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A Proximal Point Algorithm for Finding a Common Zero of a
Finite Family of Maximal Monotone Operators

Mohsen Tahernia', Sirous Moradi**, and Somaye Jafari®

ABSTRACT. In this paper, we consider a proximal point algorithm
for finding a common zero of a finite family of maximal monotone
operators in real Hilbert spaces. Also, we give a necessary and
sufficient condition for the common zero set of finite operators to be
nonempty, and by showing that in this case, this iterative sequence
converges strongly to the metric projection of some point onto the
set of common zeros of operators.

1. INTRODUCTION

Let K1 and K9 be nonempty, closed and convex subsets of a real
Hilbert space H with nonempty intersection. In 1933, von Neumann
showed that the following problem

(1.1) find an « € H such that x € K; N Ko,

can be solved by means of an iterative process. In 1965, Bregman 7]
showed that the sequence (x,,) generated from the method of alternating
projections, converges weakly to a point in Ky N K3. For more infor-
mation to these methods, see for example [2, [@, 9, 00, 02, 04, 15, 7],
and the references therin. Recently, the authores consider the method of
resolvents for solving the problem (IZ). The general one was given in [5]
and [B]. See also [, 4], and the references therin. In 2012, Boikanyo and

Morosanu [3] considered the following proximal point algorithm(PPA)

{ Tont1 = QplU + OpT2p + %Jféi (m2n) + én, n >0,
Ton = Al + PpTon—1 + 571&]51 (33271—1) + e%; n=>1,
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for some u,xy € H, where (e,) and (e},) are sequences of computa-
tional errors, A and B are maximal monotone operators, and o, 0y, Y, €
(0,1) and B, pn € (0,00). Here JE‘ = (I +BA)~1, 3> 0 (the resolvent
operator of A). They proved under minimal assumptions on the se-
quences of parameteres definded (x,), that the sequence (z,) converges
strongly to a point in F' = A~1(0) N B~1(0) that is nearest to u. They
assumed that the set of common zeros of A and B is nonempty.

In this paper, we give a necessary and sufficient condition for the
set of common zeros of a finite family of maximal monotone operators
is nonempty, and by showing that in this case, this iterative sequence
converges strongly to the metric projection of some point onto the set
of common zeros of operators.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm ||.||.
We recall that a map T : H — H is called nonexpansive if for every
x,y € H, we have ||[Tx — Ty| < ||z —y||. The map T is called firmly
nonexpansive if for every x,y € H, we have

T2 = Tyll* < |l =yl = |( = T)a — (I = T)yl*.

Obviousely, every firmly nonexpansive mapping is nonexpansive. For
more information on firmly nonexpansive mappings, see for example [8].
An operator A : D(A) ¢ H=H is said to be monotone if its graph is a
monotone subset of H x H, that is,

(Y2 — y1, 22 — 1) > 0,

for all x1,290 € D(A) and y; € A(z1) and yo € A(zz). A is maximal
monotone if A is monotone and the graph of A is not properly contained
in the graph of any other monotone operator. Note that if A is maximal
monotone, then so is its inverse A~!. For a maximal monotone operator
A, and for every t > 0, the operator J; : H — H defined by J;(x) :=
(I +tA)~1(x) is well-defined, single-valued and nonexpansive on H. It
is called the resolvent of A. It is known that the Yosida approximation
of A, an operator defined by Ag = 871(I — J /"34), is maximal monotone

and Lipschitzian with constant % for every § > 0. We denote weak

convergence in H by — and strong convergence by —. The weak w-limit
set of a sequence (x,) will be denoted by wy,((xy,)), that is, wy,((z,)) =
{z € H:x,, =z for some subsequence (z,,) of (z,)}.

For the main results of this paper, we need the following useful lemmas.

Lemma 2.1 ([3]). For all z,y € H, we have
(2.1) lz + I < llyll* + 2 e,z +y) .
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Lemma 2.2 ([13]). Any mazimal monotone operator A : D(A) ¢ H=SH
satisfies the demiclosedness principle. In other words, given any two se-

quences T, and Yy, satisfying r,, converges strongly to x and y, converges
weakly to y with (xn,yn) € G(A), then (z,y) € G(A).

Lemma 2.3 ([i6]). For any x € H and p> >0,
(2.2) lz — J5 (@)l < 2[la — Ji ()]
where A : D(A) C H=H is a mazimal monotone operator.

