## Primitive Ideal Space of Ultragraph $C^*$ -algebras

Mostafa Imanfar<sup>1</sup>, Abdolrasoul Pourabbas<sup>2\*</sup>, and Hossein Larki<sup>3</sup>

ABSTRACT. In this paper, we describe the primitive ideal space of the  $C^*$ -algebra  $C^*(\mathcal{G})$  associated to the ultragraph  $\mathcal{G}$ . We investigate the structure of the closed ideals of the quotient ultragraph  $C^*$ -algebra  $C^*(\mathcal{G}/(H,S))$  which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the Hong and Szymański's description of the primitive ideal space of a graph  $C^*$ -algebra by a simpler method.

#### 1. Introduction

Let E be a countable directed graph and  $C^*(E)$  be the associated  $C^*$ -algebra [2, 7, 10]. Using a special representation of  $C^*(E)$ , Hong and Szymański characterized the primitive ideal space of  $C^*(E)$  and it's hull-kernel topology [8]. They constructed a family of irreducible representations of  $C^*(E)$  associated to each maximal tail containing a cycle without exits. Theorem 2.10 of [8] shows that every non gauge-invariant primitive ideal of  $C^*(E)$  is the kernel of such representation. Furthermore, there is a completely different approach for the primitive ideal space of graph  $C^*$ -algebras [4] (see also [3, 12]).

The motivation of the definition of ultragraph  $C^*$ -algebras [13] is to unify the theory of graph  $C^*$ -algebras and Exel-Laca algebras [5, 6]. The structure of ultragraph  $C^*$ -algebras is more complicated, because in ultragraphs the range of each edge is allowed to be a nonempty set of vertices rather than a single vertex. Any graph  $C^*$ -algebra can be considered as an ultragraph  $C^*$ -algebra and the  $C^*$ -algebras of ultragraphs with no singular vertices are precisely the Exel-Laca algebras.

 $<sup>2010\</sup> Mathematics\ Subject\ Classification.\ 46L05,\ 46L55.$ 

 $Key\ words\ and\ phrases.$  Ultragraph, Ultragraph  $C^*$ -algebra, Primitive ideal.

Received: 06 February 2018, Accepted: 25 June 2018.

<sup>\*</sup> Corresponding author.

Furthermore, the class of ultragraph  $C^*$ -algebras are strictly lager than this class of directed graphs as well as the class of Exel-Laca algebras.

The aim of this paper is twofold. First, obtaining the Hong and Szymański's description of the primitive ideal space of  $C^*(E)$  by a quite different and simpler method. Secondly, characterizing all primitive ideals of the ultragraph  $C^*$ -algebra  $C^*(\mathcal{G})$  which are not invariant under the gauge action. The gauge-invariant primitive ideals of  $C^*(\mathcal{G})$  are characterized in [11].

We start by recalling the definition of the quotient ultragraph  $\mathcal{G}/(H,S)$  and its  $C^*$ -algebra  $C^*(\mathcal{G}/(H,S))$  from [11]. To achieve our main result, we investigate the structure of the closed ideals of  $C^*(\mathcal{G}/(H,S))$  which contain no nonzero projections. In particular, we show that if  $\mathcal{G}/(H,S)$  contains a unique loop  $\alpha$  without exits and I is a closed ideal of  $C^*(\mathcal{G}/(H,S))$  containing no nonzero set projections, then I is contained in  $I_{\alpha^0}$  (the closed ideal of  $C^*(\mathcal{G}/(H,S))$ ) generated by the projections associated to the vertices of  $\alpha$ ). We then use this fact to show that there is a bijection between the downward directed sets containing a loop without exits and the set of all non gauge-invariant primitive ideals of  $C^*(\mathcal{G})$ .

## 2. Preliminaries

We begin by reviewing some background material on ultragraph, quotient ultragraph and their  $C^*$ -algebras. For more details see [11, 13].

An ultragraph  $\mathcal{G} = (G^0, \mathcal{G}^1, r_{\mathcal{G}}, s_{\mathcal{G}})$  consists of countable sets  $G^0$  of vertices and  $\mathcal{G}^1$  of edges, the source map  $s_{\mathcal{G}}: \mathcal{G}^1 \to G^0$  and the range map  $r_{\mathcal{G}}: \mathcal{G}^1 \to \mathcal{P}(G^0) \setminus \{\emptyset\}$ , where  $\mathcal{P}(G^0)$  is the collection of all subsets of  $G^0$ .

For a set X, a subcollection of  $\mathcal{P}(X)$  is called an algebra if it is closed under the set operations  $\cup$ ,  $\cap$  and  $\setminus$ . If  $\mathcal{G}$  is an ultragraph, we write  $\mathcal{G}^0$  for the smallest algebra in  $\mathcal{P}(\mathcal{G}^0)$  containing  $\{\{v\}, r_{\mathcal{G}}(e) : v \in \mathcal{G}^0 \text{ and } e \in \mathcal{G}^1\}$ .

**Definition 2.1.** Let  $\mathcal{G}$  be an ultragraph. A subcollection  $H \subseteq \mathcal{G}^0$  is hereditary if

- (i)  $\{s_{\mathcal{G}}(e)\} \in H \text{ implies } r_{\mathcal{G}}(e) \in H \text{ for all } e \in \mathcal{G}^1,$
- (ii)  $A \cup B \in H$  for all  $A, B \in H$ ,
- (iii)  $A \in H$ ,  $B \in \mathcal{G}^0$  and  $B \subseteq A$ , imply  $B \in H$ .

