Almost Multi-Cubic Mappings and a Fixed Point Application

Nasrin Ebrahimi Hoseinzadeh ${ }^{1}$, Abasalt Bodaghi ${ }^{2 *}$ and Mohammad Reza Mardanbeigi ${ }^{3}$

Abstract

The aim of this paper is to introduce n-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [26] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [16] for the Cauchy difference. Later, the result of Hyers was significantly generalized by Aoki [I], Th. M. Rassias [24] (stability incorporated with sum of powers of norms), Găvruta [14] (stability controlled by a general control function) and J. M. Rassias [23] (stability including mixed product-sum of powers of norms).

Let V be a commutative group, W be a linear space, and $n \geq 2$ be an integer. Recall from [[2] that a mapping $f: V^{n} \longrightarrow W$ is called multi-additive if it is additive (satisfies the Cauchy's functional equation $A(x+y)=A(x)+A(y))$ in each variable. Some facts on such mappings can be found in [20]] and many other sources. In addition, f is said to be multi-quadratic if it is quadratic (satisfies the quadratic functional equation $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y))$ in each variable [13].

[^0]In [30], Zhao et al. proved that the mapping $f: V^{n} \longrightarrow W$ is multiquadratic if and only if it satisfies the equality

$$
\begin{equation*}
\sum_{t \in\{-1,1\}^{n}} f\left(x_{1}+t x_{2}\right)=2^{n} \sum_{j_{1}, j_{2}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, x_{2 j_{2}}, \ldots, x_{n j_{n}}\right) \tag{1.1}
\end{equation*}
$$

where $x_{j}=\left(x_{1 j}, x_{2 j}, \ldots, x_{n j}\right) \in V^{n}$ with $j \in\{1,2\}$. In [[T2] and [[13], Ciepliński studied the generalized Hyers-Ulam stability of multi-additive and multi-quadratic mappings in Banach spaces, respectively (see also [30]). The Jensen type of multi-quadratic mappings and their characterization can be found in [25]].

The cubic functional equation has been introduced by J. M. Rassias in [22] as follows:

$$
\begin{equation*}
f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)=6 f(y) . \tag{1.2}
\end{equation*}
$$

He obtained the general solutions of ([2) and studied the Hyers-Ulam stability problem for these cubic functional equation. The following alternative cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.3}
\end{equation*}
$$

has been presented by Jun and Kim in [17]. They found out the general solutions and established the Hyers-Ulam stability for the functional equation ($\mathbb{\boxed { W }} \mathbf{3})$. Furthermore, they considered the cubic functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+6 f(x)=4 f(x+y)+4 f(x-y) \tag{1.4}
\end{equation*}
$$

which somewhat different from ($\mathbb{L} \cdot \mathbf{3}$) and proved the Hyers-Ulam stability problem for it in Banach spaces setting [IX]. Next, the second author in [5] showed that the functional equation

$$
\begin{align*}
& f(r x+s y)+f(r x-s y) \tag{1.5}\\
& \quad=r s^{2}[f(x+y)+f(x-y)]+2 r\left(r^{2}-s^{2}\right) f(x)
\end{align*}
$$

can be a generalization of the equations (ए.3) and (L.4) where r, s are integer numbers with $r \pm s \neq 0$; for other forms of the cubic functional equations and their stabilities on the various Banach spaces refer to [3], [4], [6], [7] and [29]. Recently, in [9], the second author and Shojaee introduced the multi-cubic mappings (unified as a equation) and studied the Hyers-Ulam stability for multi-cubic mappings on normed spaces by a fixed point theorem and moreover proved that a multi-cubic functional equation can be hyperstable; see also [[2T] for more forms of multi-cubic mappings and their stabilities on normed spaces. Besides, for the characterization and stability of multi-quartic mappings refer to [b$]$.

In this paper, by using the functional equation (L.5), we define new multi-cubic mappings and present a characterization of such mappings. In other words, we reduce the system of n equations defining the multicubic mappings to obtain a single functional equation. We also prove the generalized Hyers-Ulam stability for multi-cubic functional equations by applying the fixed point method in non-Archimedean normed spaces which is introduced in [TIT]; for more applications of this approach for the stability of multi-Cauchy-Jensen and multi-additive-quadratic mappings see [2]. In addition, for the stability of multi-Jensen and multi-additive mappings in non-Archimedean spaces refer to [27] and [[28], respectively.

