
Sahand Communications in Mathematical Analysis (SCMA) Vol. 15 No. 1 (2019), 169-187

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2018.85866.432

Some Properties of Continuous K-frames in Hilbert Spaces

Gholamreza Rahimlou1, Reza Ahmadi2∗, Mohammad Ali Jafarizadeh3,
and Susan Nami4

Abstract. The theory of continuous frames in Hilbert spaces is
extended, by using the concepts of measure spaces, in order to get
the results of a new application of operator theory. The K-frames
were introduced by Găvruta (2012) for Hilbert spaces to study
atomic systems with respect to a bounded linear operator. Due
to the structure of K-frames, there are many differences between
K-frames and standard frames. K-frames, which are a generaliza-
tion of frames, allow us in a stable way, to reconstruct elements
from the range of a bounded linear operator in a Hilbert space. In
this paper, we get some new results on the continuous K-frames
or briefly cK-frames, namely some operators preserving and some
identities for cK-frames. Also, the stability of these frames are
discussed.

1. Introduction

Nowadays, frames are used in some various branches of science and
engineering. Among them are signal processing, image processing, data
compression and sampling in sampling theory (see [2, 3, 5, 10]). Frames
were introduced by Duffin and Schaeffer in the context of Non-harmonic
Fourier series [7]. They were intended as an alternative to the orthonor-
mal or Riesz bases in Hilbert spaces. Much of the abstract theory of
frames is elegantly laid out in that paper. A frame is a family of elements
in a separable Hilbert space which allows for a stable, not necessarily
unique, decomposition of an arbitrary element into an expansion of the
frame elements (see [4, 8, 9, 11, 14]).
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The theory of continuous frames in Hilbert spaces, using the concepts
of measurment spaces, in order to get the results of a new application of
operator theory is extended. The concept of a generalization of frames
to an indexed family by some locally compact spaces endowed with a
Radon measure was proposed by G. Kaiser [10] and independently by
Ali, Antoine and Gazeau [1]. These frames are known as the continuous
frames. In continuousK-frames, the lower bound of the frame is replaced
by the norm of a bounded operator on a Hilbert space. This changes the
overall structure of the frame and gives new results in terms of combining
operators and frame perturbation.

This paper consists of four sections. We review the foundation for the
theory of continuous frames in Hilbert spaces in Section 1. The necessary
tools to construct a contiuous frame will be provided. Also the structure
of continuous K-frames is expressed. In Section 2, the operators that
preserve continuous K-frames are discussed. In Section 3, we present
some useful identities and inequalities for those frames. Finally, we
study the perturbation of continuous K-frames and the lower bound of
frames by using a new technique for getting perturbation of continuous
K-frames in Section 4.

Throughout this paper, H,H0,H1 and H2 are Hilbert spaces, (H)1 is
the closed unit ball in H. (X,µ) is a σ-finite measure space, L(H0,H) is
the set of all linear mappings of H0 to H and B(H0, H) is the set of all
bounded linear mappings. Instead of B (H,H), we simply write B (H).
Also for brevity, continuous K-frame is denoted by cK-frame.

Definition 1.1. Let {fn} ⊆ H. We say that the sequence {fn} is a
frame for H if there exist constants A,B > 0 such that

A ∥h∥2 ≤
∑
n

|⟨h, fn⟩|2 ≤ B ∥h∥2 , h ∈ H.

Definition 1.2. Let F : X → H be a weakly measurable mapping (i.e.,
for all h ∈ H, the mapping x 7→ ⟨F (x), h⟩ is measurable). Then F is
called a c-frame for H if there exist 0 ≤ A ≤ B < ∞ such that for all
h ∈ H,

A ∥h∥2 ≤
∫
X
|⟨F (x), h⟩|2 dµ ≤ B ∥h∥2 .

The constants A and B are called c-frame bounds. If A,B can be
chosen so that A = B, we call this c-frame an A-tight frame, and if
A = B = 1 it is called a c-Parseval frame. If we only have the upper
bound, we call f a c-Bessel mapping for H. The representation space
employed in this setting is

L2 (X,H) = {φ : X → H|φ is measurable and ∥φ∥2 <∞} ,
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where ∥φ∥2 =
(∫

X ∥φ(x)∥2 dµ
) 1

2
. For each F,G ∈ L2 (X,H) , the map-

ping x → ⟨F (x) , G (x)⟩ of X to C is measurable, and it can be proved
that L2(X,H) is a Hilbert spase with the inner product defined by

⟨F,G⟩L2 =

∫
X
⟨F (x) , G (x)⟩ dµ.

We shall write L2 (X) when H = C.

Theorem 1.3 ([8]). Let F : X → H be a c-Bessel mapping for H, and
U ∈ B (H,H0). Then UF : X → H0 is a c-Bessel mapping for H0 with

UTF = TUF .

Theorem 1.4 ([6]). Suppose the H,H1 and H2 are Hilbert spaces,
L1 ∈ B (H1,H) and L2 ∈ B (H2,H). Then the following assertions
are equivalent:

(i) R (L1) ⊂ R (L2),
(ii) ∃λ ≥ 0, such that L1L

∗
1 ≤ λL2L

∗
2,

(iii) There exists X ∈ B (H1,H2) such that L1 = L2X.

