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A Version of Favard’s Inequality for the Sugeno Integral

Bayaz Daraby'*, Hassan Ghazanfary Asll? and Ildar Sadeqi®

ABSTRACT. In this paper, we present a version of Favard’s inequal-
ity for special case and then generalize it for the Sugeno integral in
fuzzy measure space (X, X, u), where p is the Lebesgue measure.
We consider two cases, when our function is concave and when is
convex. In addition for illustration of theorems, several examples
are given.

1. INTRODUCTION

The theory of fuzzy measures and fuzzy integrals was introduced by
Sugeno as a tool for modeling nondeterministic problems [?6]. From
a mathematical point of view, it has very interesting properties which
have been studied by many authors, including Ralescu and Adams [27],
Romén-Flores et al. [23] and Wang and Klir [27], among others. The
Sugeno integral is a useful tool in several theoretical and applied statis-
tics. For instance, in decision theory, the Sugeno integral is a median,
which is indeed a qualitative counterpart to the averaging operation
underlying expected utility.

In 2007, Roman-Flores et al. started the study of inequalities for fuzzy
integrals [I6, 24]. Other authers followed it, for example, Y. Ouang et
al. proved an inequality related to Minkowski-type [21] and generalized
Chebyshev-type inequality [20]. H. Agahi et al. proved Minkowski-
type inequality [3], generalized it [I] and presented Berwald’s inequality
[2]. J. Caballero and et al. proved Hermite-Hadamard’s inequality [4],
Carlson’s inequality [6] and Sandor’s inequality [6] and B. Daraby et al.
presented an inequality related to Carlson-type for these integrals [7]

2010 Mathematics Subject Classification. 28A12, 28A25, 35A23, 26D15.
Key words and phrases. Favard’s inequality, Sugeno integral, Fuzzy measure,
Fuzzy integral inequality
Received: 30 December 2019, Accepted: 15 January 2020.
* Corresponding author.
23


http://scma.maragheh.ac.ir

24 B. DARABY, H. GHAZANFARY ASLL AND I. SADEQI

(see more [R-15]). Recently D. Hong et al. and M. Kaluszka et al. have
proved Steffensen’s inequality for fuzzy integrals |7, T9].
The following theorem is the classical Favard’s inequality.

Theorem 1.1 ([IR]). Let f be a concave non-negative function on [a,b] C
R. If ¢ > 1, then

q+1< —a/f dm) >/ fil

If 0 < g < 1, the reverse inequality holds in (1)

(1.1)

The aim of this paper is to present a fuzzy version of the above the-
orem. Moreover, we present some examples to illustrate our results.

This paper is organized as follows: In Section B, some notations and
concepts have been introduced. In Section B, we prove main results and
give some examples. In Section B we express our conclusions.

2. PRELIMINARIES

As usual, we denote by R, the set of real numbers. Let X be a non-
empty set and let 3 be a g-algebra of subsets of X. Throught this paper,
all considered subsets are supposed to belong to X..

Definition 2.1. ([22]). A set function p : ¥ — [0, +00] is called a fuzzy
measure if the following properties are satisfied:
(FL) u(®) = 0;
(F2) A,B € ¥ and A C B imply u(A) < u(B);
(F3) {A;} C X, Ay C Ay C...and ;2 4; € ¥ imply p(Useq 4i) =
lim p(A7);
(F4) {A;} C X, A1 D A D .., u(A1) < oo and (2, 4; € ¥ imply
1 (Mi2q Ai) = lim p(A4;).
The triplet (X, 3, i) is called a fuzzy measure space.
We denote the set of all non-negative measurable functions with re-

spect to X by Fy(X). Let f be a non-negative real-valued function
defined on X. We denote the set {x € X | f(z) > a} by F, for a > 0.

Definition 2.2 ([22, 27]). Let p be a fuzzy measure on (X,X). If
f e Fi(X) and A € X, then the Sugeno integral (or fuzzy integral) of
f on A, with respect to the fuzzy measure u, is defined as

][ fdu=\/ (@A p(AN F),
a>0



A VERSION OF FAVARD’S INEQUALITY FOR THE SUGENO INTEGRAL 25

where V, A denotes the operation sup and inf on [0, c0) respectively. In
particular if A = X, then

£ fan={ sau=\/ (@ nu(Fo)).

a>0

The following properties of the Sugeno integral can be found in [22,

20).
Theorem 2.3. Let (X,X, u) be a fuzzy measure space, then

(a) W(ANFy) > a= A, fdu > o;
(b) W(ANFa) < a = £, fdu < a;
(¢) 4 fdp < a & there exists v < a such that p(ANFy) < o;
(d) £, fdp > a < there exists v > a such that p(ANF,) > o;
(e) f<gonA,then §, fdu < +, gdu;
(£) 4 kdp =k A p(A), for k non-negative constant;
(8) f4 fdu < u(A).