2. Characterization of Multi-Cubic Mappings

Throughout this paper, \mathbb{N} stands for the set of all positive integers, $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, \mathbb{R}_{+}:=[0, \infty), n \in \mathbb{N}$. For any $l \in \mathbb{N}_{0}, n \in \mathbb{N}$, $q=\left(q_{1}, \ldots, q_{n}\right) \in\{-1,1\}^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in V^{n}$ we write $l x:=$ $\left(l x_{1}, \ldots, l x_{n}\right)$ and $q x:=\left(q_{1} x_{1}, \ldots, q_{n} x_{n}\right)$, where $l x$ stands, as usual, for the scaler product of an element l on x in the vector space V.

From now on, let V and W be vector spaces over the rationals, $n \in \mathbb{N}$ and $x_{i}^{n}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right) \in V^{n}$, where $i \in\{1,2\}$. We shall denote x_{i}^{n} by x_{i} if there is no risk of ambiguity. Let $x_{1}, x_{2} \in V^{n}$ and $T \in \mathbb{N}_{0}$ with $0 \leq T \leq n$. Put $\mathcal{M}=\left\{\mathfrak{N}_{n}=\left(N_{1}, N_{2}, \ldots, N_{n}\right) \mid N_{j} \in\left\{x_{1 j} \pm x_{2 j}, x_{1 j}\right\}\right\}$, where $j \in\{1, \ldots, n\}$. Consider

$$
\mathcal{M}_{T}^{n}:=\left\{\mathfrak{N}_{n}=\left(N_{1}, N_{2}, \ldots, N_{n}\right) \in \mathcal{M} \mid \operatorname{Card}\left\{N_{j}: N_{j}=x_{1 j}\right\}=T\right\} .
$$

We say the mapping $f: V^{n} \longrightarrow W$ is n-multi-cubic or multi-cubic if f is cubic in each variable (see equation ($\mathbb{L} .5)$). For the multi-cubic mappings, we use the following notations:

$$
\begin{align*}
& f\left(\mathcal{M}_{T}^{n}\right):=\sum_{\mathfrak{N}_{n} \in \mathcal{M}_{T}^{n}} f\left(\mathfrak{N}_{n}\right), \tag{2.1}\\
& f\left(\mathcal{M}_{T}^{n}, z\right):=\sum_{\mathfrak{N}_{n} \in \mathcal{M}_{T}^{n}} f\left(\mathfrak{N}_{n}, z\right), \quad(z \in V) .
\end{align*}
$$

Let r be the fixed integer in (ㄴ.5) such that $r \neq \pm 1,0$. We say the mapping $f: V^{n} \longrightarrow W$ satisfies the m-power condition in the j th variable if

$$
f\left(z_{1}, \ldots, z_{j-1}, r z_{j}, z_{j+1}, \ldots, z_{n}\right)=r^{m} f\left(z_{1}, \ldots, z_{j-1}, z_{j}, z_{j+1}, \ldots, z_{n}\right)
$$

for all $z_{1}, \ldots, z_{n} \in V^{n}$.
Remark 2.1 ([2T]). It is easily verified that if f is a multi-cubic mapping, then it satisfies 3 -power condition in each of variable. Note that the converse is not true. Here, by means of an example we show that

3 -power condition in all variables for a mapping f does not imply being multi-cubic. Let $(\mathcal{A},\|\cdot\|)$ be a Banach algebra. Fix the vector a_{0} in \mathcal{A} (not necessarily unit). Define the mapping $h: \mathcal{A}^{n} \longrightarrow \mathcal{A}$ by $h\left(a_{1}, \ldots, a_{n}\right)=\prod_{j=1}^{n}\left\|a_{j}\right\|^{3} a_{0}$ for $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}^{n}$. It is easy to check that the mapping h satisfies 3-power condition in all variables but not multi-cubic even for $n=1$, which means that is h does not satisfy in equation ([.5).