Definition 1.5. Let K ∈ B (H0,H), and {fn} ⊆ H. We say that the
sequence {fn} is a K-frame for H with respect to H0, if there exist
constants A,B > 0 such that

A ∥K∗h∥2 ≤
∑
n

| ⟨h, fn⟩ |2 ≤ B ∥h∥2 , h ∈ H.

Definition 1.6. Let F : X → H be weakly measurable. We define the
map

∫
X ·Fdµ : L2(X) → H as follows:⟨∫

X
gFdµ, h

⟩
:=

∫
X
g (x) ⟨F (x) , h⟩ dµ, h ∈ H, g ∈ L2 (X) .

It is clear that, the vector valued integral
∫
X gFdµ exists in H if for each

h ∈ H,
∫
X g (x) ⟨F (x), h⟩ dµ exists.

Definition 1.7. Let H0 ⊆ H. Suppose that F : X → H is weakly
measurable and K ∈ B (H0,H). Then F is called a family of local
cK-atoms for H0 if the following conditions are satisfied:

(i) For each g ∈ L2(X) the vector valued integral
∫
X gF dµ exists

in H.
(ii) There exist some a > 0 and ℓ : X → L(H0,C) such that for

each h ∈ H0, ℓ (·) (h) ∈ L2 (X) and also

∥ℓ(·)(h)∥2 ≤ a ∥h∥ , Kh =

∫
X
ℓ (·) (h)F dµ.

If K is the identity function on H0 then F is called a family of local
atoms for H0.
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Definition 1.8. Let K ∈ B (H0, H) and F : X → H be weakly measur-
able. Then the map F is called a cK-frame with respect to H0, if there
exist constants A,B > 0 such that for each h ∈ H,

A ∥K∗h∥2 ≤
∫
X
|⟨F (x) , h⟩|2 dµ ≤ B ∥h∥2 .

A cK-frame F is called a Parseval cK-frame, whenever for every h ∈
H, ∫

X
|⟨F (x) , h⟩|2 dµ = ∥K∗h∥2 .

Lemma 1.9 ([13]). Let F : X → H be weakly measurable. For each
φ ∈ L2 (X) , the value of

∫
X φF dµ exists in H if and only if for each

h ∈ H, ⟨F, h⟩ ∈ L2 (X).

Lemma 1.10 ([12]). Let F : X → H be weakly measurable. Then F is
a c-Bessel mapping for H if and only if for each φ ∈ L2 (X),

∫
X φFdµ

exists in H.

Remark 1.11. Let F : X → H be a c-Bessel mapping for H. The
synthesis operator is defined by

TF : L2 (X) → H, TF (φ) =

∫
X
φF dµ.

Hence, for each φ ∈ L2 (X) and h ∈ H,⟨∫
X
φF dµ, h

⟩
=

∫
X
φ (x) ⟨F (x) , h⟩ dµ.

The analysis operator is defined by

T ∗
F : H → L2 (X) , T ∗

F (h) = ⟨h, F ⟩ .

So, for the frame operator SF := TFT
∗
F we have

SF (h) =

∫
X
⟨h, F ⟩F dµ, h ∈ H.

Theorem 1.12 ([12]). Let H0 ⊆ H. Let F : X → H be weakly measur-
able, and K ∈ B (H0,H). Then the following assertions are equivalent:

(i) F is a family of local cK-atoms for H0.
(ii) F is a cK-frame for H with respect to H0.
(iii) F is a c-Bessel mapping for H, and there exists G ∈ B

(
H0, L

2 (X)
)

such that

Kh =

∫
X
G (h)F dµ, h ∈ H0.
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Theorem 1.13 ([12]). Let K ∈ B (H0,H), and F : X → H be a cK-
frame for H with respect to H0, with bounds A,B. If K is closed range
then SF is invertibale on R (K), and for each h ∈ R (K)

(1.1) A
∥∥∥K†

∥∥∥−2
∥h∥2 ≤ ⟨SF (h) , h⟩ ≤ B ∥h∥2 .

2. Operators Preserving ck-Frames

Theorem 2.1. Suppose that F : X → H is a cK-frame for H and
U ∈ B(H) with R(U) ⊆ R(K). Then F is a cU -frame for H.

Proof. Let F be a cK-frame for H with bounds A and B. Since R(U) ⊆
R(K), by Theorem 1.4 there exists α > 0 such that UU∗ ≤ α2KK∗. By
the definition of cK-frames, for each h ∈ H we have

Aα−2 ∥U∗(h)∥2 ≤ A ∥K∗(h)∥2

≤
∫
X
|⟨h, F (x)⟩|2 dµ.

Hence, F is a cU-frame for H. □

Theorem 2.2. Let K ∈ B(H) with dense range, F : X → H be a cK-
frame and U ∈ B(H) be closed range. If UF is a cK-frame for H then
U is surjective.