Lemma 2.4 ([I1]). Let (Sy) be a sequence of real numbers that does not
decrease at infinity, in the sense that there evists a subsequence (Sy;) of
(Sn) such that Sp; < Sp;+1 for all j > 0. Define an integer sequence
(T(n))n=n, as

7(n) =max{ng <k <n:Sp < Sk+1}-
Then T(n) — 0o as n — oo and for all n > ny,
(2.3) max{ST(n), Sn} < ST(n)+l~

In section 3, we consider the sequence generated by (83) and give a
necessary and sufficient condition for the common zero set of maximal
monotone operatores Ay, Ao, ..., A, to be nonempty, and we show that
in this case, the sequence V,, converges strongly to the metric projection
of uw onto F' = ﬂ?’zlAi_l(O). These results significantly improve upon the
results of Boikanyo and Morosanu [3], who assumed that the common
zero set of A and B is nonempty.

3. MAIN RESULTS

The proof of our main result is based on the following useful lemma.
Lemma 3.1. Let (S,,) be a sequence of non-negative real numbers sat-
18fying
(31)  Sup1 < [(1 —al)1-a?)...(1- a’;)} S,

+ [04711[)711 +a2b2 + ... —I—oz,’fbbﬂ +dn,, n >0,

where, for every j = 1,2,...,k, sequences (oz%), (b%) and (dy,) satisfy
the conditions:

(i) od, € (0,1), and for some 1 < | < k, J[[(1 —al) = 0, or
n=1

oo
equivalently > al, = oo,
n=1

(ii) for every j =1,2,... k:,limsupbzl <0,
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(iii) d, >0 (n>0), > dy < 0.
n=1

Then lim S, = 0.

n—o0

Proof. For any € > 0, let N be an integer sufficiently large enough so
that for every j =1,2,...,k,

. > €
2 b dp < ——, n>N
(3.2) T ng;v <7 "

By using (B1) and by induction, we obtain, for n > N, that

(3.3)
Sp1 < Hl—a J(1—0a2)...(1—ab)| Sy
i=N
Ta-ab Moo
i=N i=N

i=N
Then,
(3.4) Sn+1 < H(l —Oézl) Sy +e.

=N

Now the result follows immediately by letting n — oo and € — 0. U

The proximal point algorithm for a finite family of maximal monotone
operators {Ai}le in real Hilbert spaces H, is the iterative sequence
generated by

Vintk—1 = afu+ 68Viy g 2+’YnJ Vintk—2
(3.5)

Vine1 = a2u + 52an + %LJ < Vin
an =« u+5lvkn 1 +’YnJAL anflv

where for every i = 1,2,...,k; al, 6L,y € (0,1) with of, + 6, +~) =1
and f;, € (0,00). The 1nexact version of (BH) can be formulated as
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follow
_ ok k E 7A k

Thnth—1 = QU + O Thnth—2 + T g Thnth—2 + €y
(3.6) o, 52 2 4s

Tnt+1 = QU+ 0nThn + V5, 82 Tkn + 6

1 1

Thn = QU+ 0y Tpp—1 + %Jﬂ% Tpn—1 + €5,

where (e}l) , (e%) e (efl) are error sequences.

Theorem 3.2. Let A; : D(A;) C H — H(i = 1,...,k) be mazimal
monotone operators with (\-_, A71(0) = F # 0. For fized vectors Vo, u €
H, let (V,,) be the sequence genemted by (E3), where for every j =

1,2,...,k; a%,é%,q/n € (0,1) with o, + 5 +5 =1 and Bl e € (0,00).
Assume that

N
(i) nILngO ay =0,

o0
(ii) for some 1 <1<k, 3 o, = o0,

n=1
(i) pn > p7 for p7 >0,
(iv) v >+ for 47 > 0.
Then (V,,) converges strongly to Pru.

Proof. Assume that F' # () and p € F. From (83), and the fact that the
resolvent operator is nonexpansive, for all n > 0 we have:

(37 Vin =2l = Vin — T3
< apllu—pll + 63 Vin-1 — pll + %[ Vien—1 — p|
= agllu—pll + (1 = @) [Ven—1 = pl.

Similarly

(3.8) [Vins1 = pll < apllu = pll + (1 = a32)|[Vin — pl|

IVen-1 = pll < @l = pll + (1 = ™) [Vimsn—a = pll.
For all n > 0, from (BZ7) and (B3X)
(3.9)
IVesn-1 = pll < ok~ u—p]
+ (1= ab™) [ak 2 u = pll + (1 = @k )| Veusnys — ol

1= (1= k™) (1= ak™)] flu—p]
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+ (= b1 = b )] 1Vigury—s — p

<[t-a-a M —ak?) - ab)] fu—sl
+{a-akHa—ak) . (1= ab)] [Vins —

<[t-a-al -k 1 —ap)]fu—pl

+ L
([1-a-akha—akz)...a—ab )] Ju—pl

=i —ai) . (1= al )| Va1 — 2l

IN

IA
=
=
-
|
Q&}
5
|
=

Thus the subsequence (Vj(n41)—1) of (Vi) is bounded. Similarly, by
using (B7) and (BH), the subsequences (Vi(n41)—2);-- -, (Vkn), are also
bounded. Hence the sequence (V},) is bounded.