The hereditary subcollection  $H\subseteq \mathcal{G}^0$  is saturated if for every  $v\in G^0$  with  $0<\left|s_{\mathcal{G}}^{-1}(v)\right|<\infty$  we have

$$\{r_{\mathcal{G}}(e): e \in \mathcal{G}^1 \text{ and } s_{\mathcal{G}}(e) = v\} \subseteq H \text{ implies } \{v\} \in H.$$

For a saturated hereditary subcollection  $H \subseteq \mathcal{G}^0$ , the breaking vertices of H is denoted by

$$B_H := \left\{ v \in G^0 : \left| s_{\mathcal{G}}^{-1}(v) \right| = \infty \text{ but } 0 < \left| s_{\mathcal{G}}^{-1}(v) \cap \left\{ e : r_{\mathcal{G}}(e) \notin H \right\} \right| < \infty \right\}.$$

An admissible pair in  $\mathcal{G}$  is a pair (H, S) of a saturated hereditary subcollection  $H \subseteq \mathcal{G}^0$  and some  $S \subseteq B_H$ .

In order to define the quotient of ultragraphs we need to recall and introduce some notation. Let  $\mathcal{G} = (G^0, \mathcal{G}^1, r_{\mathcal{G}}, s_{\mathcal{G}})$  be an ultragraph and let (H, S) be an admissible pair in  $\mathcal{G}$ . Given  $A \in \mathcal{P}(G^0)$ , denote by  $\overline{A} := A \cup \{w' : w \in A \cap (B_H \setminus S)\}$ . Also, we write  $\overline{\mathcal{G}^0}$  for the algebra in  $\mathcal{P}(\overline{G^0})$  generated by the sets  $\{v\}$ ,  $\{w'\}$  and  $\{\overline{r_{\mathcal{G}}(e)}\}$ , where  $v \in G^0$ ,  $w \in B_H \setminus S$  and  $e \in \mathcal{G}^1$ .

Let  $\sim$  be the relation on  $\overline{\mathcal{G}^0}$  defined by  $A \sim B$  if and only if there exists  $V \in H$  such that  $A \cup V = B \cup V$ . Then, by [11, Lemma 3.5],  $\sim$  is an equivalent relation on  $\overline{\mathcal{G}^0}$  and the operations

$$[A] \cup [B] := [A \cup B], \qquad [A] \cap [B] := [A \cap B], \qquad [A] \setminus [B] := [A \setminus B],$$

are well-defined on the equivalent classes  $\{[A]: A \in \overline{\mathcal{G}^0}\}$ . One can see that [A] = [B] if and only if both  $A \setminus B$  and  $B \setminus A$  belong to H.

**Definition 2.2.** Let  $\mathcal{G} = (G^0, \mathcal{G}^1, r_{\mathcal{G}}, s_{\mathcal{G}})$  be an ultragraph and let (H, S) be an admissible pair in  $\mathcal{G}$ . The quotient ultragraph of  $\mathcal{G}$  by (H, S) is the quadruple  $\mathcal{G}/(H, S) := (\Phi(G^0), \Phi(\mathcal{G}^1), r, s)$ , where

$$\Phi(G^0) := \{ [\{v\}] : v \in G^0 \setminus H \} \cup \{ [\{w'\}] : w \in B_H \setminus S \},$$
  
$$\Phi(G^1) := \{ e \in G^1 : r_G(e) \notin H \},$$

and  $s: \Phi(\mathcal{G}^1) \to \Phi(G^0)$  and  $r: \Phi(\mathcal{G}^1) \to \{[A]: A \in \overline{\mathcal{G}^0}\}$  are the maps defined by  $s(e) := [\{s_{\mathcal{G}}(e)\}]$  and  $r(e) := [\overline{r_{\mathcal{G}}(e)}]$  for every  $e \in \Phi(\mathcal{G}^1)$ , respectively.

For the sake of simplicity, we will write [v] instead of  $[\{v\}]$  for every vertex  $v \in G^0 \setminus H$ . For  $A, B \in \overline{\mathcal{G}^0}$ , we write  $[A] \subseteq [B]$  whenever  $[A] \cap [B] = [A]$ . The smallest algebra in  $\{[A] : A \in \overline{\mathcal{G}^0}\}$  containing

$$\{[v], [w'] : v \in G^0 \setminus H, w \in B_H \setminus S\} \cup \{r(e) : e \in \Phi(\mathcal{G}^1)\},$$

is denoted by  $\Phi(\mathcal{G}^0)$ . It can be shown that  $\Phi(\mathcal{G}^0) = \{[A] : A \in \overline{\mathcal{G}^0}\}$ .

A vertex  $[v] \in \Phi(G^0)$  is called a sink if  $|s^{-1}([v])| = \emptyset$  and is called an infinite emitter if  $|s^{-1}([v])| = \infty$ . A singular vertex is a vertex that is either a sink or an infinite emitter. The set of singular vertices is denoted by  $\Phi_{sg}(G^0)$ .

**Definition 2.3.** Let  $\mathcal{G}/(H,S)$  be a quotient ultragraph. A Cuntz-Krieger  $\mathcal{G}/(H,S)$ -family consists of projections  $\{q_{[A]}: [A] \in \Phi(\mathcal{G}^0)\}$  and partial isometries  $\{t_e: e \in \Phi(\mathcal{G}^1)\}$  with mutually orthogonal ranges such that

- (1)  $q_{[\emptyset]} = 0$ ,  $q_{[A]}q_{[B]} = q_{[A] \cap [B]}$  and  $q_{[A] \cup [B]} = q_{[A]} + q_{[B]} q_{[A] \cap [B]}$ ;
- (2)  $t_e^* t_e = q_{r(e)};$
- (3)  $t_e t_e^* \le q_{s(e)};$
- (4)  $q_{[v]} = \sum_{s(e)=[v]} t_e t_{e^*}$  whenever  $0 < |s^{-1}([v])| < \infty$ .

The  $C^*$ -algebra  $C^*(\mathcal{G}/(H,S))$  is the universal  $C^*$ -algebra generated by a Cuntz-Krieger  $\mathcal{G}/(H,S)$ -family.