In what follows, $\binom{n}{k}$ is the binomial coefficient defined for all $n, k \in \mathbb{N}_{0}$ with $n \geq k$ by $n!/(k!(n-k)!)$.
Theorem 2.2. Suppose that the mapping $f: V^{n} \longrightarrow W$ is multi-cubic. Then, f satisfies the equation

$$
\begin{equation*}
\sum_{q \in\{-1,1\}^{n}} f\left(r x_{1}+q s x_{2}\right)=\sum_{k=0}^{n}\left(r s^{2}\right)^{n-k}\left[2 r\left(r^{2}-s^{2}\right)\right]^{k} f\left(\mathcal{M}_{k}^{n}\right) \tag{2.2}
\end{equation*}
$$

where r, s are integer numbers with $r \pm s \neq 0$. The converse is true provided that f has 3 -power condition in all variables.
Proof. (Necessity) We prove that f satisfies the equation (区.2) by induction on n. For $n=1$, it is trivial that f satisfies the equation (ㄸ.5). If (L2.2) is valid for some positive integer $n>1$, then

$$
\begin{aligned}
& \sum_{q \in\{-1,1\}^{n+1}} f\left(r x_{1}^{n+1}+q s x_{2}^{n+1}\right) \\
= & r s^{2} \sum_{q \in\{-1,1\}^{n}} f\left(r x_{1}^{n}+q s x_{2}^{n}, x_{1 n+1}+x_{2 n+1}\right) \\
& +r s^{2} \sum_{q \in\{-1,1\}^{n}} f\left(r x_{1}^{n}+q s x_{2}^{n}, x_{1 n+1}-x_{2 n+1}\right) \\
& +2 r\left(r^{2}-s^{2}\right) \sum_{q \in\{-1,1\}^{n}} f\left(r x_{1}^{n}+q s x_{2}^{n}, x_{1 n+1}\right) \\
= & r s^{2} \sum_{k=0}^{n} \sum_{q \in\{-1,1\}}\left(r s^{2}\right)^{n-k}\left[2 r\left(r^{2}-s^{2}\right)\right]^{k} f\left(\mathcal{M}_{k}^{n}, x_{1 n+1}+q x_{2 n+1}\right) \\
& +2 r\left(r^{2}-s^{2}\right) \sum_{k=0}^{n}\left(r s^{2}\right)^{n-k}\left[2 r\left(r^{2}-s^{2}\right)\right]^{k} f\left(\mathcal{M}_{k}^{n}, x_{1 n+1}\right) \\
= & \sum_{k=0}^{n+1}\left(r s^{2}\right)^{n+1-k}\left[2 r\left(r^{2}-s^{2}\right)\right]^{k} f\left(\mathcal{M}_{k}^{n+1}\right) .
\end{aligned}
$$

This means that (2.2) holds for $n+1$.
(Sufficiency) Assume that f satisfies equation (L.2). Fix $j \in\{1, \ldots, n\}$. Putting $x_{2 k}=0$ for all $k \in\{1, \ldots, n\} \backslash\{j\}$ in the left side of (L2.2) and
using the assumption, we get

$$
\begin{align*}
2^{n-1} & \times r^{3(n-1)}\left[f\left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}+s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right)\right. \tag{2.3}\\
& \left.+f\left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}-s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right)\right] \\
= & 2^{n-1}\left[f\left(r x_{11}, \ldots, r x_{1 j-1}, r x_{1 j}+s x_{2 j}, r x_{1 j+1}, \ldots, r x_{1 n}\right)\right. \\
& \left.+f\left(r x_{11}, \ldots, r x_{1 j-1}, r x_{1 j}-s x_{2 j}, r x_{1 j+1}, \ldots, r x_{1 n}\right)\right]
\end{align*}
$$

Set

$$
\begin{aligned}
f^{*}\left(x_{1 j}, x_{2 j}\right):= & f\left(x_{11}, \ldots, x_{1 j-1}, x_{1 j}+x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right) \\
& +f\left(x_{11}, \ldots, x_{1 j-1}, x_{1 j}-x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right)
\end{aligned}
$$