Proof. suppose UF is a cK-frame for H with frame bounds A and B.
Then for any h ∈ H we have

(2.1) A ∥K∗h∥2 ≤
∫
X
|⟨h, UF (x)⟩|2 dµ ≤ B ∥h∥2 .

Since K is with dense range, K∗ is injective. By (2.1), N (U∗) ⊂ N (K∗),
then U∗ is injective. Moreover R (U) = N (U∗)⊥ = H. Thus, U is
surjective. □

Theorem 2.3. Suppose K ∈ B (H) and let F : X → H be a cK-frame
for H. If U ∈ B (H) has closed range with UK = KU , then UF : X → H
is a cK-frame for R (U).

Proof. Since U has closed range, then it has the pseudo-inverse U † such
that UU † = I. Now I = I∗ =

(
U †)∗ U∗. Then for each h ∈ R (U),

K∗h =
(
U †)∗ U∗K∗h. So we have

∥K∗h∥ =
∥∥∥(U †)∗U∗K∗h

∥∥∥
≤
∥∥∥(U †)∗

∥∥∥ ∥U∗K∗h∥ .
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Therefore,
∥∥(U †)∗

∥∥−1 ∥K∗h∥ ≤ ∥U∗K∗h∥. Now for each h ∈ R(U),∫
X
|⟨h,UF (x)⟩|2 dµ =

∫
X
|⟨U∗h, F (x)⟩|2 dµ

≥ A ∥K∗U∗h∥2

= A ∥U∗K∗h∥2

≥ A
∥∥∥(U †)∗

∥∥∥−2
∥K∗h∥2 .

Since F is a c-Bessel mapping with bound B, we have∫
X
|⟨h,UF (x)⟩|2 dµ =

∫
X
|⟨U∗h, F (x)⟩|2 dµ

≤ B ∥U∗h∥2

≤ B ∥U∥2 ∥h∥2 .

Therefore, UF is a cK-frame for R(U). □
Remark 2.4. From Theorems 2.2 and 2.3 we conclude the following:
Let K ∈ B(H) be with dense range. Let F be a cK-frame for H and
U ∈ B(H) has closed range with UK = KU . Then UF is a cK-frame
for H if and only if U is surjective.

Theorem 2.5. Suppose K ∈ B (H) has dense range, F is a cK-frame
and U ∈ B (H) has closed range. If UF and U∗F are cK-frames for H,
then U is invertible.

Proof. Suppose UF is a cK-frame for H with frame bounds A1 and B1.
Then for any h ∈ H

(2.2) A1 ∥K∗h∥2 ≤
∫
X
|⟨h,UF (x)⟩|2 dµ ≤ B1 ∥h∥2 .

SinceK has dense range, thenK∗ is injective. By (2.2) we haveN (U∗) ⊂
N (K∗), therefore U∗ is injective. Moreover R(U)=N (U∗)⊥ = H, then
U is surjective. Suppose A2 and B2 are frame bounds for U∗F , then for
any h ∈ H,

(2.3) A2 ∥K∗h∥2 ≤
∫
X
|⟨h,U∗F (x)⟩|2 dµ ≤ B2 ∥h∥2 .

As K has dense range, K∗ is injective. Then, by (2.3) we get N (U) ⊂
N (K∗), so U is injective. Thus U is bijective. Now, by the Bounded
Inverse Theorem, U is invertible. □
Theorem 2.6. Let K ∈ B(H) and F be a cK-frame for H and U ∈
B(H) be a co-isometry with UK = KU . Then UF is a cK-frame for
H.
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Proof. Let F be a cK-frame for H. Since U is a co-isometry, we have
for each h ∈ H∫

X
|⟨h,UF (x)⟩|2 dµ =

∫
X
|⟨U∗h, F (x)⟩|2 dµ

≥ A ∥K∗u∗h∥2

= A ∥U∗K∗h∥2

= A ∥K∗h∥2 .
It is clear that UF is a c-Bessel mapping. Since F : X → H is a c-Bessel
mapping, then for each h ∈ H∫

X
|⟨h,UF (x)⟩|2 dµ =

∫
X
|⟨U∗h, F (x)⟩|2 dµ

≤ B ∥U∥2 ∥h∥2 .
Therefore, UF is a cK-frame for H. □
Theorem 2.7. Let F : X → H be a c-Bessel mapping for H. Then
F : X → H is a cK-frame for H if and only if there exists A > 0 such
that SF ≥ AKK∗, where SF is the frame operator for F.

Proof. F : X → H is a cK-frame for H with frame bounds A,B and
frame operator SF , if and only if,

A ∥K∗h∥2 ≤
∫
X
|⟨h, F (X)⟩|2 dµ

= ⟨SF (h), h⟩

≤ B ∥h∥2 , ∀h ∈ H,

if and only if,

⟨AKK∗h, h⟩ ≤ ⟨SF (h), h⟩ ≤ ⟨Bh, h⟩ , ∀h ∈ H,

if and only if,

SF ≥ AKK∗.

□
Theorem 2.8. Let F : X → H be a c-frame for H. Then KF : X → H
and K ∈ B(H) is a cK-frame for H.