Due to the fact that in the quotient ultragraph  $\mathcal{G}/(\emptyset,\emptyset)$ , we have  $[A] = \{A\}$ , for every  $A \in \mathcal{G}^0$ . We can consider the ultragraph  $\mathcal{G}$  as the quotient ultragraph  $\mathcal{G}/(\emptyset,\emptyset)$ . So, the definition of ultragraph  $C^*$ -algebras ([13, Defintion 2.7]) is an special case of Definition 2.3.

From now on we denote the universal Cuntz-Krieger  $\mathcal{G}$ -family and  $\mathcal{G}/(H,S)$ -family by  $\{s,p\}$  and  $\{t,q\}$ , respectively. Also, we suppose that  $C^*(\mathcal{G}) = C^*(s,p)$  and  $C^*(\mathcal{G}/(H,S)) = C^*(t,q)$ .

A path in the quotient ultragraph  $\mathcal{G}/(H,S)$  is a sequence  $\alpha := e_1 \cdots e_n$  of edges in  $\Phi(\mathcal{G}^1)$  such that  $s(e_{i+1}) \subseteq r(e_i)$  for  $1 \leq i \leq n-1$ . We say that the path  $\alpha$  has length  $|\alpha| := n$  and we consider the elements of  $\Phi(\mathcal{G}^0)$  as the paths of length zero. We write  $(\mathcal{G}/(H,S))^*$  for the set of finite paths. The maps r, s extend to  $(\mathcal{G}/(H,S))^*$  in an obvious way.

By [11, Lemma 3.9], we have

$$C^* (\mathcal{G}/(H,S)) = \overline{\operatorname{span}} \left\{ t_{\alpha} q_{[A]} t_{\beta}^* : [A] \in \Phi(\mathcal{G}^0) \text{ and } \alpha, \beta \in (\mathcal{G}/(H,S))^* \right\},\,$$

where  $t_{\alpha} := t_{e_1} \cdots t_{e_n}$  if  $\alpha = e_1 \cdots e_n$  and  $t_{\alpha} := q_{[A]}$  if  $\alpha = [A]$ .

The universal property of  $C^*(\mathcal{G}/(H,S))$  gives the strongly continuous gauge action  $\gamma: \mathbb{T} \to \operatorname{Aut} C^*(\mathcal{G}/(H,S))$ , which is characterized on generators by  $\gamma_z(q_{[A]}) = q_{[A]}$  and  $\gamma_z(t_e) = zt_e$  for every  $A \in \Phi(\mathcal{G}^0)$ ,  $e \in \Phi(\mathcal{G}^1)$  and  $z \in \mathbb{T}$ .

**Definition 2.4.** A loop in  $\mathcal{G}/(H,S)$  is a path  $\alpha$  with  $|\alpha| \geq 1$  and  $s(\alpha) \subseteq r(\alpha)$ . A loop  $\alpha = e_1 \cdots e_n$  has an exit if either  $r(e_i) \neq s(e_{i+1})$  for some  $1 \leq i \leq n$  or there exists an edge  $f \in \Phi(\mathcal{G}^1)$  and an index i such that  $s(f) \subseteq r(e_i)$  but  $f \neq e_{i+1}$ . The quotient ultragraph  $\mathcal{G}/(H,S)$  satisfies Condition (L) if every loop in  $\mathcal{G}/(H,S)$  has an exit.

Let H be a saturated hereditary subcollection of  $\mathcal{G}^0$ . We say that  $\alpha = e_1 \cdots e_n$  is a loop in  $\mathcal{G}^0 \setminus H$  if  $r_{\mathcal{G}}(\alpha) \in \mathcal{G}^0 \setminus H$ . Also,  $\alpha$  has an exit in  $\mathcal{G}^0 \setminus H$  if either  $r_{\mathcal{G}}(e_i) \setminus s_{\mathcal{G}}(e_{i+1}) \in \mathcal{G}^0 \setminus H$  for some  $1 \leq i \leq n$  or there exists an edge  $f \in \mathcal{G}^1$  and an index i such that  $r_{\mathcal{G}}(f) \in \mathcal{G}^0 \setminus H$  and  $s_{\mathcal{G}}(f) \subseteq r_{\mathcal{G}}(e_i)$  but  $f \neq e_{i+1}$ . One can see that the quotient ultragraph

 $\mathcal{G}/(H, B_H)$  satisfies Condition (L) if and only if every loop in  $\mathcal{G}^0 \setminus H$  has an exit in  $\mathcal{G}^0 \setminus H$ .

Let (H, S) be an admissible pair in an ultragraph  $\mathcal{G}$ . For every  $w \in B_H$ , we define the projection

$$p_w^H := p_w - \sum_{s(e)=w, \ r_G(e) \notin H} s_e s_e^*.$$

We denote by  $I_{(H,S)}$  the (two-sided) ideal of  $C^*(\mathcal{G})$  generated by the projections  $\{p_A: A \in H\} \cup \{p_w^H: w \in S\}$ . By [9, Theorem 6.12], the correspondence  $(H,S) \mapsto I_{(H,S)}$  is a bijection from the set of all admissible pairs of  $\mathcal{G}$  to the set of all gauge-invariant ideals of  $C^*(\mathcal{G})$ .

# 3. Closed Ideals of $C^*\left(\mathcal{G}/(H,S)\right)$ Containing No Set Projections

The set of vertices in the loops without exits of  $\mathcal{G}/(H,S)$  is denoted by  $P_c(\mathcal{G}/(H,S))$ .

**Theorem 3.1.** Let  $\mathcal{G}/(H,S)$  be a quotient ultragraph. If I is a closed ideal of  $C^*(\mathcal{G}/(H,S))$  with  $\{[A] \neq [\emptyset] : q_{[A]} \in I\} = \emptyset$ , then  $I \subseteq I_{P_c(\mathcal{G}/(H,S))}$ .

By [1, Theorem 5.4.4] we have Theorem 3.1 for row-finite directed graphs. To prove Theorem 3.1, we use the graph version of this theorem and the fact that a quotient ultragraph  $C^*$ -algebra is the direct limit of the certain  $C^*$ -algebras of finite graphs. We recall this direct limit from [11, Section 4] and then we prove Theorem 3.1.

