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On the Monotone Mappings in CAT(0) Spaces

Davood Afkhami Taba1 and Hossein Dehghan2∗

Abstract. In this paper, we first introduce a monotone mapping
and its resolvent in general metric spaces. Then, we give two new it-
erative methods by combining the resolvent method with Halpern’s
iterative method and viscosity approximation method for finding
a fixed point of monotone mappings and a solution of variational
inequalities. We prove convergence theorems of the proposed iter-
ations in CAT(0) metric spaces.

1. Introduction and preliminaries

Let (X, d) be a metric space. Berg and Nikolaev [6] introduced the
concept of quasilinearization in metric spaces. Let us formally denote a

pair (a, b) ∈ X ×X by
−→
ab and call it a vector. Then quasilinearization

is the map ⟨·, ·⟩ : (X ×X)× (X ×X) → R defined by

⟨
−→
ab,

−→
cd⟩ = 1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
,(1.1)

for all a, b, c, d ∈ X. It can be easily seen that

⟨
−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, ⟨

−→
ab,

−→
cd⟩ = −⟨

−→
ba,

−→
cd⟩,

and

⟨−→ax,
−→
cd⟩+ ⟨

−→
xb,

−→
cd⟩ = ⟨

−→
ab,

−→
cd⟩,

for all a, b, c, d, x ∈ X.
A metric space (X, d) is a CAT(0) space if it is geodesically connected

and if every geodesic triangle in X is at least as thin as its comparison
triangle in the Euclidean plane. For other equivalent definitions and
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basic properties, we refer the reader to standard texts such as [5, 7].
Complete CAT(0) spaces are often called Hadamard spaces. Let x, y ∈
X and λ ∈ [0, 1]. We write λx ⊕ (1 − λ)y for the unique point z in the
geodesic segment joining x to y such that

d(z, x) = (1− λ)d(x, y), d(z, y) = λd(x, y).(1.2)

We also denote by [x, y] the geodesic segment joining x to y, that is,
[x, y] = {λx ⊕ (1 − λ)y : λ ∈ [0, 1]}. A subset C of a CAT(0) space
is convex if [x, y] ⊆ C for all x, y ∈ C. The metric space X is said to
satisfy the Cauchy-Schwarz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is known [6, Corollary 3] that a geodesically
connected metric space is CAT(0) space if and only if it satisfies the
Cauchy-Schwarz inequality.

Define the relation ∼ on X ×X as follows:

−→xy ∼ −→
zt ⇔ ⟨

−→
ab,−→xy⟩ = ⟨

−→
ab,

−→
zt⟩ (∀a, b ∈ X).

The equivalent class of −→xy will be denoted by [−→xy]. The metric space
X is said to satisfy the (S) property if for any (x, y) ∈ X × X there
exists yx ∈ X such that [−→xy] = [−→yxx] (see also [14, Definition 2.7]). It
is obvious that, for example, any Hilbert space enjoys the S property
(let yx := 2x − y then [−→xy] = [−→yxx] = [y − x]). Moreover, it is not
hard to check that any symmetric Hadamard manifold satisfies the (S)
property (exp−1

x y acts in the role of [−→xy] in Hadamard manifolds (see
[13, p. 3455]).

The concept of ∆-convergence, introduced by Lim [18] in 1976, was
shown by Kirk and Panyanak [16] in CAT(0) spaces to be very similar
to the weak convergence in Hilbert space setting. Next, we give the
concept of ∆-convergence and collect some basic properties. Let {xn}
be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r (x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from [10, Proposition 7] that in a CAT(0) space, A({xn})
consists of exactly one point.

A sequence {xn} ⊂ X is said to ∆-converges to x ∈ X if A({xnk
}) =

{x} for every subsequence {xnk
} of {xn}.
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On the other hand, Kakavandi and Amini [13] introduced the concept
of ω-convergence as follows. A sequence {xn} ⊂ X is said to ω-converges
to x ∈ X if lim

n→∞
⟨−−→xxn,−→xy⟩ = 0 for each y ∈ X. Note that it is equiv-

alent to lim
n→∞

⟨−−→axn,
−→
bc⟩ = ⟨−→ax,

−→
bc⟩ for each a, b, c ∈ X. Kakavandi [14,

Lemma 2.8] proved that ω-convergence and ∆-convergence are equiva-
lent in CAT(0) spaces with (S) property.

