}] and r(e) := [rG(e)] for every e ∈ Φ(G1),
respectively.

For the sake of simplicity, we will write [v] instead of [{v}] for every

vertex v ∈ G0 \ H. For A,B ∈ G0, we write [A] ⊆ [B] whenever [A] ∩
[B] = [A]. The smallest algebra in {[A] : A ∈ G0} containing{

[v], [w′] : v ∈ G0 \H,w ∈ BH \ S
}
∪
{
r(e) : e ∈ Φ(G1)

}
,

is denoted by Φ(G0). It can be shown that Φ(G0) =
{
[A] : A ∈ G0

}
.

A vertex [v] ∈ Φ(G0) is called a sink if
∣∣s−1 ([v])

∣∣ = ∅ and is called

an infinite emitter if
∣∣s−1 ([v])

∣∣ =∞. A singular vertex is a vertex that
is either a sink or an infinite emitter. The set of singular vertices is
denoted by Φsg(G

0).
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Definition 2.3. Let G/(H,S) be a quotient ultragraph. A Cuntz-
Krieger G/(H,S)-family consists of projections

{
q[A] : [A] ∈ Φ(G0)

}
and

partial isometries
{
te : e ∈ Φ(G1)

}
with mutually orthogonal ranges such

that

(1) q[∅] = 0, q[A]q[B] = q[A]∩[B] and q[A]∪[B] = q[A] + q[B] − q[A]∩[B];
(2) t∗ete = qr(e);
(3) tet

∗
e ≤ qs(e);

(4) q[v] =
∑

s(e)=[v] tete∗ whenever 0 < |s−1([v])| <∞.

The C∗-algebra C∗(G/(H,S)) is the universal C∗-algebra generated by
a Cuntz-Krieger G/(H,S)-family.

Due to the fact that in the quotient ultragraph G/(∅, ∅), we have
[A] = {A}, for every A ∈ G0. We can consider the ultragraph G as
the quotient ultragraph G/(∅, ∅). So, the definition of ultragraph C∗-
algebras ([13, Defintion 2.7]) is an special case of Definition 2.3.

From now on we denote the universal Cuntz-Krieger G-family and
G/(H,S)-family by {s, p} and {t, q}, respectively. Also, we suppose that
C∗(G) = C∗(s, p) and C∗ (G/(H,S)) = C∗(t, q).

A path in the quotient ultragraph G/(H,S) is a sequence α := e1 · · · en
of edges in Φ(G1) such that s(ei+1) ⊆ r(ei) for 1 ≤ i ≤ n − 1. We say
that the path α has length |α| := n and we consider the elements of
Φ(G0) as the paths of length zero. We write (G/(H,S))∗ for the set of
finite paths. The maps r, s extend to (G/(H,S))∗ in an obvious way.

By [11, Lemma 3.9], we have

C∗ (G/(H,S)) = span
{
tαq[A]t

∗
β : [A] ∈ Φ(G0) and α, β ∈ (G/(H,S))∗

}
,

where tα := te1 · · · ten if α = e1 · · · en and tα := q[A] if α = [A].
The universal property of C∗ (G/(H,S)) gives the strongly continu-

ous gauge action γ : T → AutC∗(G/(H,S)), which is characterized on
generators by γz(q[A]) = q[A] and γz(te) = zte for every A ∈ Φ(G0),
e ∈ Φ(G1) and z ∈ T.

Definition 2.4. A loop in G/(H,S) is a path α with |α| ≥ 1 and
s(α) ⊆ r(α). A loop α = e1 · · · en has an exit if either r(ei) ̸= s(ei+1)
for some 1 ≤ i ≤ n or there exists an edge f ∈ Φ(G1) and an index i
such that s(f) ⊆ r(ei) but f ̸= ei+1. The quotient ultragraph G/(H,S)
satisfies Condition (L) if every loop in G/(H,S) has an exit.

Let H be a saturated hereditary subcollection of G0. We say that
α = e1 · · · en is a loop in G0 \H if rG(α) ∈ G0 \H. Also, α has an exit
in G0 \ H if either rG(ei) \ sG(ei+1) ∈ G0 \ H for some 1 ≤ i ≤ n or
there exists an edge f ∈ G1 and an index i such that rG(f) ∈ G0 \H and
sG(f) ⊆ rG(ei) but f ̸= ei+1. One can see that the quotient ultragraph
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G/(H,BH) satisfies Condition (L) if and only if every loop in G0 \H has
an exit in G0 \H.

Let (H,S) be an admissible pair in an ultragraph G. For every w ∈
BH , we define the projection

pHw := pw −
∑

s(e)=w, rG(e)/∈H

ses
∗
e.