Let  $\mathcal{G}/(H,S)$  be a quotient ultragraph. For every finite subset F of  $\Phi_{sg}(G^0) \cup \Phi(\mathcal{G}^1)$  we construct a finite graph  $G_F$  as follows. Let

$$F^{0} := F \cap \Phi_{sg}(G^{0}), \qquad F^{1} := F \cap \Phi(G^{1}) = \{e_{1}, \dots, e_{n}\}.$$

For every  $\omega = (\omega_1, \dots, \omega_n) \in \{0, 1\}^n \setminus \{0^n\}$ , we define

$$r(\omega) := \bigcap_{\omega_i = 1} r(e_i) \setminus \bigcup_{\omega_j = 0} r(e_j), \qquad R(\omega) := r(\omega) \setminus \bigcup_{[v] \in F^0} [v],$$

which belong to  $\Phi(\mathcal{G}^0)$ . Set  $\Gamma_0 := \{\omega \in \{0,1\}^n \setminus \{0^n\}\}$  where vertices  $[v_1], \ldots, [v_m]$  exist such that  $R(\omega) = \bigcup_{i=1}^m [v_i]$  and  $\emptyset \neq s^{-1}([v_i]) \subseteq F^1$  for  $1 \leq i \leq m$ , and

$$\Gamma_F := \left\{ \omega \in \{0,1\}^n \setminus \{0^n\} : R(\omega) \neq [\emptyset] \text{ and } \omega \notin \Gamma_0 \right\}.$$

Define the finite graph  $G_F = (G_F^0, G_F^1, r_F, s_F)$ , where

$$G_F^0 := F^0 \cup F^1 \cup \Gamma_F,$$

$$G_F^1 := \{ (e, f) \in F^1 \times F^1 : s(f) \subseteq r(e) \}$$

$$\cup \{ (e, [v]) \in F^1 \times F^0 : [v] \subseteq r(e) \}$$

$$\cup \{(e,\omega) \in F^1 \times \Gamma_F : \omega_i = 1 \text{ whenever } e = e_i \},$$

with  $s_F(e, f) = s_F(e, [v]) = s_F(e, \omega) = e$  and  $r_F(e, f) = f$ ,  $r_F(e, [v]) = [v]$ ,  $r_F(e, \omega) = \omega$ .

**Lemma 3.2.** Let  $\mathcal{G}/(H,S)$  be a quotient ultragraph and let F be a finite subset of  $\Phi_{sg}(G^0) \cup \Phi(\mathcal{G}^1)$  containing  $\{e_1,\ldots,e_n\}$ . Then  $\alpha := e_1 \cdots e_n$  is a loop without exits in  $\mathcal{G}/(H,S)$  if and only if  $\widetilde{\alpha} := (e_1,e_2) \cdots (e_n,e_1)$  is a loop without exits in  $G_F$ .

*Proof.* Since the elements of  $F^0 \cup \Gamma_F$  are sinks in  $G_F$ , every loop in  $G_F$  is of the form  $\widetilde{\beta}$  where  $\beta$  is a loop in  $\mathcal{G}/(H,S)$ . Suppose that  $\widetilde{\alpha}$  has an exit in  $G_F$ . We distinguish three cases.

- (i) If  $(e_i, f) \in G_F^1$  is an exit for  $\widetilde{\alpha}$ , then  $s(f) \subseteq r(e_i)$  and  $(e_i, f) \neq (e_i, e_{i+1})$ . Thus  $f \neq e_{i+1}$  and hence f is an exit for  $\alpha$ , which is impossible.
- (ii) Since  $r(e_{i+1}) = s(e_i)$  and  $|s^{-1}(s(e_i))| = 1$  for every i, the elements of the form  $(e_i, [v]) \in G_F^1$  can not be an exit for  $\widetilde{\alpha}$ .
- (iii) Let  $(e_i, \omega) \in G_F^1$  be an exit for  $\widetilde{\alpha}$ . Since  $\omega_i = 1$ ,

$$r(\omega) = \bigcap_{\omega_j = 1} r(e_j) \setminus \bigcup_{\omega_j = 0} r(e_j)$$

$$\subseteq r(e_i)$$

$$= s(e_{i+1})$$

$$= [s_{\mathcal{G}}(e_{i+1})].$$

As  $\omega \in \Gamma_F$ , we have  $R(\omega) \neq [\emptyset]$  and hence  $R(\omega) = s(e_{i+1}) = [s_{\mathcal{G}}(e_{i+1})]$ . We note that  $s^{-1}(s(e_{i+1})) = \{e_{i+1}\} \subseteq F^1$ . Therefore  $\omega \in \Gamma_0$ , contradicts with  $\omega \in \Gamma_F$ .

Thus  $\widetilde{\alpha}$  is a loop without exits in  $G_F$ . The converse follows from the argument of [11, Lemma 4.8].

Let  $C^*(\mathcal{G}/(H,S)) = C^*(t,q)$  and let F be a finite subset of  $\Phi_{sg}(G^0) \cup \Phi(\mathcal{G}^1)$ . Then, by [11, Proposition 4.2] and [11, Corollary 4.3] the elements

$$\begin{split} Q_e &:= t_e t_e^*, & T_{(e,[v])} &:= t_e Q_{[v]}, \\ Q_\omega &:= q_{R(\omega)} \left( 1 - \sum_{e \in F^1} t_e t_e^* \right), & T_{(e,f)} &:= t_e Q_f, \\ Q_{[v]} &:= q_{[v]} \left( 1 - \sum_{e \in F^1} t_e t_e^* \right), & T_{(e,\omega)} &:= t_e Q_\omega, \end{split}$$

form a Cuntz-Krieger  $G_F$ -family such that

$$C^*(G_F) = C^*(T, Q)$$
  
=  $C^*(t_e, q_{[v]} : [v] \in F^0, e \in F^1)$ .