Remark 2.4. Let F' be distribution function associated to f on A, that

is,

Fla) = (AN {f > a}).
Then, due to (a) and (b) of Theorem EC3, it is very important to note
that

Fla)=a = ][fd,u:a.
A

Thus, from a numerical point of view, the Sugeno integral can be calcu-
lated by solving the equation F(«a) = a.

Jensen’s inequality for the Sugeno integral is an important inequal-
ity which has many application in the proof of some theorems. In the
following Lemma, we remark it.

Lemma 2.5 ([25]). Let f : [0,1] — [0,00) be a measurable function with
i the Lebesgue measure and s > 1. Then

(fo 1 fd/L)S < fo g

3. MAIN RESULTS

The following examples show that Inequality (I) is not valid for the
Sugeno integral.

Example 3.1. Let f(z) = /z,a =0,b=1and ¢ = 1.2. If u is the
Lebesgue measure, then
1l 12 1 06 .
-0 7(0 \/5 dﬂ/ = 0 xOG ~ 05877,
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2—2 jfo Vadp)t? 2 1.0443 x 0.5613 ~ 0.5861,
but 0.5877 % 0.5861.

Example 3.2. Let f(z) = z,a =0,b =1 and ¢ = 0.5. If p is the
Lebesgue measure, then
s jfol 29%dy = 0.6180,

22 () xdp)"5 ~ 0.9428 x 0.7071 = 0.6667,
but 0.6180 % 0.6667.

In the sequel, we prove Favard’s inequality for the Sugeno integral.
First, we present Favard’s inequality for special case and then generalize
it.

Theorem 3.3. Let f : [0,1] — [0,00) be a concave function and p be
the Lebesgue measure on R. Then for any q > 0,

(a) if f(1) > f(0), then
(3.1)

2 £ fdu— £(0)
1 . . 929 1 q Y J% Jdp
. ez min q+1<]€ fd“) T TR
(b) if £(1) = (0), then
1 .
(3.2) = ming 013
() if £(0) > f(1), then

o J00) = =2 f fd
! q . 24 L (q+1 °
(3.3) Jﬁfduzmm . (]ﬁ fdﬂ) RO - F()

Proof. We know that x = (1 — x).0 + z.1, for any = € [0,1]. So by
concavity of f, we have

f(@) =2 (1 =2)f(0) +2f(1) = h(x).
Using Theorem P23 (e), we get fol fidp > fol hidu.
(a) If £(1) > f(0),

1 1
7[ Fodu > ][ hedu
0 0

_ \/ (a A ([0, 11N {a:\h(x) > a%}))

a>0
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= o x|z 705% _ f(O)
‘M(A4“W{‘EM>NJW

et £(0)
‘O}!0<QA<1 71— f(O)))'

If we assume that o = m DCo fdp)4, then

v 1 a —2 o £ fdp— f(0)
_ov = f(0) 21 B <q+1>q 0
Y, ( (l f<1>—f<0>>> 2ot (7o) A(l =70 )

It follows that

£ fdu — f( )}

! . 21 ! ! (q+1 q
q
]€ fd“>mm{q+1 <J€ fd“) N (V1)

(b) If f(0) = f(1), then h(z) = f(0) = f(1) and using Theorem =3
(e, f), we have
1 1
a hid
]é fldp >][ 1

][ F9(0)du
— fq
(c) Tt £(0) > F(1),

1 1
f fodp > f hedu
0 0

=V (ann(0.10{zlh@) > ai}))

a>0

= o x|z 7'}0(0) _ a%
‘wﬁ<A“<“”“{‘ Sﬂw—fm}>>

Again, if we assume that a = %(jfol fdu)?, then

L o (F0)— =21 f fdp
f(0) — a 21 ! (g+1)7 "
)2/0<aAf(0)—f<1))>q+1<]€ fd“) A( 70) = f(1) )
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It follows that

F(0) — —2—+ f fdp
! 27(1 ! ! (g+1)49 0
ﬁfqd“z q+1<7€ fd“) T 0) - 1)

Which completes the proof. O

For illustration of Theorem BZ3 we present some examples.
Example 3.4. Let f(z) = /x and ¢ = 2. In this case, f(1) > f(0)
and simple calculations show that jfol Vadp ~ 0.6180, 7%1 Ne T
jfol xdp = 0.5 and

2
4 2 % 0.6180 — 0
0.5 > min {3(0.6180)2, 1 V3 =
~ min {0.5092, 0.2864}
— 0.2864.