By using the fact that the resolvent operator is firmly nonexpansive, for
every n > 0 we have,

(3. 10)
k k
|| Vk nin—2 =PI = 175 Vign—2 — T4 plI?
Br By

< N WVagnrn)—2 — 2lI* = IVinr1)—2 — T4 i Vk(n-H Y[
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Also
(3.11) 2 <vk(n+1),2 A Vit p>
= Vitnsv—2 — pI* + 15 Vk n1)—2 — pl?
— Vint1)—2 — J5i i Vk(n+1 Lol

<2 [|\Vk(n+1)—2 —plI” = IVint1)—2 — J sz(n—H 2||2] ;

where the above inequality follows from (BI0). Again by using the firmly
nonexpansiveness property of the resolvent operator, we see that

(3.12)
165 (Vietnr1y—2 — P) + 1 (T4 Vk(nJrl)f -
= (00 IIVamsr)—2 — pII” + ()2 1175 Vk n+1)—2 — p?
+ 29k 68 <Vk(n+1)_2—p,J Vi(nt1)—2 P>
(5k)2||Vk(n+1 Lo — |2+ (vh)? Vit 1)—2 — pII?

kékHVk(nJrl)fQ —p||?

— (W Vins1)—2 — Jgk Vi(na1)—2l® + 27
— 29868 Vit 1)—2 — T4 5k Vk(n+1 Lol
= (1= ap)*[IVimsy—2 — 2l
— RO+ 265 [Vigns1)—2 — T4k Viurn)—2l®

where the above inequality follows from (BT0) and (B1). From (B3H)
and Lemma P2, we have

(3.13)
Vimt1)-1 — plI?
= [l (u = p) + 6 (Vigns1)—2 — P) + 15 (T4 Vigurry—2 — )1
< (165 (Vigna1)—2 = P) + 95 (T4 Vigusy—2 — P)I1?
+ 20 {u—p, Vs -1 — p)
< (1= ) Vignen—2 — PI* = €1 Vigniny—2 — J Vk(n+1 ol
+ 2% (u—p, Vi(n+1)—1 — D) »

where the second inequality follows from (812) and €; is a positive num-
ber with ¥ (v* + 26) > ¢;. Similarly, we get

(314)  [Vigweny1 =PI < (1= ak) |(1 = @b ™) Vigus1) 5 — I

— Vel Vingr)—3 — J55:1 Vi)l
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+ 201,]2_1 <u =D, Vi(ny1)—2 — p>}
k
— e[| Vinr)—2 — JgAg Vit —2ll?
+2a) (u—p, Vini1)—1 — D)
< (1—ap)(1 = ay ) IVimen—s — plI?

k
— e[| Vint1)—2 — JA;g Vit —2|?

k—1
— 2| Vi(nt1)-3 — Jﬁg— Vin)—3l®

+2a) (u— p, Vini1)—1 — D)
+ Zaf‘fl <u =D, Vitnt1)—2 — p>

< (1 =ap)... (1= ap)|[Vin-1 — plI?

k
— 1|V —2 — JBAQ Vi) —2l> — -+

— €| Vin—1 — Jf}ijn—ﬂ\Q
+ 208 (u—p, Vins1)—1 —P) + -
+ 2a (u — p, Vin — ) -
Setting S,, = ||Vin_1 — p||?, then for some positive constant M we have
(3.15)
Sn1 = S+ ellVigurn—2 — Thk Veguen—2l® + - + el Vin-1 = T2 Vina|1®
< (al+...+af)M.

Now, we show that S, — 0 as n — oco. There exist two possible cases
for the sequence (Sy,).

Case(I): (Syp) is eventually decreasing (i.e., there exists N > 0 such that
(Sp) is decreasing for all n > N). In this case, (Sy,) is convergent. Then
by letting n — oo in (BIH), we conclude that

(3.16) B [ Vignsny-2 = T4k Vi 2l = 0
T [|Vi—1 = I3 Vi || = 0.
Moreover, it follows from (B3H) that
(317)  Vima1)—1 — Vimsn—2ll < apllu = Vigrn)—2|l
+ Vi) -2 — T8 Vignan—-2ll;
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and this shows that

(3.18) nli_{go 1Vietn+1)-1 = Ving)—2ll = 0.
Similarly
(3.19) Jm [V -2 = Viany-sll = 0

lim HV;m — anfIH = O,
n—oo
which implies that
(3.20) li_>m Vi1 — Vil = 0.
On the other hand, since (818) holds and by using the Lemma P73,

. . 1 1
(3.21) Jim {|Ags (Vi) = lim. @Han—l — 4 Vin|

n—oo

1 1
< lim E||an_1 - ‘]/%l Vin-1] = 0.