Proof. By the definition of c-frame we have∫
X
|⟨h,KF (x)⟩|2 dµ =

∫
X
|⟨K∗h, F (x)⟩|2 dµ

≤ B ∥K∗h∥2

≤ B ∥K∗∥2 ∥h∥2 .



176 GH. RAHIMLOU, R. AHMADI, M. A. JAFARIZADEH, AND S. NAMI

So, KF is a Bessel mapping. By theorem 1.12 it is sufficient to show
that KF is an atomic system for H. For each h ∈ H we have ⟨h,KF ⟩ ∈
L2(X), so

∫
X g (KF ) dµ ∈ H for each g ∈ L2(X). By Theorem 3.5 in

[8], for each h ∈ H we have h = TF (
⟨
S−1
F (h), F

⟩
); therefore

Kh = KTF (
⟨
S−1
F (h), F

⟩
)

= TKF (
⟨
S−1
F (h), F

⟩
)

=

∫
X

⟨
S−1
F (h), F (x)

⟩
KF (x) dµ.

So, for all h1 ∈ H

⟨Kh, h1⟩ =
⟨∫

X

⟨
S−1
F (h), F (x)

⟩
KF (x) dµ, h1

⟩
=

∫
X

⟨
S−1
F (h), F (x)

⟩
⟨h1,KF (x)⟩ dµ.

Let

ℓ : X → L(H,C),
ℓ(x)(h) =

⟨
S−1
F (h), F (x)

⟩
, h ∈ H,x ∈ X.

So, for each h ∈ H and x ∈ X, we get ℓ(x)(h) ∈ L2 (X) and

∥ℓ(x)(h)∥2 =
(∫

X

∣∣⟨S−1
F (h), F (x)

⟩∣∣2 dµ) 1
2

≤
(
B
∥∥S−1

F (h)
∥∥2) 1

2

≤
√
B
∥∥S−1

F

∥∥ ∥h∥ .
Now, if a :=

√
B
∥∥S−1

F

∥∥, by Definition 1.7 the proof is completed. □

3. Some Identities and Inequalities for cK-Frames

In this section, we introduce some useful identities and inequalities by
frame operators. Let K ∈ B(H0,H), F : X → H be c-Bessel mappings
for H and G : X → H0 be a c-Bessel mapping for H0. We say that F ,
G is a cK-dual pair, if

Kh0 = TF (⟨h0, G⟩) ,
for any h ∈ H and h0 ∈ H0. In this case, we know that F is a cK-frame
for H with respect to H0 and G is a cK∗-frame for H0 with respect to
H (for more details, we refer to [12]). Now, we define

MX1h :=

∫
X1

⟨h,G(x)⟩F (x) dµ,
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for each h ∈ H. So, MX1h is well-dfined and bounded. Indeed, if h ∈ H
then

∥MX1h∥
2 =

(
sup

∥h′∥=1

∣∣⟨MX1h, h
′⟩∣∣)2

=

(
sup

∥h′∥=1

∣∣∣∣⟨∫
X1

⟨h,G(x)⟩F (x) dµ, h′
⟩∣∣∣∣
)2

≤
∫
X1

|⟨h,G(x)⟩|2 dµ. sup
∥h′∥=1

∫
X1

∣∣⟨F (x), h′⟩∣∣2 dµ
≤ BB′ ∥h∥2 ,

where, B,B′ are uper bounds for F,G, respectively. It is easy to check
that MX1 +MXc

1
= K where, Xc

1 is the complement of X1.

Theorem 3.1. Let F be a cK-frame for H with the dual G. Then for
each measureable subspace X1 ⊆ X and h ∈ H,∫

X1

⟨h,G(x)⟩ ⟨Kh,F (x)⟩dµ− ∥MX1h∥
2

=

∫
Xc

1

⟨h,G(x)⟩ ⟨Kh,F (x)⟩ dµ−
∥∥MXc

1
h
∥∥2 .

Proof. Suppose that h ∈ H and X1 ⊆ X. We have∫
X1

⟨h,G(x)⟩ ⟨Kh,F (x)⟩dµ− ∥MX1h∥
2

= ⟨MX1
h,Kh⟩ − ⟨MX1

h,MX1
h⟩

= ⟨K∗MX1h, h⟩ −
⟨
M∗

X1
MX1h, h

⟩
=
⟨
(K∗ −M∗

X1
)MX1h, h

⟩
=
⟨
M∗

Xc
1
(K −MXc

1
)h, h

⟩
=
⟨
M∗

Xc
1
Kh, h

⟩
−
⟨
M∗

Xc
1
MXc

1
h, h

⟩
=
⟨
h,K∗MXc

1
h
⟩
−
∥∥MXc

1
h
∥∥2

=

∫
Xc

1

⟨h,G(x)⟩ ⟨Kh,F (x)⟩ dµ−
∥∥MXc

1
h
∥∥2 .