Example 3.5. Let f(z) = (1+2)(2 —z) and ¢ = 1. Then f(0) = f(1)
and fol(l +2)(2 —z)dp =1 and we know that 1 >2A1=1.

Example 3.6. Let f(x) =1 — 22 and ¢ = 3. We have f(0) > f(1) and
411 — 22dp =~ 0.6180, ;) (1 — 22)3dp ~ 0.4711, so

1 — -2 x 0.6180
0.4711 > min {2(0.6180)3, Vi }

1-0
~ min{0.7638,0.2214}
= 0.2214.

The following example shows that concavity of f in Theorem B33 is
necessary.

Example 3.7. Suppose that f(z) = 2% and ¢ = 0.5. In this case,
f(1) > f(0) and simple calculations show that
i atdp ~ 0.2755 and ) (4)*5dpu = o, 2%du ~ 0.3820, but

2
2 25 0.2755 — 0
0.3820 # min {{5(0,2755)0.5’ IR

~ min{0.4948, 0.5501}
— 0.4948.

Now, we replace the domain of f in Theorem 3.3 by [a,b] C R.

Theorem 3.8. Let f : [a,b] — [0,00) be a concave function and p be
the Lebesgue measure on R. Then for any q > 0,
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(a) if f(b) > f(a), then

(3.4) {f"duzmin{ ;+1 . <bi Y[bfdﬂ>q’

1

2(bays £ fdu+af()bf(a)}

b 70 — /(@)

(b) if f(b) = f(a), then
b
(3.5) 7[ fedp > min{f4(a),b — a},
(c) if fla) > f(b), then

b _ b q
T e )

bf(a) = af(b) = 2(554)7 £y fdu } |

fla) = f(b)

concavity of f we have
h— _
J@) 2 g fla) + 5o f(b) = h(a).

By Theorem 23 (e), we have f; fldy > jf; hidy.
(a) If f(b) > f(a),

b b
F sz f wva

LV (o (i = o)

a>0

S (aniliosin Lo atb=a) +af(e) —bf(a)
‘M(A“(““”{'Z 0 - 1@ D)
VIR ai(b—a)+af(b) - bf(a)

‘a\z/o< A(” 70 - f(@) ))

If we assume that o = ((ila) (b - 7( fdu) then

ai(b—a)+af(b) — bf(a)
Vv (“ " (b 70) ~ 1(a) >>

a>0
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20b—a) [ 1 [ 9
= g+1 (b—a][afdu>

A(bﬂﬁﬁéﬁﬂm+aﬂ®hﬂ®)'

f(0) = f(a)

It follows that

. 2o (1 g\ 25D £ Sdu+af(b) - bf(a)
f;fd“>mm{ g1 (b—af;ﬂm>’b‘ 7= 1@
(b) If f(a) = f(b), then h(z) = f(a) = f(b) and using Theorem =3
(e, f), we have

][abfqdu>][bhqd,u,
][ fA(a)dp

= fa —a).

(c) If f(a) > f(b),

b b
‘fﬁw>fh%¢

=V (ann (ot frine = at})

a>0

S aniiosin o < @ =af®) —ai(b—a)
‘QY()(A“(“”“{“ o)~ 10) }>>
a)—af(b) —ai(b—a)

‘lﬁ( ( f(a) - f(0) ))'

Again, if we assume that a = 2(511‘1 (b - 7( du) then

f
bf(a) —af(h) —ai(b—a)
)4<“A< Fla)— 7(b) ))
29(b— a) 1 b 7
= qg+1 (b—ajlafdo

N\ bf(a) — af(b) — 2(35%) T £ fdy .
f(a) = f(b) '
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It follows that

b q
]/ fodu > min{ ( fdu> ,

bf(a) = af(b) = 2(5)7 £ fdu }

fla) - ()

Now, the proof is complete. O

In the sequel, we consider convex functions and prove reverse of the
mentioned inequalities in Theorems B33 and B=R.

Theorem 3.9. Let f: [0,1] — [0,00) be a convez function and p be the
Lebesgue measure on R. Then for any q > 0,

(a) if f(1) > £(0), then
(3.7)

Lo 91 /1 \¢ (qﬂ v 5 fdu— f(0)
fo fidp < max Ti1 <]€ fdu> 11— OO 7
(b) if f(1) = f(0), then
1
(3.8) ][ fadp < min{ £9(0), 1},
0
(c) if £(0) > f(1), then

F(0) = —2— f fdu
1 g 29 ! I (+1) 0
(3.9) ]é fldp < max i1 <]£ fdﬂ> ) f(0) — f(1)

Proof. We know that x = (1 — x).0 + 2.1, for any = € [0,1]. So by
convexity of f, we have

fl@) < (1 —2)f(0) +zf(1) = h(x),
Using Theorem P23 (e), we get 7501 fldu < 7501 hidp.
(a) If f(1) > £(0),