Let C be a nonempty closed convex subset of a complete CAT(0)
space X. It is known that for any x ∈ X there exists a unique point
u ∈ C such that

d(x, u) = inf
y∈C

d(x, y).

The mapping PC : X → C defined by PCx = u is called the metric
projection from X onto C. It follows from [7, Proposition 2.4] that
PC is nonexpansive. Dehghan and Rooin [9] obtained the following
characterization of a metric projection in CAT(0) metric spaces.

Theorem 1.1 ([9, Theorem 2.2]). Let C be a nonempty convex subset
of a Hadamard space X, x ∈ X and u ∈ C. Then

u = PCx if and only if ⟨−→ux,−→yu⟩ ≥ 0, for all y ∈ C.

We need the following lemmas in the sequel.

Lemma 1.2 ([16]). Every bounded sequence in a Hadamard space always
has a ∆-convergent subsequence.

Lemma 1.3 ([11]). If C is a closed convex subset of a Hadamard space
and if {xn} is a bounded sequence in C, then the asymptotic center of
{xn} is in C.

Lemma 1.4 ([12, Lemma 2.5]). A geodesic space X is a CAT(0) space
if and only if the following inequality

d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)(1.3)

− λ(1− λ)d2(x, y),

is satisfied for all x, y, z ∈ X and λ ∈ [0, 1].

Lemma 1.5 ([7, Proposition 2.2]). Let X be a CAT(0) space, p, q, r, s ∈
X and λ ∈ [0, 1]. Then

d(λp⊕ (1− λ)q, λr ⊕ (1− λ)s) ≤ λd(p, r) + (1− λ)d(q, s).(1.4)

Lemma 1.6 ([12, Lemma 2.4]). Let X be a CAT(0) space, x, y, z ∈ X
and λ ∈ [0, 1]. Then

(1.5) d(λx⊕ (1− λ)y, z) ≤ λd(x, z) + (1− λ)d(y, z).
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Lemma 1.7 ([1, Lemma 3.3]). Let X be a CAT(0) space, a, b, c, d ∈ X
and λ ∈ [0, 1]. Then

d2 (λa⊕ (1− λ)b, λc⊕ (1− λ)d) ≤ λ2d2(a, c) + (1− λ)2d2(b, d)(1.6)

+ 2λ(1− λ)⟨−→ac,
−→
bd⟩.

Lemma 1.8 ([21]). Assume that {an} is a sequence of nonnegative real
numbers such that

an+1 ≤ (1− γn)an + γnδn + σn, n ≥ 0,

where {γn} is a sequence in (0, 1), {δn} is a sequence in R and {σn} is
a sequence of nonnegative numbers such that

(i) lim
n→∞

γn = 0 and

∞∑
n=0

γn = ∞,

(ii) lim sup
n→∞

δn ≤ 0 or

∞∑
n=0

γn|δn| < ∞,

(iii)
∞∑
n=0

σn < ∞.

Then lim
n→∞

an = 0.

2. Main results

We begin with presenting an appropriate definition of monotone map-
pings in metric spaces.
Let C be a nonempty subset of a metric space X. We recall that a
mapping T : C → X is called nonexpansive if

d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ C. A point x ∈ C is called a fixed point of T if x = Tx.
For the set-valued mapping T , a point x ∈ C is called a fixed point of T
if x ∈ Tx. In each cases, we denote by F (T ) the set of all fixed points of
T . Kirk [17, Theorem 5.1] showed that every nonexpansive self-mapping
defined on a bounded closed convex subset of a Hadamard space always
has a fixed point. Also, F (T ) is closed and convex.

For a mapping A : X → 2X , we define its domain, range and graph
respectively as follows:

D(A) = {x ∈ X : Ax ̸= ∅}, R(A) = {Az : z ∈ D(A)},
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and
G(A) = {(x, y) ∈ X ×X : x ∈ D(A), y ∈ Ax}.

To obtain an appropriate definition for a monotone mapping in metric
spaces, we first recall its definition in Hilbert spaces. Let H be a real
Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥·∥. A mapping
A : H → 2H is called monotone if for each x, y ∈ D(A), we have

(2.1) ⟨u− v, x− y⟩ ≥ 0,

for all u ∈ Ax and v ∈ Ay (see [15] and references therein). Putting
T = I + A, where I is the identity map on H, we see that T − I is
monotone.