Since Ag: is demiclosed, one can show that

(3.22) W ((Vin-1)) C (A5)7H(0) = (A1) 7H(0).
By a similar method,
(323) Ww((an)) C (A2)_1(0)

wu((Vint1)) € (A%)71(0)

ww ((Vi(nr1)—2)) C (A5)70).
Moreover, from (B220) we get,
(3.24) ww((Va)) C F =nk_ (47)71(0).

Therefore, there exists a subsequence (Vy,) of (V},) converging weakly to
some z € F such that,

(3.25)  limsup (u — Pru,V,, — Ppu) = lliglo (u — Ppu, V,,, — Ppu)

n—oo
= (u— Pru,z — Ppu)
<0.
Now, replacing p by Ppu in (BI4) gives,
(3:26)  [|Vinsy—1 — Prul®> < (1 —af) ... (1 = a})|[Vin-1 — Prul®

+ 20(2 <u = Ppu, Vi(ny1)—1 — Ppu>
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+ -+ 20l (u — Ppu, Vi, — Ppu).
By using above inequality and Lemma BT, we get
(3.27) Jim {|Ving1y—1 — Prul| = 0.
From (B=27), (B21) and (BR) we have,
(3.28) nh_)rglo |Vin — Prul| =0

nhjolo ||Vk(n+1)72 — Ppul| = 0.
Thus
(3.29) lim [V, = Prul| = 0.
Case(II): (Sp) is not eventually decreasing, that is, there is a subsequence
(Sn;) of (Sn) such that S, < Sy 41 for all j > 0. Define an integer
sequence (7(n))n>n, as in Lemma 4. Since S;) < Srmy4 for all

n > ng, it follows from (B7T3) that

k

(3.30) Jim {|Vi(r(ny+1)-2 = Jﬁf:(ﬂ) Vir(m)+1)—2l =0

Jim {[Vir(ny—1 — JE‘;@) Vir(m)—1ll = 0.
As in Case(I), one can conclude that
(3:31) wu((Vir(m-1)) € (A1) 71(0)
W ((Vir(my)) C (4%)71(0)

wu((Vir(my+1)-2)) € (AM)7H(0).
It follows from (B3) that
(3.32)
Vitr(n)+1)—1 = Vi(rm)+1)—2ll < O‘f—(n) v = Vitrm)+1)—2|l

+ Vf(n) [ Vi(r(my+1)—2 — JBA;(”) Vir(m)+1)—2ll;

and from (B230) we get,
(3.33) Jm (|Vermy+1)-1 = Vier(my+1) -2l = 0-
Similarly

(3.34) Im [Viir(ny+1) = Vaerapll = 0
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nlg{.lo WVirmy+1)-2 = Vitry+1)-3ll = 0.
Thus
(3.35) Wi ((Vir(ny-1)) C F
Ww((vk’f(n))) CF

ww((vk(T(n)+1)—2)) CF.

Therefore, there exists a subsequence (Vir(n),) of (Vir(n)) converging
weakly to some z € F' such that,

(3.36)
lim sup <u - PFU, Vkr(n) - PFU> = lim <u - PFU, VkT(n) - PFU>
n—oo J—00 J
= (u— Ppu,z — Ppu)
<0.
Similarly,
(3.37) lim sup <u — Pru, Vir(ny+1 — PFu> <0

n—oo

lim sup <u = Pru, Vi(r(n)41)-1 — Ppu> <0.

n—oo
Now, replacing p by Ppu in (B04) and n by 7(n) gives,
(338) Sr(n)-i—l < (1 - O‘E(n)) s (1 - aﬂl'(n))s'r(n)
+ 20/:(71) (u— Ppu, Vi(rm)+1)-1 — Pru)
+ -+ 20471_(n) <u — Pru, VkT(n) — PFU> .