□
Theorem 3.2. Let F : X → H be a Parseval cK-frame for H. For
every h ∈ H, X1 ⊆ X and E ⊆ Xc

1 we have∥∥∥∥∫
X1∪E

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2 −

∥∥∥∥∥
∫
Xc

1 |E
⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2
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=

∥∥∥∥∫
X1

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2 −

∥∥∥∥∥
∫
Xc

1

⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2

+ 2Re

∫
E

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ.

Proof. For each measurable subspace X1 ⊆ X, we define

SX1h =

∫
X1

⟨h, F (x)⟩F (x) dµ.

We have SX1+SXc
1
=KK∗. Therefore,

S2
X1

− S2
Xc

1
= S2

X1
− (KK∗ − SX1)

2

= KK∗SX1 + SX1KK
∗ − (KK∗)2

= KK∗SX1 − (KK∗ − SX1)KK
∗

= KK∗SX1 − Sc
X1
KK∗.

Hence, for every h ∈ H we obtain∥∥∥∥∫
X1∪E

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2 −

∥∥∥∥∥
∫
Xc

1 |E
⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2

=
⟨
KK∗SX1

∪
Eh, h

⟩
−
⟨
SXc

1 |EKK
∗h, h

⟩
=
⟨
SX1

∪
Eh,KK

∗h
⟩
−
⟨
KK∗h, SXc

1 |Eh
⟩

=

⟨∫
X1

∪
E

⟨h, F (x)⟩F (x) dµ,KK∗h

⟩
−
⟨
SXc

1 |Eh,KK
∗h
⟩

=

∫
X1

∪
E

⟨h, F (x)⟩⟨F (x),KK∗h⟩ dµ

−
∫
Xc

1 |E
⟨h, F (x)⟩ ⟨F (x),KK∗h⟩ dµ

=

∫
X1

⟨h, F (x)⟩ ⟨F (x),KK∗h⟩ dµ

+

∫
E

⟨h, F (x)⟩ ⟨F (x),KK∗h⟩ dµ

−
∫
Xc

1

⟨h, F (x)⟩ ⟨F (x),KK∗h⟩ dµ

+

∫
E

⟨h, F (x)⟩ ⟨F (x),KK∗h⟩ dµ

=

∥∥∥∥∫
X1

⟨h, F (x)⟩F (x)dµ
∥∥∥∥2 −

∥∥∥∥∥
∫
Xc

1

⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2
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+ 2Re

∫
E

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ.

□

Theorem 3.3. Let F : X → H be a Parseval cK-frame for H. For
every h ∈ H and X1 ⊆ X we have,

Re

(∫
Xc

1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

)
+

∥∥∥∥∫
X1

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2

= Re

(∫
X1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ
)

+

∥∥∥∥∥
∫
Xc

1

⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2

≥ 3

4
∥KK∗h∥2 .

Proof. Since S2
X1

−S2
Xc

1
= KK∗SX1 −SXc

1
KK∗ and SX1 +SXc

1
= KK∗,

we can write

S2
X1

+ S2
Xc

1
= 2

(
KK∗

2
− SX1

)2

+
(KK∗)2

2

≥ (KK∗)2

2
.

Consequently

KK∗SX1 + S2
X1c +

(
KK∗SX1 + S2

Xc
1

)∗
= KK∗SX1 + S2

Xc
1
+ SX1KK

∗ + S2
Xc

1

= KK∗ (SX1 + SXc
1

)
+ S2

X1
+ S2

Xc
1

= (SX1 + SXc
1
)KK∗ + S2

X1
+ S2

Xc
1

≥ 3

2
(KK∗)2 .

Thus, we obtain

Re

(∫
Xc

1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

)
+

∥∥∥∥∫
X1

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2

= Re

(∫
X1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ
)
+

∥∥∥∥∥
∫
Xc

1

⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2

=
1

2

(
⟨KK∗SX1h, h⟩+

⟨
S2
Xc

1
h, h

⟩
+ ⟨h,KK∗SX1h⟩+

⟨
h, S2

Xc
1
h
⟩)

≥ 3

4
∥KK∗h∥2 .
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□
Theorem 3.4. Let K be a closed operator and F : X → H be a cK-
frame for H with the optimal lower bound A. Then,

(I) For each h ∈ H,∥∥∥∥∫
X
⟨h, F (x)⟩F (x) dµ

∥∥∥∥2 ≤ ∥SF ∥
∫
X
|⟨h, F (x)⟩|2 dµ.

(II) For any h ∈ R(K),∫
X
|⟨h, F (x)⟩|2 dµ ≤ 1

A

∥∥∥K†
∥∥∥2 ∥∥∥∥∫

X
⟨h, F (x)⟩F (x) dµ

∥∥∥∥2 .
Proof. (I) For any h ∈ H, we can write∥∥∥∥∫

X
⟨h, F (x)⟩F (x) dµ

∥∥∥∥2 = |⟨SF (h), SF (h)⟩|

≤ ∥SF ∥ |⟨SF (h), h⟩|

= ∥SF ∥
∫
X
|⟨h, F (x)⟩|2 dµ.