Definition 2.1. Let X be a metric space X and T : X → 2X be a
mapping. Let us formally say that ′′T − I ′′ is monotone if for each
x, y ∈ D(T ), we have

⟨−→uv,−→xy⟩ ≥ d2(x, y),(2.2)

for all u ∈ Tx and v ∈ Ty.

Note that T − I is just a symbol. The definition of a monotone
mapping finds its origin in Hilbert spaces.

Example 2.2. Consider R2 with the usual Euclidean metric d. Let
X = R2 be an R-tree with the radial metric dr, where dr(x, y) = d(x, y)
if x and y are situated on an Euclidean straight line passing through the
origin and dr(x, y) = d(x,0) + d(y,0) otherwise (see [19, p. 65]). We
put

A = {(t, s) : t+ s = 1, t ∈ [0, 1]}, B = {(t, s) : t+ 2s = 2, t ∈ [0, 1]},
C = A ∪B and define T : C → 2X by

Tx =

{
{x, px} x ∈ A,
x x ∈ B,

where px is the intersection of B with the line passing from x and the
origin. By elementary computations we see that T − I is monotone.

Remark 2.3. Let T : X → 2X be a mapping and

T−1 = {(u, x) : x ∈ D(T ), u ∈ Tx},
be its inverse. By the Cauchy-Schwarz inequality and (2.2) for each
x, y ∈ D(T ), we have

d2(x, y) ≤ ⟨−→uv,−→xy⟩ ≤ d(u, v)d(x, y),

for all u ∈ Tx and v ∈ Ty, which implies that T−1 : R(T ) → D(T ) is
a nonexpansive single-valued mapping. For each λ ∈ (0, 1), define the
mapping JT

λ : R(T ) → X by JT
λ x = (1 − λ)x ⊕ λT−1x. It follows from
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(1.4) that JT
λ is also a nonexpansive single-valued mapping. Considering

(1.2), we see that F (T ) = F (T−1) = F (JT
λ ).

We formally say that “I − T is demiclosed at zero” if the conditions
{xn} ⊆ C ∆- converges to x∗ and d(xn, Txn) → 0 imply x∗ ∈ F (T ).

Lemma 2.4 ([11]). Let C be a nonempty closed convex subset of Hadamard
space X and T : C → C be a nonexpansive mapping. Then, I − T is
demiclosed, i.e., if {xn} ∆-converges to x and d(xn, Txn) → 0, then
Tx = x.

Next, we introduce the combination of the resolvent iterative method
and Halpern’s iterative method and prove the strong convergence of the
iterative algorithms. For more information about Halpern’s iterative
method see [8, 20].

Theorem 2.5. Let C be a nonempty closed convex subset of a Hadamard
space X which satisfies (S) property. Let T : X → 2X be a mapping

such that T − I is monotone, F (T ) ̸= ∅ and D(T ) ⊂ C ⊂ R(T ). If the
sequences {αn} and {βn} satisfy the following conditions:

(i) βn ⊂ (α, β) with α, β ∈ (0, 1) and

∞∑
n=1

|βn+1 − βn| < ∞;

(ii) αn ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

and
∞∑
n=1

|αn+1 − αn| < ∞,

then the sequence {xn} defined by u, x0 ∈ C and{
yn = (1− βn)xn ⊕ βnJ

T
λ xn,

xn+1 = αnu⊕ (1− αn)yn, n ≥ 0,
(2.3)

converges strongly to q = PF (T )u.

Proof. Let p ∈ F (T ). It follows from (1.5) that

d(xn+1, p) = d(αnu⊕ (1− αn)yn, p)(2.4)

≤ αnd(u, p) + (1− αn)d(yn, p).
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Again, by (1.5) and nonexpansiveness of JT
λ we have

d(yn, p) = d
(
(1− βn)xn ⊕ βnJ

T
λ xn, p

)
(2.5)

≤ (1− βn)d(xn, p) + βnd(J
T
λ xn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p).

Combining (2.4) and (2.5) we get

d(xn+1, p) ≤ αnd(u, p) + (1− αn)d(yn, p)

≤ αnd(u, p) + (1− αn)d(xn, p)

≤ max{d(u, p), d(xn, p)}
...