Thus
(3.39) (1= (1= af) - (1= al))]Srm
< 2a'ﬁ(n) (u = Pru, Vi(r(n)+1)-1 — Pru)
4+t 2&}_(@ <u — Pru, Vk.,.(n) — PFU> .
Therefore,
2070
ST(n)Jrl <

] (u = Pru, Vi(r(n)41)-1 — Pru)
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1
2a(

7(n) <
(1= (—ak,)..(1=al)]

This shows that, li_)rn Srn)y+1 = 0. Now by using the Lemma P4 we
conclude that lim S,, = 0. From (BZ7) and (BR), we get li_>m Vi, = Pru

n—oo

and this completes the proof. O

Theorem 3.3. Let A; : D(A;)) C H — H(i = 1,...,k) be maximal
monotone operators with ﬂf LA71(0) = F # 0. For fized vectors o, u €
H, let (zn) be the sequence genemted by (88), where for every j =
1,2,....k; b, 00, € € (0,1) with od, + &, +~4 =1, B, € (0,00) and

o0
> ||€nH < 00. Assume that
n=1

(i) lim ol =0,
n—oo

)
(ii) for some 1 <1<k, 3 ol = o0,
)

I u—PFU,VkT(n)—PFU>7

n=1
(i) B > p7 for p7 >0,
(iv) ¥ >4/ for~? > 0.
Then (x,,) converges strongly to Ppu.

Proof. Taking Theorem (B=2) into account, it is enough to prove that
H_)m |z, — V|| = 0. Since the resolvent of Aj is nonexpansive, we
n—oo

derive from (B3) and (BM) that
(3.40) N|@knsh-1 = Vinsh-1ll < Okl|@knsr—2 — Vintr—z|
+ VfiHJAkfﬂknJrk 2 — J i Vienh—2| + el
< (1= o)l Trntn—2 — an+k ol + e
Similarly

(3.41)

|Zknsk—2 — Vinek—2|l < (1 — X Y| 2pnins — Vinrr_sll + et

[Zkn — Vinll < (1 -« )kan 1= Vien—1l]| + 6711'
The above inequalities imply that
| Zkntk—1 — Vintr—1ll

< (L—ap)(l—ap)... (1= am)|arn—1 = Vin- 1H+lee
j=1



A PROXIMAL POINT ALGORITHM FOR FINDING A COMMON ZERO ... 13

By letting n — oo and by using Lemma(B1), then

(3.42) lim |[@gn4k-1 — Vintr—1/ = 0.
n—oo
From (B™T) and (822) we have
(3.43) lim [|gntr—2 — Vintr—2ll = 0,
n—oo
lim ||z, — Vil = 0.
n—o0
This completes the proof. O

In the following theorem, we give a necessary and sufficient condition
for the common zero set of Ay, Ao, ..., A to be nonempty.

Theorem 3.4. Let A; : D(A;)) C H — H(i = 1,...,k) be mazimal
monotone operators. For fived vectors xo,u € H, let (x,,) be the sequence

generated by (&8), where for every j = 1,2,...,k; od, 85,7 € (0,1)
with o, + 67, + 7, =1 and > ||eh|| < oo. Assume that

n=1
(i

) lim of, =0,
o0
(ii) for some 1 <1<k, Y ol = oo,
n=1
)

n—oo

(iii) 3% — oo,
(iv) i, — 1.
Then the following statement holds:
if (x) is weakly convergent then ﬂle ATH0) = F #10,

Proof. Let (z,) be weakly converges to some z € H. Therefore subse-
quences (Tin), (Thnt1), - - (Th(ng1)—1), of (zn) are weakly converges to
z. It follows from (B3) that

1

1 1
Thn — O U — 0pTjn—1 — €,

o

Let J BA1$k(n)_1 = z,. Then z, is weakly converges to z and

1
n

(3.44) T )1 =

Th(n)—1 — 2
lim Lln 0.
M—00 B
On the other hand from the definition of resolvent operator we have,
Tk(n)—1 — #n
By
The demiclosedness property of the operator A implies that, z € (41)~1(0).
Similarly, for subsequences ()41, -+ Tr(nt1)-1, Of Tn, We get z €

(3.45) € Ai(z).
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(A2)71(0),...,2 € (A)~1(0) and this completes the proof.

4. CONCLUSIONS

In this paper, we give a necessary and sufficient condition for the set
of common zeros of a finite family of maximal monotone operators is
nonempty, and showed the strong convergence of the scheme to a zero of
the operator in this case. As a future direction for research, since numer-
ous other algorithms have been developed and their convergence studied
by many authors, it might be interesting to investigate the possibility
of implementing the ideas and methods developed in this paper to these
other Algorithm. In particular, in this connection, we can mention the
recent work of N. Nimit, A. P. Farajzadeh and N. Petrots [I5].

Acknowledgment. The authors are grateful to the editor and the
referees for valuable suggestions leading to the improvement of the paper.
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