(II) For each h ∈ R(K),(∫
X
|⟨h, F (x)⟩|2 dµ

)2

≤ |⟨SF (h), h⟩|2

≤ ∥SF (h)∥2 ∥h∥2

≤ ∥SF (h)∥2
∥∥∥(K†

)∗
K∗h

∥∥∥2
≤ ∥SF (h)∥2

∥∥∥(K†)
∥∥∥2 ∥K∗h∥2

≤ 1

A
∥SF (h)∥2

∥∥∥(K†)
∥∥∥2 ∫

X
|⟨h, F (x)⟩|2 dµ,

and the proof is completed. □
Some applications of above theorems, we present the following inter-

esting assertions. Let F : X → H be a cK-Parseval frame for H. We
consider

υ+ (F,K,X1) := sup
h ̸=0

Re
(∫

Xc
1
⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

)
+

∥∥∥∫X1
⟨h, F (x)⟩F (x) dµ

∥∥∥2

∥KK∗h∥2
,

υ− (F,K,X1) := inf
h ̸=0

Re
(∫

Xc
1
⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

)
+

∥∥∥∫X1
⟨h, F (x)⟩F (x) dµ

∥∥∥2

∥KK∗h∥2
.

Theorem 3.5. Suppose that F : X → H is a cK-Parseval frame for
H. The following assertions hold:
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(I)
3

4
≤ υ− (F,K,X1) ≤ υ+ (F,K,X1) ≤ ∥K∥

∥∥K†∥∥ (1 + ∥K∥
∥∥K†∥∥).

(II) υ+ (F,K,X1) = υ+ (F,K,Xc
1) and υ−(F,K,X1) = υ− (F,K,Xc

1).

Proof.
(I). It is enough to prove the upper inequality. By Theorem 3.4, (I), we
get ∥∥∥∥∫

X1

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2 ≤ ∥SX1∥

∫
X1

|⟨h, F (x)⟩|2 dµ

≤ ∥SX1∥
∫
X
|⟨h, F (x)⟩|2 dµ

≤ ∥K∥2 ∥K∗h∥2

= ∥K∥2
∥∥∥KK†K∗h

∥∥∥2
≤ ∥K∥2

∥∥∥K†
∥∥∥2 ∥KK∗h∥2 .

Moreover,

Re

(∫
Xc

1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

)

≤
(∫

X

|⟨h, F (x)⟩|2 dµ
) 1

2
(∫

X

|⟨KK∗h, F (x)⟩|2 dµ
) 1

2

= ∥K∗h∥ ∥K∗KK∗h∥

=
∥∥KK†K∗h

∥∥ ∥K∗KK∗h∥

≤ ∥K∥
∥∥K†∥∥ ∥KK∗h∥2 .

Therefore,

υ− (F,K,X1) ≤ υ+ (F,K,X1) ≤ ∥K∥
∥∥∥K†

∥∥∥(1 + ∥K∥
∥∥∥K†

∥∥∥) .
(II). By the proof of Theorem 3.2, we have

S2
X1

+ SXc
!
KK∗ = KK∗SX1 + S2

Xc
!
.

Hence, for any h ∈ H,⟨
S2
X1
h, h

⟩
+
⟨
SXc

1
KK∗h, h

⟩
=
⟨
S2
Xc

1
h, h

⟩
+ ⟨KK∗SX1h, h⟩ .

So, ∥∥∥∥∫
X1

⟨h, F (x)⟩F (x) dµ
∥∥∥∥2 + ∫

Xc
1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ

=

∥∥∥∥∥
∫
Xc

1

⟨h, F (x)⟩F (x) dµ

∥∥∥∥∥
2

+

∫
X1

⟨h, F (x)⟩ ⟨KK∗h, F (x)⟩ dµ,
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and this results
(II). □

4. Perturbation of cK-Frames

Throughout this section, the orthogonal projection of H onto a closed
subspace V ⊆ H is denoted by ΠV .

Theorem 4.1. Let F : X → H be a cK frame for H with bounds
A,B, and µ be a σ-finite measure. Let G : X → H be weakly mea-
surable and assume that there exist constants λ1, λ2, γ ≥ 0 such that

max

{
λ1 +

γ√
A

∥∥K†∥∥ , λ2} < 1 and

∣∣∣∣∫
X
φ(x) ⟨F (x)−G(x), h⟩ dµ

∣∣∣∣
(4.1)

≤ λ1

∣∣∣∣∫
X
φ(x) ⟨F (x), h⟩ dµ

∣∣∣∣++λ2

∣∣∣∣∫
X
φ(x) ⟨G(x), h⟩ dµ

∣∣∣∣+ γ ∥φ∥2 ,

for each φ ∈ L2 (X) and h ∈ (H)1. Then G : X → H is a continuous
ΠQ(R(k))K- frame for H with bounds[√

A
∥∥K†∥∥−1

(1− λ1)− γ
]2

(1 + λ2)
2 ∥K∥2

,

[√
B(1 + λ1) + γ

]2
(1− λ2)

2 ,

where Q = UGT
∗
F and TF , UG are synthesis operators for F and G,

respectively.