≤ max{d(u, p), d(x0, p)}.

Hence, {xn}, {yn} and {JT
λ xn} are bounded. It follows from (1.4), the

distance-preserving property of the segment [xn, J
T
λ xn] and nonexpan-

siveness of JT
λ that

d(yn+1, yn) = d
(
(1− βn+1)xn+1 ⊕ βn+1J

T
λ xn+1, (1− βn)xn ⊕ βnJ

T
λ xn

)(2.6)

≤ d((1− βn+1)xn+1 ⊕ βn+1J
T
λ xn+1, (1− βn+1)xn ⊕ βn+1J

T
λ xn)

+ d
(
(1− βn+1)xn ⊕ βn+1J

T
λ xn, (1− βn)xn ⊕ βnJ

T
λ xn

)
≤ (1− βn+1)d(xn+1, xn) + βn+1d

(
JT
λ xn+1, J

T
λ xn

)
+ |βn+1 − βn|d(xn, J

T
λ xn)

≤ d(xn+1, xn) + |βn+1 − βn|M,

where we putM = supn
{
d
(
xn, J

T
λ xn

)}
. Now, we estimate d(xn+2, xn+1).

Again, by (1.4) and the distance-preserving property of the segment
[xn, J

T
λ xn] we have

d(xn+2, xn+1) = d(αn+1u⊕ (1− αn+1)yn+1, αnu⊕ (1− αn)yn)

≤ d(αn+1u⊕ (1− αn+1)yn+1, αn+1u⊕ (1− αn+1)yn)

+ d(αn+1u⊕ (1− αn+1)yn, αnu⊕ (1− αn)yn)

≤ αn+1d(u, u) + (1− αn+1)d(yn+1, yn)

+ |αn+1 − αn|d(u, yn)
≤ (1− αn+1)d(yn+1, yn) + |αn+1 − αn|L,

where L = supn{d(u, yn)}. This together with (2.6) implies that

d(xn+2, xn+1) ≤ (1− αn+1)d(yn+1, yn) + |αn+1 − αn|L
≤ (1− αn+1)d(xn+1, xn) + |βn+1 − βn|M + |αn+1 − αn|L.
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It follows from Lemma 1.8 that

lim
n→∞

d(xn+1, xn) = 0.

Using (1.2) we have

d(xn, yn) ≤ d(xn+1, xn) + d(xn+1, yn)(2.7)

= d(xn+1, xn) + αnd(u, yn) → 0, (as n → ∞).

By (2.5) we get

d(xn, p) ≤ d(xn, yn) + d(yn, p)

= d(xn, yn) + d(xn, p).

This together with (2.7) implies that

lim
n→∞

sup d(xn, p) = lim
n→∞

sup d(yn, p).(2.8)

Using (1.3) we have

d2(yn, p) = d2
(
(1− βn)xn ⊕ βnJ

T
λ xn, p

)
≤ (1− βn)d

2(xn, p) + βnd
2(JT

λ xn, p)− βn(1− βn)d
2(xn, J

T
λ xn)

≤ (1− βn)d
2(xn, p) + βnd

2(xn, p)− βn(1− βn)d
2(xn, J

T
λ xn)

= d2(xn, p)− βn(1− βn)d
2(xn, J

T
λ xn).

Hence,

α(1− β)d2(xn, J
T
λ xn) < βn(1− βn)d

2(xn, J
T
λ xn)

≤ d2(xn, p)− d2(yn, p).

Therefore, by passing to the subsequence and using (2.8), we conclude
that

lim sup
n→∞

d2
(
xn, J

T
λ xn

)
= 0.(2.9)

Next, we show that

lim sup
n→∞

⟨−→uq,−−→xnq⟩ ≤ 0,

where q = PF (T )u. Since {xn} is bounded, Lemma 1.2 follows that {xn}
has a ∆-convergent subsequence and so by the (S) property it has a
ω-convergent subsequence. Let {xnk

} be a subsequence of {xn} that
ω-converges to x∗ and

lim sup
n→∞

⟨−→uq,−−→xnq⟩ = lim
k→∞

⟨−→uq,−−→xnk
q⟩.