1 1
][ fqduS][ hidu
0 0

=V (ann (010 {zlh@ > at}))

a>0

= (073 T|x 70{5_(}0(0)
‘V< “‘(”’”“{ | Zf<1>—f<o>}>>
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a1 — f(0)
<Aoo (oo 75 )
N W AR ()
‘[Z\O< ! (1 71 —f(O))) |
If we assume that oo = q+1 7(0 fdu)4, then

[}0<“V<1‘f<1> ff(O)>> = <7[ fd“>q

( v ;,% Fdp— f( ))
It follows that

2 1

—=— {5 fdu — £(0)
! 2 ! ! _(q+1)53%
ﬁfqd“““{qﬂ(]g”“) (Y B R

(b) If £(0) = f(1), then h(x) = f(0) = f(1) and by using Theorem
23 (e, f), we have

]{)1 fldp < ][1 hidu
ftﬂ )dp

_fq

(c) It f(0) > (1),

1 1
< woa
0 0
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/\ oy f(O)—aé L <][1fd )qv )_(q+21)%  fep
FO) —f)) = qr1\J, T F00)— f(1)

F(0) = —2 f§ fdp
1 maxd 2 (L pan) et
o< me q+1<7€ fd“) TR0 - A

Which completes the proof. O

Now, for illustration of Theorem B, we present some examples.

Example 3.10. Suppose that f(z) = 22 and ¢ = 0.5. Then, f(1) >
f(0) and a straightforward calculus shows that

£ x%dp ~ 0.3820,

jfol(xz)“du = 7(01 xdp = 0.5.
On the other hand, we have

2
b5 < —(0.3820)"°,1 — —
O5_max{1.5(038 0)%, o
~ max{0.5827, 0.6604}
= 0.6604.

Example 3.11. If we assume that f(z) = 22 — 2+ 1 and ¢ = 1, then
f(0) = f(1) and a simple calculation shows that fol (22 —x+1)dp = 0.75.
Thus

0.75 < f(O)A1=1A1=1.

x

Example 3.12. By assumption of f(z) = e~
f(0) > f(1). Simple calculations give

f(} e *dp ~ 0.5671,

Ji(e*)2dpu = o, e dp ~ 0.4263.

It follows that

2
4 — 2.0.5671
0.4263 < max {3(0.5671)2, 1\/3—

and ¢ = 2, we have

T
~ max{0.4288,0.5461}
= 0.5461.
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The next example shows that the convexity of f in Theorem B is
inevitable.

Example 3.13. Let f(z) =In(1+z) and ¢ = 3. Then f(1) > f(0) and
simple calculations show that
£ In(1 + x)dp =~ 0.4429,
£ (In(1 + 2))3dp =~ 0.2020.
And we know that
2
g . 044290
0.2020 ¢ max {4(0.4429) A

= max{0.1738,0.1950}
= 0.1950.

Theorem 3.14. Let f : [a,b] — [0,00) be a convex function and p be
the Lebesgue measure on R. Then for any q > 0,

(a) if f(b) > f(a), then

(3.10)
b 2ub—a) (1 0.\ 20597 £ fdu+af(b) = bf(a)
Jéfd“ma"{ a+1 (b—d”“) - 76— (@) |
(b) if f(b) = f(a), then
b
(3.11) ][ fldp < min{f%a),b — a},
(c) if fa) > f(b), then
(3.12)

b 29b—a) (1 *, \" bf(a)—af(d) —2552)7 £ fdu
]éfqd“gmax{ i+ 1 (b—a]ifd“> / Fl@) — 1) -
Proof. The proof proceeding is similar to the proof of Theorem B8 and
so we leave it. O

Remark 3.15. Let f be a measurable function and u be the Lebesgue
measure on R. By Lemma P28 we know that for any ¢ > 1,

]ﬁlfqdﬂz <]€1fdu)q,

on the other hand, when ¢ > 1, we have 2¢ > ¢ 4+ 1. Since the product
operation is increasing on positive numbers, so

1 q+1 1 q
I o= 52 () an)
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Remark 3.16. If we let 0 < ¢ < 1 in Theorems B33, BR, B9 and B4,
then the mentioned inequalities in these theorems will be the special
case of Berwald’s inequality that H. Agahi et al. have proven in [Z].

4. CONCLUSION

In the present paper, we have proven a version of Favard’s inequality
for the Sugeno integral and illustrated this version by some examples.
In the future we will try to prove this inequality for pseudo-integrals.

Acknowledgment. The authors are grateful to the reviewers and
thereferees for valuable suggestions leading to the improvement of the

paper.
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