We denote by I(H,S) the (two-sided) ideal of C∗(G) generated by the

projections {pA : A ∈ H} ∪
{
pHw : w ∈ S

}
. By [9, Theorem 6.12], the

correspondence (H,S) 7→ I(H,S) is a bijection from the set of all admis-
sible pairs of G to the set of all gauge-invariant ideals of C∗(G).

3. Closed Ideals of C∗ (G/(H,S)) Containing No Set
Projections

The set of vertices in the loops without exits of G/(H,S) is denoted
by Pc (G/(H,S)).

Theorem 3.1. Let G/(H,S) be a quotient ultragraph. If I is a closed
ideal of C∗ (G/(H,S)) with

{
[A] ̸= [∅] : q[A] ∈ I

}
= ∅, then I ⊆ IPc(G/(H,S)).

By [1, Theorem 5.4.4] we have Theorem 3.1 for row-finite directed
graphs. To prove Theorem 3.1, we use the graph version of this theorem
and the fact that a quotient ultragraph C∗-algebra is the direct limit of
the certain C∗-algebras of finite graphs. We recall this direct limit from
[11, Section 4] and then we prove Theorem 3.1.

Let G/(H,S) be a quotient ultragraph. For every finite subset F of
Φsg(G

0) ∪ Φ(G1) we construct a finite graph GF as follows. Let

F 0 := F ∩ Φsg(G
0), F 1 := F ∩ Φ

(
G1
)
= {e1, . . . , en} .

For every ω = (ω1, . . . , ωn) ∈ {0, 1}n \ {0n}, we define

r(ω) :=
∩
ωi=1

r(ei) \
∪
ωj=0

r(ej), R(ω) := r(ω) \
∪

[v]∈F 0

[v],

which belong to Φ(G0). Set Γ0 := {ω ∈ {0, 1}n \ {0n}} where vertices
[v1], . . . , [vm] exist such that R(ω) =

∪m
i=1[vi] and ∅ ̸= s−1 ([vi]) ⊆ F 1

for 1 ≤ i ≤ m, and

ΓF := {ω ∈ {0, 1}n \ {0n} : R(ω) ̸= [∅] and ω /∈ Γ0} .
Define the finite graph GF = (G0

F , G
1
F , rF , sF ), where

G0
F := F 0 ∪ F 1 ∪ ΓF ,

G1
F :=

{
(e, f) ∈ F 1 × F 1 : s(f) ⊆ r(e)

}
∪
{
(e, [v]) ∈ F 1 × F 0 : [v] ⊆ r(e)

}
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∪
{
(e, ω) ∈ F 1 × ΓF : ωi = 1 whenever e = ei

}
,

with sF (e, f) = sF (e, [v]) = sF (e, ω) = e and rF (e, f) = f , rF (e, [v]) =
[v], rF (e, ω) = ω.

Lemma 3.2. Let G/(H,S) be a quotient ultragraph and let F be a finite
subset of Φsg(G

0) ∪ Φ(G1) containing {e1, . . . , en}. Then α := e1 · · · en
is a loop without exits in G/(H,S) if and only if α̃ := (e1, e2) · · · (en, e1)
is a loop without exits in GF .

Proof. Since the elements of F 0 ∪ ΓF are sinks in GF , every loop in GF

is of the form β̃ where β is a loop in G/(H,S). Suppose that α̃ has an
exit in GF . We distinguish three cases.

(i) If (ei, f) ∈ G1
F is an exit for α̃, then s(f) ⊆ r(ei) and (ei, f) ̸=

(ei, ei+1). Thus f ̸= ei+1 and hence f is an exit for α, which is
impossible.

(ii) Since r(ei+1) = s(ei) and
∣∣s−1(s(ei))

∣∣ = 1 for every i, the ele-

ments of the form (ei, [v]) ∈ G1
F can not be an exit for α̃.

(iii) Let (ei, ω) ∈ G1
F be an exit for α̃. Since ωi = 1,

r(ω) =
∩
ωj=1

r(ej) \
∪
ωj=0

r(ej)

⊆ r(ei)

= s(ei+1)

= [sG(ei+1)].

As ω ∈ ΓF , we have R(ω) ̸= [∅] and hence R(ω) = s(ei+1) =
[sG(ei+1)]. We note that s−1 (s(ei+1)) = {ei+1} ⊆ F 1. There-
fore ω ∈ Γ0, contradicts with ω ∈ ΓF .