Proof of Theorem 3.1. Let  $\{F_n\}$  be an increasing sequence of finite subsets of  $\Phi_{\text{sg}}(G^0) \cup \Phi(\mathcal{G}^1)$  such that  $\bigcup_{n=1}^{\infty} F_n = \Phi_{\text{sg}}(G^0) \cup \Phi(\mathcal{G}^1)$ . Then  $C^*(G_{F_n}) \subseteq C^*(G_{F_{n+1}})$  and

$$\overline{\bigcup_{n} C^{*}(G_{F_{n}})} = C^{*}\left(t_{e}, q_{[v]} : [v] \in \Phi_{sg}(G^{0}), e \in \Phi(\mathcal{G}^{1})\right)$$
$$= C^{*}\left(\mathcal{G}/(H, S)\right).$$

Thus we may write  $C^*(\mathcal{G}/(H,S)) = \varinjlim C^*(G_{F_n})$ . Now, let I be a closed ideal of  $C^*(\mathcal{G}/(H,S))$  such that  $\{[A] \neq [\emptyset] : q_{[A]} \in I\} = \emptyset$ . Set  $I_n := I \cap C^*(G_{F_n})$ . We show that  $I_n$  is a closed ideal of  $C^*(G_{F_n})$  containing no vertex projections, and then we conclude that there is no nonzero projection in  $I_n$ . Assume to the contrary that  $Q_x \in I_n$  for some  $x \in G_{F_n}^0$ . If  $x \in F_n^0$  or  $x \in F_n^1$ , then by multiplying  $Q_x$  with suitable members, it can be shown that I contains a set projection which is impossible. So let  $x = \omega \in \Gamma_{F_n}$ . Hence there exists a vertex  $[v] \subseteq R(\omega)$  such that either [v] is a sink or there is an edge  $f \in \Phi(\mathcal{G}^1) \setminus F^1$  with s(f) = [v]. In the former case, we deduce that  $q_{[v]}Q_x = q_{[v]} \in I$  and in the later case  $t_f^*Q_x t_f = q_{r(f)} \in I$ , which contradicts the hypothesis. Therefore  $I_n$  containing no vertex projections.

Suppose that  $I_n$  contains a projection  $0 \neq p \in C^*(G_{F_n})$  and let J be the ideal of  $C^*(G_{F_n})$  generated by p. It follows from [1, Corollary 5.3.7] that J is a gauge-invariant ideal and thus, by [2, Theorem 4.1], J is generated by a set of vertex projections, contradicting that  $I_n$  contains no vertex projections.

By [1, Proposition 5.4.3] we have  $I_n \subseteq I_{P_c(G_{F_n})}$  for all n. From Lemma 3.2, we know that

$$P_c(G_F) = \{ \widetilde{\alpha} : \alpha \in P_c(\mathcal{G}/(H,S)) \text{ and } \alpha^1 \subseteq G_F^1 \}.$$

Thus  $I_{P_c(G_{F_n})}$  is generated by the elements of the form  $Q_e = t_e t_e^*$ , where e is the edge of a loop without exits in  $\mathcal{G}/(H,S)$ . Hence for every  $n \in \mathbb{N}$  we have  $I_n \subseteq I_{P_c(G_{F_n})} \subseteq I_{P_c(\mathcal{G}/(H,S))}$ . Since  $I = \varinjlim (I \cap C^*(G_{F_n})) = \varinjlim I_n$ , we deduce that  $I \subseteq I_{P_c(\mathcal{G}/(H,S))}$ , as desired.

## 4. Primitive Ideals

In this section, we characterize all primitive ideals of the ultragraph  $C^*$ -algebra  $C^*(\mathcal{G})$  which are not invariant under the gauge action.

We recall the definition of downward directed sets from [11, Definition 5.3]. Let  $\mathcal{G}$  be an ultragraph. Define a relation on  $\mathcal{G}^0$  by setting  $A \geq B$  if either  $B \subseteq A$  or there exists a path  $\alpha$  of positive length such that  $s_{\mathcal{G}}(\alpha) \in A$  and  $B \subseteq r_{\mathcal{G}}(\alpha)$ . A subcollection  $M \subseteq \mathcal{G}^0$  is called downward directed if for every  $A, B \in M$  there exists  $\emptyset \neq C \in M$  such that  $A, B \geq C$ .

Let I be a closed ideal of  $C^*(\mathcal{G})$ . We denote  $H_I := \{A \in \mathcal{G}^0 : p_A \in I\}$ .

**Lemma 4.1.** Let  $\mathcal{G}$  be an ultragraph and I be a closed ideal of  $C^*(\mathcal{G})$ . If I is primitive, then  $\mathcal{G}^0 \setminus H_I$  is downward directed.

*Proof.* Let  $A, B \in \mathcal{G}^0 \setminus H_I$ . Denote by  $\widetilde{x}$  the image of  $x \in C^*(\mathcal{G})$  in  $C^*(\mathcal{G})/I$ . Since  $A, B \notin H_I$ , the projections  $\widetilde{p}_A$  and  $\widetilde{p}_B$  are nonzero. Thus the ideals

$$J_1 := (C^*(\mathcal{G})/I)\widetilde{p}_A(C^*(\mathcal{G})/I), \qquad J_2 := (C^*(\mathcal{G})/I)\widetilde{p}_B(C^*(\mathcal{G})/I),$$

are non-zero. Since  $C^*(\mathcal{G})/I$  is a primitive  $C^*$ -algebra, it follows that

$$J_1 J_2 = (C^*(\mathcal{G})/I) \widetilde{p}_A (C^*(\mathcal{G})/I) \widetilde{p}_B (C^*(\mathcal{G})/I),$$

is also a nonzero ideal of  $C^*(\mathcal{G})/I$ . Thus,  $\widetilde{p}_A(C^*(\mathcal{G})/I)\widetilde{p}_B \neq \{0\}$ . We note that

$$C^*(\mathcal{G})/I = \overline{\operatorname{span}} \left\{ \widetilde{s}_{\alpha} \widetilde{p}_C \widetilde{s}_{\beta}^* : C \in \mathcal{G}^0, \alpha, \beta \in \mathcal{G}^* \text{ and } r_{\mathcal{G}}(\alpha) \cap C \cap r_{\mathcal{G}}(\beta) \neq \emptyset \right\}.$$