Using (2.9) and Theorem 2.4 (demiclosedness of JT
λ ), we get x

∗ ∈ F (T ).
It follows from the definition of ω-convergence and Theorem 1.1 that

lim sup
n→∞

⟨−→uq,−−→xnq⟩ = lim
k→∞

⟨−→uq,−−→xnk
q⟩ = ⟨−→uq,

−→
x∗q⟩ ≤ 0.
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Furthermore,

lim sup
n→∞

⟨−→uq,−→ynq⟩ ≤ lim sup
n→∞

⟨−→uq,−−→ynxn⟩+ lim sup
n→∞

⟨−→uq,−−→xnq⟩

≤ lim sup
n→∞

d(u, q)d(yn, xn) + lim sup
n→∞

⟨−→uq,−−→xnq⟩

≤ 0.

Utilizing (1.6) we see that

d2(xn+1, q) = d2(αnu⊕ (1− αn)yn, q)

≤ α2
nd

2(u, q) + (1− αn)
2d2(yn, q) + 2αn(1− αn)⟨−→uq,−→ynq⟩

≤ (1− αn)d
2(xn, q) + αn

(
αnd

2(u, q) + 2(1− αn)⟨−→uq,−→ynq⟩
)
.

Hence, from Lemma 1.8 we obtain the desired result. This completes
the proof. □

Next, we introduce the combination of the resolvent method and the
viscosity approximation method and prove the convergence of the iter-
ative algorithm.
Let T : X → 2X be a mapping such that T−I is monotone and λ ∈ (0, 1).
Define the sequence {zn} by z0 ∈ C and{

un = (1− βn)zn ⊕ βnJ
T
λ zn,

zn+1 = αnf(zn)⊕ (1− αn)un, n ≥ 0,
(2.10)

where f : C → C is a contraction mapping from C into C with the
contraction coefficient c ∈ [0; 1) and {αn}, {βn} ⊂ (0, 1).

Theorem 2.6. Let C be a nonempty closed convex subset of a Hadamard
space X which satisfies the (S) property. Let T : X → 2X be a mapping

such that T − I is monotone, F (T ) ̸= ∅ and D(T ) ⊂ C ⊂ R(T ). If the
sequences {αn} and {βn} satisfy the following conditions:

(i) βn ⊂ (α, β) with α, β ∈ (0, 1) and
∞∑
n=1

|βn+1 − βn| < ∞;

(ii) αn ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

and
∞∑
n=1

|αn+1 − αn| < ∞,

then the sequence {zn} defined by (2.10) converges strongly to an element
x∗ ∈ F (T ).
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Proof. Since PF (T ) is nonexpansive, then PF (T )f is a contraction and by
the Banach Contraction Principle it has a unique fixed point, that is,
x∗ = PF (T )f(x

∗) for some x∗ ∈ C. Note that x∗ is a unique solution of
the variational inequality

⟨
−−−−−→
x∗f(x∗),

−→
x∗p⟩ ≤ 0, (∀p ∈ F (T )).

Replacing u by f(x∗) in (2.3), from Theorem 2.5, the sequence {xn}
converges strongly to PF (T )f(x

∗) = x∗. Using (1.4) we have

d(zn+1, xn+1) = d(αnf(zn)⊕ (1− αn)un, αnf(x
∗)⊕ (1− αn)yn)

≤ αnd(f(zn), f(x
∗)) + (1− αn)d(un, yn)

≤ αncd(zn, x
∗)

+ (1− αn)d((1− βn)zn ⊕ βnJ
T
λ zn, (1− βn)xn ⊕ βnJ

T
λ xn)

≤ αncd(zn, x
∗)

+ (1− αn)
(
(1− βn)d(zn, xn) + βnd(J

T
λ zn, J

T
λ xn)

)
≤ αncd(zn, x

∗) + (1− αn)d(zn, xn)

≤ αncd(zn, xn) + αncd(xn, x
∗) + (1− αn)d(zn, xn)

= (1− αn(1− c))d(zn, xn) + αn(1− c)
c

1− c
d(xn, x

∗).

Hence, from Lemma 1.8 we have limn→∞ d(zn, xn) = 0. Consequently,
we obtain

lim
n→∞

d(zn, x
∗) ≤ lim

n→∞
d(zn, xn) + lim

n→∞
d(xn, x

∗) = 0.

This completes the proof. □
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