Thus α̃ is a loop without exits in GF . The converse follows from the
argument of [11, Lemma 4.8]. □

Let C∗(G/(H,S)) = C∗(t, q) and let F be a finite subset of Φsg(G
0)∪

Φ(G1). Then, by [11, Proposition 4.2] and [11, Corollary 4.3] the ele-
ments

Qe := tet
∗
e, T(e,[v]) := teQ[v],

Qω := qR(ω)

(
1−

∑
e∈F 1

tet
∗
e

)
, T(e,f) := teQf ,

Q[v] := q[v]

(
1−

∑
e∈F 1

tet
∗
e

)
, T(e,ω) := teQω,

form a Cuntz-Krieger GF -family such that

C∗(GF ) = C∗(T,Q)

= C∗ (te, q[v] : [v] ∈ F 0, e ∈ F 1
)
.
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Proof of Theorem 3.1. Let {Fn} be an increasing sequence of finite sub-
sets of Φsg(G

0) ∪ Φ(G1) such that ∪∞n=1Fn = Φsg(G
0) ∪ Φ(G1). Then

C∗(GFn) ⊆ C∗(GFn+1) and∪
n
C∗(GFn) = C∗ (te, q[v] : [v] ∈ Φsg(G

0), e ∈ Φ(G1)
)

= C∗ (G/(H,S)) .

Thus we may write C∗(G/(H,S)) = lim−→C∗(GFn). Now, let I be a closed

ideal of C∗(G/(H,S)) such that
{
[A] ̸= [∅] : q[A] ∈ I

}
= ∅. Set In :=

I ∩ C∗(GFn). We show that In is a closed ideal of C∗(GFn) containing
no vertex projections, and then we conclude that there is no nonzero
projection in In. Assume to the contrary that Qx ∈ In for some x ∈ G0

Fn
.

If x ∈ F 0
n or x ∈ F 1

n , then by multiplying Qx with suitable members,
it can be shown that I contains a set projection which is impossible.
So let x = ω ∈ ΓFn . Hence there exists a vertex [v] ⊆ R(ω) such that
either [v] is a sink or there is an edge f ∈ Φ(G1) \ F 1 with s(f) = [v].
In the former case, we deduce that q[v]Qx = q[v] ∈ I and in the later
case t∗fQxtf = qr(f) ∈ I, which contradicts the hypothesis. Therefore In
containing no vertex projections.

Suppose that In contains a projection 0 ̸= p ∈ C∗(GFn) and let J be
the ideal of C∗(GFn) generated by p. It follows from [1, Corollary 5.3.7]
that J is a gauge-invariant ideal and thus, by [2, Theorem 4.1], J is
generated by a set of vertex projections, contradicting that In contains
no vertex projections.

By [1, Proposition 5.4.3] we have In ⊆ IPc(GFn )
for all n. From Lemma

3.2, we know that

Pc(GF ) =
{
α̃ : α ∈ Pc(G/(H,S)) and α1 ⊆ G1

F

}
.

Thus IPc(GFn )
is generated by the elements of the formQe = tet

∗
e, where e

is the edge of a loop without exits in G/(H,S). Hence for every n ∈ N we
have In ⊆ IPc(GFn )

⊆ IPc(G/(H,S)). Since I = lim−→(I ∩ C∗(GFn)) = lim−→In,

we deduce that I ⊆ IPc(G/(H,S)), as desired. □

4. Primitive Ideals

In this section, we characterize all primitive ideals of the ultragraph
C∗-algebra C∗(G) which are not invariant under the gauge action.

We recall the definition of downward directed sets from [11, Definition
5.3]. Let G be an ultragraph. Define a relation on G0 by setting A ≥ B
if either B ⊆ A or there exists a path α of positive length such that
sG(α) ∈ A and B ⊆ rG(α). A subcollection M ⊆ G0 is called downward
directed if for every A,B ∈ M there exists ∅ ̸= C ∈ M such that
A,B ≥ C.
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Let I be a closed ideal of C∗(G). We denote HI := {A ∈ G0 : pA ∈ I}.

Lemma 4.1. Let G be an ultragraph and I be a closed ideal of C∗(G).
If I is primitive, then G0 \HI is downward directed.

Proof. Let A,B ∈ G0 \ HI . Denote by x̃ the image of x ∈ C∗(G) in
C∗(G)/I. Since A,B /∈ HI , the projections p̃A and p̃B are nonzero.
Thus the ideals

J1 :=
(
C∗(G)/I

)
p̃A
(
C∗(G)/I

)
, J2 :=

(
C∗(G)/I

)
p̃B
(
C∗(G)/I

)
,

are non-zero. Since C∗(G)/I is a primitive C∗-algebra, it follows that

J1J2 =
(
C∗(G)/I

)
p̃A
(
C∗(G)/I

)
p̃B
(
C∗(G)/I

)
,

is also a nonzero ideal of C∗(G)/I. Thus, p̃A
(
C∗(G)/I

)
p̃B ̸= {0}. We

note that

C∗(G)/I = span
{
s̃αp̃C s̃

∗
β : C ∈ G0, α, β ∈ G∗ and rG(α) ∩ C ∩ rG(β) ̸= ∅

}
.