Hence there exist  $\alpha, \beta \in \mathcal{G}^*$  and  $C \in \mathcal{G}^0$  such that  $\widetilde{p}_A(\widetilde{s}_{\alpha}\widetilde{p}_C\widetilde{s}_{\beta}^*)\widetilde{p}_B \neq 0$ , which implies that  $p_A(s_{\alpha}p_Cs_{\beta}^*)p_B \neq 0$ . Thus  $s_{\mathcal{G}}(\alpha) \in A$  and  $s_{\mathcal{G}}(\beta) \in B$ . If we set  $D := r_{\mathcal{G}}(\alpha) \cap C \cap r_{\mathcal{G}}(\beta)$ , then we deduce that  $A, B \geq D$ . Therefore  $\mathcal{G}^0 \setminus H_I$  is downward directed.

**Lemma 4.2.** Let  $\mathcal{G}/(H,S)$  contains a unique (up to permutation) loop  $\alpha$  without exits and let  $s(\alpha) = [v]$ . If I is a nonzero primitive ideal of  $C^*(\mathcal{G}/(H,S))$  with  $\{[A] \neq [\emptyset] : q_{[A]} \in I\} = \emptyset$ , then there exists  $t \in \mathbb{T}$  such that I is generated by the element  $tq_{[v]} - t_{\alpha}$ .

*Proof.* Note that every primitive ideal of  $C(\mathbb{T})$  (which is maximal in the non-trivial closed ideals of  $C(\mathbb{T})$ ) is of the form

$$N_t = \{ f \in C(\mathbb{T}) : f(t) = 0 \},$$

for some  $t \in \mathbb{T}$ . By Theorem 3.1, we have  $I \subseteq I_{\alpha^0}$ . From the proof of [11, Lemma 5.1], we know that  $I_{\alpha^0}$  is Morita equivalent to  $C(\mathbb{T})$  by the Morita correspondence  $J \mapsto q_{[v]}Jq_{[v]}$ . Since the primeness is preserved by the Morita correspondence, there exists  $t \in \mathbb{T}$  such that I maps to  $N_t$ . As the ideal  $N_t$  is generated by the function  $f_t(z) = t - z$ , we deduce that I is generated by  $tq_{[v]} - t_{\alpha}$ .

Remark 4.3. Let  $\mathcal{G}/(H,S)$  contain a loop  $\alpha$  without exits and  $\alpha'$  be a permutation of  $\alpha$ . Denote  $[v] = s(\alpha)$  and  $[w] = s(\alpha')$ . Let  $\delta$  be a subpath of  $\alpha$  and  $\alpha'$  such that  $\delta \alpha = \alpha' \delta$ . If  $t \in \mathbb{T}$ , then the ideals of  $C^*(\mathcal{G}/(H,S))$  generated by  $tq_{[v]} - t_{\alpha}$  and  $tq_{[w]} - t_{\alpha'}$  are equal, because  $t_{\delta}(tq_{[v]} - t_{\alpha})t_{\delta}^* = tq_{[w]} - t_{\alpha'}$ .

Let H be a saturated hereditary subcollection of  $\mathcal{G}^0$  and let  $\mathcal{G}^0 \setminus H$  contain a unique (up to permutation) loop  $\alpha$  without exits in  $\mathcal{G}^0 \setminus H$ . For  $t \in \mathbb{T}$ , the ideal of  $C^*(\mathcal{G}/(H, B_H))$  generated by

$$\{p_A, p_w^H : A \in H, w \in B_H\} \cup \{tp_{s_G(\alpha)} - s_\alpha\},$$

is denoted by  $I_{\langle H, B_H, t \rangle}$ .

**Theorem 4.4.** Let  $\mathcal{G}$  be an ultragraph and I be a non gauge-invariant ideal of  $C^*(\mathcal{G})$ . Denote  $H := H_I$ . Then I is a primitive (prime) ideal if and only if  $\mathcal{G}^0 \setminus H$  is downward directed,  $\mathcal{G}^0 \setminus H$  contains a (unique) loop  $\alpha$  without exits in  $\mathcal{G}^0 \setminus H$  and there exists  $t \in \mathbb{T}$  such that  $I = I_{\langle H, B_H, t \rangle}$ .

*Proof.* Suppose that I is a primitive ideal of  $C^*(\mathcal{G})$ . By Lemma 4.1,  $\mathcal{G}^0 \setminus H$  is downward directed. Denote  $S := \{w \in B_H : p_w^H \in I\}$ . If we write  $\widetilde{I}$  for the image of I in the quotient  $C^*(\mathcal{G})/I_{(H,S)}$ , then by [11, Proposition 4.6], we have  $C^*(\mathcal{G}/(H,S)) \cong C^*(\mathcal{G})/I_{(H,S)}$  and

$$\left\{ [A] \neq [\emptyset] : [A] \in \Phi(\mathcal{G}^0) \text{ and } q_{[A]} \in \widetilde{I} \right\} = \emptyset.$$

If I is not gauge-invariant, then by [9, Theorem 6.12],  $\widetilde{I} \neq \{0\}$ . Hence by the Cuntz-Krieger uniqueness theorem for quotient ultragraphs [11, Theorem 4.9],  $\mathcal{G}/(H,S)$  contains a loop  $\alpha$  without exits. For the uniqueness, suppose  $\beta$  is a loop without exits in  $\mathcal{G}/(H,S)$ . Thus  $\alpha$  and  $\beta$  are loops without exits in  $\mathcal{G}^0 \setminus H$ . By downward directed property of  $\mathcal{G}^0 \setminus H$  there exists  $\emptyset \neq C \in \mathcal{G}^0 \setminus H$  such that  $s_{\mathcal{G}}(\alpha), s_{\mathcal{G}}(\beta) \geq C$ . Since  $\alpha, \beta$  have no exit in  $\mathcal{G}^0 \setminus H$ , we must have  $s_{\mathcal{G}}(\alpha) \in \beta^0$  and  $s_{\mathcal{G}}(\beta) \in \alpha^0$ . The absence of exits implies that  $\beta$  is a permutation of  $\alpha$ .