Proof. The condition (4.1) implies that for all φ ∈ L2 (X) and h ∈ (H)1∣∣∣∣∫
X
φ (x) ⟨G(x), h⟩ dµ

∣∣∣∣
≤
∣∣∣∣∫

X
φ (x) ⟨F (x)−G(x), h⟩ dµ

∣∣∣∣+ ∣∣∣∣∫
X
φ (x) ⟨F (x), h⟩ dµ

∣∣∣∣
≤ (1 + λ1)

∣∣∣∣∫
X
φ (x) ⟨F (x), h⟩ dµ

∣∣∣∣+ λ2

∣∣∣∣∫
X
φ (x) ⟨G(x), h⟩ dµ

∣∣∣∣+ γ ∥φ∥2 .

So∣∣∣∣∫
X
φ (x) ⟨G(x), h⟩ dµ

∣∣∣∣
≤ 1 + λ1

1− λ2

∣∣∣∣∫
X
φ (x) ⟨F (x), h⟩ dµ

∣∣∣∣+ γ

1− λ2
∥φ∥2

≤ 1 + λ1
1− λ2

[(∫
X
|φ (x)|2 dµ

) 1
2
(∫

X
|⟨F (x), h⟩|2 dµ

) 1
2

]
+

γ

1− λ2
∥φ∥2
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≤
(
1 + λ1
1− λ2

√
B +

γ

1− λ2

)
∥φ∥2 .

Let

UG :L2 (x) → H,

⟨(UG)φ, h⟩ =
∫
X
φ (x) ⟨G(x), h⟩ dµ,

for all h ∈ H and φ ∈ L2 (X). Then

∥(UG)φ∥ = sup
h∈(H)1

|⟨(UG)φ, h⟩|

= sup
h∈(H)1

∣∣∣∣∫
X
φ(x) ⟨G(x), h⟩ dµ

∣∣∣∣
≤
(
1 + λ1
1− λ2

√
B +

γ

1− λ2

)
∥φ∥2 .

Thus, UG is bounded, so G is a c-Bessel mapping for H with bound[√
B (1 + λ1) + γ

]2
(1− λ2)

2 . Now, we prove that G has a lower cK-frame

bound. By Remark 1.11 we can define the following operators for all
φ ∈ L2(X)

TF : L2(X) → H,
TF (φ) =

∫
φF dµ,

UG : L2(X) → H,
UG (φ) =

∫
φGdµ.

By (4.1) we obtain

|⟨TF (φ)− UG (φ) , h⟩| ≤ λ1 |⟨TF (φ) , h⟩|+ λ2 |⟨UG (φ) , h⟩|+ γ ∥φ∥2 .(4.2)

Now, let T ∗
F (h′) := φ , h′ ∈ R (K). By (4.2) we have

|⟨SF (h
′)− UGT

∗
F (h

′), h⟩| ≤ λ1 |⟨SF (h
′), h⟩|+ λ2 |⟨UGT

∗
F (h

′), h⟩|+ γ ∥T ∗
F (h

′)∥l2 ,
(4.3)

for any h′ ∈ R (K). By (1.1), we get∥∥T ∗
F (h

′)
∥∥2 = ⟨SF (h′), h′⟩

≤
∥∥SF (h′)∥∥ ∥∥h′∥∥

≤ A−1
∥∥∥K†

∥∥∥2 ∥∥SF (h′)∥∥2 ,
thus

(4.4)
∥∥T ∗

F (h
′)
∥∥2 ≤ A−1

∥∥∥K†
∥∥∥2 ∥∥SF (h′)∥∥2 ,

for each h′ ∈ R (K). By (4.3) and (4.4), for any h′ ∈ R (K), we have∣∣⟨SF (h′)− UGT
∗
F (h

′), h)
⟩∣∣
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≤ λ1
∣∣⟨SF (h′), h⟩∣∣+ λ2

∣∣⟨UGT
∗
F (h

′), h
⟩∣∣+ γ√

A

∥∥∥K†
∥∥∥ ∥∥SF (h′)∥∥

≤ λ1
∥∥SF (h′)∥∥ ∥h∥+ λ2

∥∥UGT
∗
F (h

′)
∥∥ ∥h∥+ γ√

A

∥∥∥K†
∥∥∥ ∥∥SF (h′)∥∥

=

(
λ1 ∥h∥+

γ√
A

∥∥∥K†
∥∥∥)∥∥SF (h′)∥∥+ λ2

∥∥UGT
∗
F (h

′)
∥∥ ∥h∥ .

So,∥∥SF (h′)− UGT
∗
F (h

′)
∥∥ = sup

h∈(H)1

∣∣⟨SF (h′)− UGT
∗
F (h

′), h
⟩∣∣

≤
(
λ1 +

γ√
A

∥∥∥K†
∥∥∥)∥∥SF (h′)∥∥+ λ2

∥∥UGT
∗
F (h

′)
∥∥ .