Hence there exist α, β ∈ G∗ and C ∈ G0 such that p̃A(s̃αp̃C s̃
∗
β)p̃B ̸= 0,

which implies that pA(sαpCs
∗
β)pB ̸= 0. Thus sG(α) ∈ A and sG(β) ∈ B.

If we set D := rG(α) ∩ C ∩ rG(β), then we deduce that A,B ≥ D.
Therefore G0 \HI is downward directed. □

Lemma 4.2. Let G/(H,S) contains a unique (up to permutation) loop
α without exits and let s(α) = [v]. If I is a nonzero primitive ideal of
C∗(G/(H,S)) with {[A] ̸= [∅] : q[A] ∈ I} = ∅, then there exists t ∈ T
such that I is generated by the element tq[v] − tα.

Proof. Note that every primitive ideal of C(T) (which is maximal in the
non-trivial closed ideals of C(T)) is of the form

Nt = {f ∈ C(T) : f(t) = 0} ,

for some t ∈ T. By Theorem 3.1, we have I ⊆ Iα0 . From the proof of
[11, Lemma 5.1], we know that Iα0 is Morita equivalent to C(T) by the
Morita correspondence J 7→ q[v]Jq[v]. Since the primeness is preserved
by the Morita correspondence, there exists t ∈ T such that I maps to
Nt. As the ideal Nt is generated by the function ft(z) = t−z, we deduce
that I is generated by tq[v] − tα. □

Remark 4.3. Let G/(H,S) contain a loop α without exits and α′ be
a permutation of α. Denote [v] = s(α) and [w] = s(α′). Let δ be a
subpath of α and α′ such that δα = α′δ. If t ∈ T, then the ideals of
C∗(G/(H,S)) generated by tq[v] − tα and tq[w] − tα′ are equal, because

tδ
(
tq[v] − tα

)
t∗δ = tq[w] − tα′ .
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Let H be a saturated hereditary subcollection of G0 and let G0 \ H
contain a unique (up to permutation) loop α without exits in G0 \ H.
For t ∈ T, the ideal of C∗(G/(H,BH)

)
generated by{

pA, p
H
w : A ∈ H,w ∈ BH

}
∪
{
tpsG(α) − sα

}
,

is denoted by I⟨H,BH ,t⟩.

Theorem 4.4. Let G be an ultragraph and I be a non gauge-invariant
ideal of C∗(G). Denote H := HI . Then I is a primitive (prime) ideal if
and only if G0 \H is downward directed, G0 \H contains a (unique) loop
α without exits in G0 \H and there exists t ∈ T such that I = I⟨H,BH ,t⟩.

Proof. Suppose that I is a primitive ideal of C∗(G). By Lemma 4.1,
G0 \ H is downward directed. Denote S := {w ∈ BH : pHw ∈ I}. If

we write Ĩ for the image of I in the quotient C∗(G)/I(H,S), then by [11,
Proposition 4.6], we have C∗(G/(H,S)) ∼= C∗(G)/I(H,S) and{

[A] ̸= [∅] : [A] ∈ Φ(G0) and q[A] ∈ Ĩ
}
= ∅.

If I is not gauge-invariant, then by [9, Theorem 6.12], Ĩ ̸= {0}. Hence
by the Cuntz-Krieger uniqueness theorem for quotient ultragraphs [11,
Theorem 4.9], G/(H,S) contains a loop α without exits. For the unique-
ness, suppose β is a loop without exits in G/(H,S). Thus α and β are
loops without exits in G0 \H. By downward directed property of G0 \H
there exists ∅ ̸= C ∈ G0 \ H such that sG(α), sG(β) ≥ C. Since α, β
have no exit in G0 \H, we must have sG(α) ∈ β0 and sG(β) ∈ α0. The
absence of exits implies that β is a permutation of α.

Now, we show that S = BH . Since Ĩ is a primitive ideal of C∗(G)/I(H,S),

we have that C∗(G/(H,S))/Ĩ is a primitive C∗-algebra. Let w ∈ BH \S.
Then q[w′] + Ĩ and qs(α) + Ĩ are nonzero projections in C∗(G/(H,S))/Ĩ.
Similar to the proof of Lemma 4.1, let J1 and J2 be the ideals of

C∗(G/(H,S))/Ĩ generated by q[w′] + Ĩ and qs(α) + Ĩ, respectively. Thus
J1J2 ̸= 0 and hence(

q[w′] + Ĩ
)(

C∗(G/(H,S))/Ĩ
)(

qs(α) + Ĩ
)
̸= {0}.