Now, we show that  $S = B_H$ . Since  $\widetilde{I}$  is a primitive ideal of  $C^*(\mathcal{G})/I_{(H,S)}$ , we have that  $C^*(\mathcal{G}/(H,S))/\widetilde{I}$  is a primitive  $C^*$ -algebra. Let  $w \in B_H \setminus S$ . Then  $q_{[w']} + \widetilde{I}$  and  $q_{s(\alpha)} + \widetilde{I}$  are nonzero projections in  $C^*(\mathcal{G}/(H,S))/\widetilde{I}$ . Similar to the proof of Lemma 4.1, let  $J_1$  and  $J_2$  be the ideals of  $C^*(\mathcal{G}/(H,S))/\widetilde{I}$  generated by  $q_{[w']} + \widetilde{I}$  and  $q_{s(\alpha)} + \widetilde{I}$ , respectively. Thus  $J_1J_2 \neq 0$  and hence

$$\left(q_{[w']} + \widetilde{I}\right) \left(C^*(\mathcal{G}/(H,S))/\widetilde{I}\right) \left(q_{s(\alpha)} + \widetilde{I}\right) \neq \{0\}.$$

Consequently, there exist  $\mu, \nu \in (\mathcal{G}/(H,S))^*$  and  $[A] \in \Phi(\mathcal{G}^0)$  such that  $q_{[w']}(t_{\mu}q_{[A]}t_{\nu}^*)q_{s(\alpha)} \neq 0$ , which is impossible because [w'] is a sink and  $\alpha$  has exit in  $\mathcal{G}/(H,S)$ .

From the proof of [11, Proposition 4.6], we know that  $C^*(\mathcal{G}/(H, B_H)) = C^*(t_e, q_{[A]})$  where

$$q_{[A]} := p_A + I_{(H,B_H)} \quad \text{for } A \in \Phi(\mathcal{G}^0),$$
  
 $t_e := s_e + I_{(H,B_H)} \quad \text{for } e \in \Phi(\mathcal{G}^1).$ 

Since  $\widetilde{I}$  is not gauge-invariant, by Lemma 4.2, there exists  $t \in \mathbb{T}$  such that  $\widetilde{I}$  is generated by  $(tp_{s_{\mathcal{G}}(\alpha)} - s_{\alpha}) + I_{(H,B_H)}$ . This implies that I is generated by

$$\{p_A, p_w^H, tp_{s_G(\alpha)} - s_\alpha : A \in H, w \in B_H\},$$

and so  $I = I_{\langle H, B_H, t \rangle}$ .

For the converse, let  $\mathcal{G}^0 \setminus H$  be downward directed. Thus the only loop (up to permutation) without exits in  $\mathcal{G}/(H, B_H)$  is  $\alpha$ . Hence  $I = I_{\langle H, B_H, t \rangle}$  is well-defined. Let  $\widetilde{x}$  be the image of  $x \in C^*(\mathcal{G})$  in  $C^*(\mathcal{G})/I_{(H,B_H)}$ . As we pointed out in the proof of Lemma 4.2, since  $\widetilde{I}$  is generated by

$$\begin{split} tq_{s(\alpha)} - t_{\alpha} &= t\widetilde{p}_{s_{\mathcal{G}}(\alpha)} - \widetilde{s}_{\alpha} \\ &= \left( tp_{s_{\mathcal{G}}(\alpha)} - s_{\alpha} \right) + I_{(H,B_H)}, \end{split}$$

we deduce that  $\widetilde{I}$  is a non gauge-invariant primitive ideal of  $C^*(\mathcal{G})/I_{(H,B_H)}$ . Suppose that  $J_1, J_2$  are two ideals in  $C^*(\mathcal{G})$  and  $J_1J_2 \subseteq I$ . Then  $\widetilde{J}_1\widetilde{J}_2 = \widetilde{J}_1J_2 \subseteq \widetilde{I}$ , and so either  $\widetilde{J}_1 \subseteq \widetilde{I}$  or  $\widetilde{J}_2 \subseteq \widetilde{I}$ . Since  $I_{(H,B_H)} \subset I$ , we have either  $J_1 \subseteq I$  or  $J_2 \subseteq I$ . Consequently, I is a non gauge-invariant primitive ideal.

Let  $\alpha$  be a loop in  $\mathcal{G}$ . We say that every vertex on  $\alpha$  lies on exactly one loop, if for every loop  $\beta$  (distinct from  $\alpha$ ) and every  $e \in \beta^1$  we have  $r_{\mathcal{G}}(e) \cap \alpha^0 = \emptyset$ . We denote such loops (up to permutation) by  $C_{\kappa}(\mathcal{G})$ .