Therefore, we can write

(4.5)

1−
(
λ1 +

γ√
A

∥∥K†∥∥)
1 + λ2

∥∥SF (h′)∥∥ ≤
∥∥UGT

∗
F (h

′)
∥∥ ,

and

(4.6)
∥∥UGT

∗
F (h

′)
∥∥ ≤

1 + λ1 +
γ√
A

∥∥K†∥∥
1− λ2

∥∥SF (h′)∥∥ .
Combinig (1.1), (4.5) and (4.6), we have[

1−
(
λ1 +

γ√
A

∥∥K†
∥∥)]A∥∥K†

∥∥−2

1 + λ2
∥h′∥ ≤ ∥UGT

∗
F (h

′)∥(4.7)

≤

[
1 + λ1 +

γ√
A

∥∥K†
∥∥]B

1− λ2
∥h′∥ ,

for each h′ ∈ R (K).
Let Q := UGT

∗
F . Now, we prove that R (Q) is closed. In fact, for each

{yn}∞n=1 ⊂ R (Q) with

lim
n→∞

yn = y, y ∈ H,

there exists xn ∈ R (K) such that

yn = Q (xn) .(4.8)

By (4.7) and (4.8) we have

∥xn − xm∥ ≤ D−1 ∥Q(xn − xm)∥
≤ D−1 ∥ym − yn∥ ,
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where

D =

[
1−

(
λ1 +

γ√
A

∥∥K†∥∥)]A∥∥K†∥∥−2

1 + λ2
.

It follows that {xn}∞n=1 is a cauchy sequence, so there exists x ∈ R (K)
such that limn→∞ xn = x. By the continuity of Q we have

y = lim
n→∞

yn = lim
n→∞

Q (xn) = Q (x) ∈ R (Q) ,

which implies that R (Q) is closed. By (4.7), we know that Q is in-
jective on R (K). Then, we conclude that Q : R (K) → R (Q) is in-
vertible. Thus, combining with (4.5) and (4.7) we obtain that, for all
y ∈ Q (R (K))

(4.9)
∥∥SFQ−1(y)

∥∥ ≤ 1 + λ2

1−
(
λ1 +

γ√
A

∥K†∥
) ∥y∥ ,

(4.10)
∥∥Q−1(y)

∥∥ ≤ 1 + λ2[
1−

(
λ1 +

γ√
A

∥K†∥
)]

A ∥K†∥−2
∥y∥ .

Now, for each h1 ∈ H, we get

ΠQ(R(k))Kh1 = QQ−1ΠQ(R(K))Kh1

= UG

(
T ∗
FQ

−1ΠQ(R(k))Kh1
)

=

∫
X

(
T ∗
FQ

−1ΠQ(R(k))Kh1
)
Gdµ

=

∫
X
ψGdµ,

where ψ := T ∗
F (Q

−1ΠQ(R(K))Kh1) ∈ L2 (X). Hence, for any h ∈ H∥∥K∗(ΠQ(R(K)))
∗h
∥∥

= sup
h1∈(H)1

∣∣⟨K∗(ΠQ(R(K)))
∗h, h1

⟩∣∣
= sup

h1∈(H)1

∣∣⟨h, (ΠQ(R(K)))Kh1
⟩∣∣

= sup
h1∈(H)1

∣∣⟨(ΠQ(R(K)))Kh1, h
⟩∣∣

= sup
h1∈(H)1

∣∣∣∣⟨∫
X

ψGdµ, h

⟩∣∣∣∣
= sup

h1∈(H)1

∣∣∣∣∫
X

ψ(x) ⟨G(x), h⟩ dµ
∣∣∣∣
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≤ sup
h1∈(H)1

(∫
X

|ψ(x)|2 dµ
) 1

2
(∫

X

|⟨G(x), h⟩|2 dµ
) 1

2

= sup
h1∈(H)1

∥ψ∥2

(∫
X

|⟨G(x), h⟩|2 dµ
) 1

2

= sup
h1∈(H)1

∥∥T ∗
FQ

−1ΠQ(R(K))Kh1
∥∥
2

(∫
X

|⟨G(x), h⟩|2 dµ
) 1

2

= sup
h1∈(H)1

(⟨
SFQ

−1ΠQ(R(K))Kh1, Q
−1ΠQ(R(K))Kh1

⟩) 1
2

(∫
X

|⟨G(x), h⟩|2 dµ
) 1

2

≤
∥∥SFQ

−1ΠQ(R(K))K
∥∥ 1

2
∥∥Q−1ΠQ(R(K))K

∥∥ 1
2

(∫
X

|⟨G(x), h⟩|2 dµ
) 1

2

≤ (1 + λ2)[
1−

(
λ1 +

γ√
A
∥K†∥

)√
A
]
∥K†∥−1

∥K∥
(∫

X

|⟨G(x), h⟩|2 dµ
) 1

2

=
(1 + λ2) ∥K∥[√

A ∥K†∥−1
(1− λ1)− γ

] (∫
X

|⟨G(x), h⟩|2 dµ
) 1

2

.

Thus, for each h ∈ H[√
A
∥∥K†∥∥−1

(1− λ1)− γ
]2

(1 + λ2)
2 ∥K∥2

∥∥∥K∗(Π∗
Q(R(K)))h

∥∥∥2 ≤ ∫
X
|⟨G(x), h⟩|2 dµ.

□
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