Consequently, there exist µ, ν ∈ (G/(H,S))∗ and [A] ∈ Φ(G0) such that
q[w′](tµq[A]t

∗
ν)qs(α) ̸= 0, which is impossible because [w′] is a sink and α

has exit in G/(H,S).
From the proof of [11, Proposition 4.6], we know that C∗(G/(H,BH)) =

C∗(te, q[A]) where

q[A] := pA + I(H,BH) for A ∈ Φ(G0),
te := se + I(H,BH) for e ∈ Φ(G1).
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Since Ĩ is not gauge-invariant, by Lemma 4.2, there exists t ∈ T such

that Ĩ is generated by (tpsG(α) − sα) + I(H,BH). This implies that I is
generated by {

pA, p
H
w , tpsG(α) − sα : A ∈ H,w ∈ BH

}
,

and so I = I⟨H,BH ,t⟩.

For the converse, let G0 \ H be downward directed. Thus the only
loop (up to permutation) without exits in G/(H,BH) is α. Hence
I = I⟨H,BH ,t⟩ is well-defined. Let x̃ be the image of x ∈ C∗(G) in

C∗(G)/I(H,BH). As we pointed out in the proof of Lemma 4.2, since Ĩ is
generated by

tqs(α) − tα = tp̃sG(α) − s̃α

=
(
tpsG(α) − sα

)
+ I(H,BH),

we deduce that Ĩ is a non gauge-invariant primitive ideal of C∗(G)/I(H,BH).
Suppose that J1, J2 are two ideals in C∗(G) and J1J2 ⊆ I. Then

J̃1J̃2 = J̃1J2 ⊆ Ĩ, and so either J̃1 ⊆ Ĩ or J̃2 ⊆ Ĩ. Since I(H,BH) ⊂ I, we
have either J1 ⊆ I or J2 ⊆ I. Consequently, I is a non gauge-invariant
primitive ideal. □

Let α be a loop in G. We say that every vertex on α lies on exactly
one loop, if for every loop β (distinct from α) and every e ∈ β1 we have
rG(e) ∩ α0 = ∅. We denote such loops (up to permutation) by Cκ(G).

Let G0 \H contain a loop α without exits in G0 \H. Then α ∈ Cκ(G).
Define

M(α0) :=
{
∅ ̸= A ∈ G0 : A ≥ sG(α)

}
.

If G0 \H is downward directed, then it can be shown that M(α0) = G0 \
H. Conversely, if α ∈ Cκ(G) and if we set H := {A ∈ G0 : A ≱ sG(α)},
thenH is a saturated hereditary subcollection of G0 andM(α0) = G0\H.
Also, α is a loop without exits in G0\H. Since α ∈ Cκ(G), we deduce that
G0 \ H is downward directed. Therefore, we may conclude that every
non gauge-invariant primitive ideal of C∗(G) is exactly corresponding
with a such loop α ∈ Cκ(G) and some t ∈ T.

Corollary 4.5. Let G be a ultragraph. If Primτ (C
∗(G)) is the set of non

gauge-invariant primitive ideals of C∗(G), then there exists a one-to-one
corresponding between Cκ(G)× T and Primτ (C

∗(G)) as

(α, t)←→ I⟨H,BH ,t⟩,

where H := G0 \M(α0).

Example 4.6. Let G be the following ultragraph.
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wf
∞

v

e

e
e
e

...

There are two loops α1 := e and α2 := f in G. Since r(f) ∩ {v} =
r(e) ∩ {w} = ∅, we have α1, α2 ∈ Cκ(G). The bijection of Corollary 4.5
identifies {α1, α2} × T with Primτ (C

∗(G)).
Let G = (G0,G1, r, s). We observe that

G0 = {∅, {v}, {w}, r(e), {v, w}, r(e) ∪ {w}, r(e) \ {v}, {w} ∪ r(e) \ {v}}.

We now see that M(α0
1) = G0 \ {r(e) \ {v}} and M(α0

2) = {{w}}. Set

H2 := {r(e) \ {v}} and H1 := G0 \ {{w}}. Then BH1 = {w} and
BH2 = ∅. Consequently,

Primτ (C
∗(G)) =

{
I⟨H1,BH1

,t⟩, I⟨H2,BH2
,t⟩ : t ∈ T

}
.
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