Let  $\mathcal{G}^0 \setminus H$  contain a loop  $\alpha$  without exits in  $\mathcal{G}^0 \setminus H$ . Then  $\alpha \in C_{\kappa}(\mathcal{G})$ . Define

$$M(\alpha^0) := \{ \emptyset \neq A \in \mathcal{G}^0 : A \ge s_{\mathcal{G}}(\alpha) \}.$$

If  $\mathcal{G}^0 \setminus H$  is downward directed, then it can be shown that  $M(\alpha^0) = \mathcal{G}^0 \setminus H$ . Conversely, if  $\alpha \in C_{\kappa}(\mathcal{G})$  and if we set  $H := \{A \in \mathcal{G}^0 : A \ngeq s_{\mathcal{G}}(\alpha)\}$ , then H is a saturated hereditary subcollection of  $\mathcal{G}^0$  and  $M(\alpha^0) = \mathcal{G}^0 \setminus H$ . Also,  $\alpha$  is a loop without exits in  $\mathcal{G}^0 \setminus H$ . Since  $\alpha \in C_{\kappa}(\mathcal{G})$ , we deduce that  $\mathcal{G}^0 \setminus H$  is downward directed. Therefore, we may conclude that every non gauge-invariant primitive ideal of  $C^*(\mathcal{G})$  is exactly corresponding with a such loop  $\alpha \in C_{\kappa}(\mathcal{G})$  and some  $t \in \mathbb{T}$ .

Corollary 4.5. Let  $\mathcal{G}$  be a ultragraph. If  $\operatorname{Prim}_{\tau}(C^*(\mathcal{G}))$  is the set of non gauge-invariant primitive ideals of  $C^*(\mathcal{G})$ , then there exists a one-to-one corresponding between  $C_{\kappa}(\mathcal{G}) \times \mathbb{T}$  and  $\operatorname{Prim}_{\tau}(C^*(\mathcal{G}))$  as

$$(\alpha, t) \longleftrightarrow I_{\langle H, B_H, t \rangle},$$

where  $H := \mathcal{G}^0 \setminus M(\alpha^0)$ .

**Example 4.6.** Let  $\mathcal{G}$  be the following ultragraph.



There are two loops  $\alpha_1 := e$  and  $\alpha_2 := f$  in  $\mathcal{G}$ . Since  $r(f) \cap \{v\} = r(e) \cap \{w\} = \emptyset$ , we have  $\alpha_1, \alpha_2 \in C_{\kappa}(\mathcal{G})$ . The bijection of Corollary 4.5 identifies  $\{\alpha_1, \alpha_2\} \times \mathbb{T}$  with  $\operatorname{Prim}_{\tau}(C^*(\mathcal{G}))$ .

Let  $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ . We observe that

$$\mathcal{G}^0 = \overline{\{\emptyset, \{v\}, \{w\}, r(e), \{v, w\}, r(e) \cup \{w\}, r(e) \setminus \{v\}, \{w\} \cup r(e) \setminus \{v\}\}}.$$

We now see that  $M(\alpha_1^0) = \mathcal{G}^0 \setminus \overline{\{r(e) \setminus \{v\}\}}$  and  $M(\alpha_2^0) = \{\{w\}\}$ . Set  $H_2 := \overline{\{r(e) \setminus \{v\}\}}$  and  $H_1 := \mathcal{G}^0 \setminus \{\{w\}\}$ . Then  $B_{H_1} = \{w\}$  and  $B_{H_2} = \emptyset$ . Consequently,

$$\operatorname{Prim}_{\tau}(C^{*}(\mathcal{G})) = \left\{ I_{\langle H_{1}, B_{H_{1}}, t \rangle}, I_{\langle H_{2}, B_{H_{2}}, t \rangle} : t \in \mathbb{T} \right\}.$$

### References

- 1. G. Abrams, P. Ara, and M. Siles Molina, *Leavitt Path Algebras*, Lecture Notes in Mathematics Vol. 2191, Springer, London, 2017.
- 2. T. Bates, D. Pask, I. Raeburn, and W. Szymański, *The C\*-algebras of row-finite graphs*, New York J. Math., 6 (2000), pp. 307-324.
- 3. T.M. Carlsen, S. Kang, J. Shotwell, and A. Sims, *The primitive ideals of the Cuntz-Krieger algebra of a row-finite higher-rank graph with no sources*, J. Funct. Anal., 266 (2014), pp. 2570-2589.
- 4. T.M. Carlsen and A. Sims, On Hong and Szymański's description of the primitive-ideal space of a graph algebra, Operator algebras and applications the Abel Symposium (2015), Abel Symp., 12, Springer, [Cham], (2017), pp. 115-132.
- J. Cuntz and W. Krieger, A class of C\*-algebras and topological Markov chains, Invent. Math., 56 (1980), pp. 251-268.
- R. Exel and M. Laca, Cuntz-Krieger algebras for infinite matrices,
   J. Reine Angew. Math., 512 (1999), pp. 119-172.
- 7. N. Fowler, M. Laca, and I. Raeburn, *The C\*-algebras of infinite graphs*, Proc. Amer. Math. Soc., 128 (2000), pp. 2319-2327.
- 8. J. Hong and W. Szymański, The primitive ideal space of the C\*-algebras of infinite graphs, J. Math. Soc. Japan, 56 (2004), pp. 45-64.

- 9. T. Katsura, P.S. Muhly, A. Sims, and M. Tomforde, Utragraph  $C^*$ -algebras via topological quivers, Studia Math., 187 (2008), pp. 137-155.
- 10. A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math., 184 (1998), pp. 161-174.
- 11. H. Larki, Primitive ideals and pure infiniteness of ultragraph C\*-algebras, J. Korean Math. Soc., 56 (2019), pp. 1-23.
- 12. H. Larki, Primitive ideal space of higher-rank graph C\*-algebras and decomposability, J. Math. Anal. Appl., 469 (2019), pp. 76-94.
- 13. M. Tomforde, A unified approach to Exel-Laca algebras and  $C^*$ -algebras associated to graphs, J. Operator Theory, 50 (2003), pp. 345-368.

 $E ext{-}mail\ address: m.imanfar@aut.ac.ir}$ 

E-mail address: h.larki@scu.ac.ir

<sup>&</sup>lt;sup>1</sup> Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran.

<sup>&</sup>lt;sup>2</sup> FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, AMIRKABIR UNIVERSITY OF TECHNOLOGY, 424 HAFEZ AVENUE, 15914 TEHRAN, IRAN. E-mail address: arpabbas@aut.ac.ir

 $<sup>^3</sup>$  Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Iran.