By the above replacements in equation (2.2), relation ($\mathbb{Z . 3}$) implies that

$$
\begin{align*}
2^{n-1} & r^{3(n-1)}\left[f\left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}+s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right)\right. \tag{2.4}\\
& \left.+f\left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}-s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right)\right] \\
= & 2^{n-1}\left(r s^{2}\right)^{n} f^{*}\left(x_{1 j}, x_{2 j}\right) \\
& +\sum_{k=1}^{n-1}\left[\binom{n-1}{k-1} 2^{n-k}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}\right] f\left(x_{11}, \ldots, x_{1 n}\right) \\
& +\sum_{k=1}^{n-1}\left[\binom{n-1}{k} 2^{n-k-1}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}\right] f^{*}\left(x_{1 j}, x_{2 j}\right) \\
& +\left(2 r\left(r^{2}-s^{2}\right)\right)^{n} f\left(x_{11}, \ldots, x_{1 n}\right) \\
= & A_{r, s} f^{*}\left(x_{1 j}, x_{2 j}\right)+B_{r, s} f\left(x_{11}, \ldots, x_{1 n}\right)
\end{align*}
$$

where

$$
A_{r, s}=2^{n-1}\left(r s^{2}\right)^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k-1} 2^{n-k-1}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}
$$

and

$$
B_{r, s}=\left(2 r\left(r^{2}-s^{2}\right)\right)^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k} 2^{n-k}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}
$$

On the other hand, we have

$$
\begin{align*}
A_{r, s} & =r s^{2}\left[\left(2 r s^{2}\right)^{n-1}+\sum_{k=1}^{n-1}\binom{n-1}{k}\left(2 r s^{2}\right)^{n-k-1}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}\right] \tag{2.5}\\
& =r s^{2} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(2 r s^{2}\right)^{n-k-1}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}
\end{align*}
$$

$$
\begin{aligned}
& =r s^{2}\left(2 r s^{2}+2 r^{3}-2 r s^{2}\right)^{n-1} \\
& =2^{n-1} r^{3(n-1)} r s^{2}
\end{aligned}
$$

In addition,

$$
\begin{align*}
B_{r, s}= & \left(2 r\left(r^{2}-s^{2}\right)\right)^{n} \tag{2.6}\\
& +\sum_{k=0}^{n-2}\binom{n-1}{k}\left(2 r s^{2}\right)^{n-k-1}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k+1} \\
= & 2 r\left(r^{2}-s^{2}\right)\left[\left(2 r\left(r^{2}-s^{2}\right)\right)^{n-1}\right. \\
& \left.+\sum_{k=0}^{n-2}\binom{n-1}{k}\left(2 r s^{2}\right)^{n-k-1}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}\right] \\
= & 2 r\left(r^{2}-s^{2}\right) \sum_{k=0}^{n-1}\binom{n-1}{k-1}\left(2 r s^{2}\right)^{n-k-1}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k} \\
= & 2 r\left(r^{2}-s^{2}\right)\left(2 r s^{2}+2 r^{3}-2 r s^{2}\right)^{n-1} \\
= & 2^{n-1} r^{3(n-1)} 2 r\left(r^{2}-s^{2}\right) .
\end{align*}
$$

It follows from relations (2.4), (2.6) and (2.5) that

$$
\begin{aligned}
f & \left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}+s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right) \\
& +f\left(x_{11}, \ldots, x_{1 j-1}, r x_{1 j}-s x_{2 j}, x_{1 j+1}, \ldots, x_{1 n}\right) \\
= & r s^{2} f^{*}\left(x_{1 j}, x_{2 j}\right)+2 r\left(r^{2}-s^{2}\right) f\left(x_{11}, \ldots, x_{1 n}\right)
\end{aligned}
$$

This means that f is cubic in the j th variable. Since j is arbitrary, we obtain the desired result.

3. Stability Results for ([2.2])

We firstly express some basic facts concerning non-Archimedean spaces and some preliminary results. Let us recall that a metric d on a nonempty set X is said to be non-Archimedean (or an ultrametric) provided

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\}
$$

for $x, y, z \in X$. By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|$ from \mathbb{K} into $[0, \infty)$ such that $|a|=0$ if and only if $a=0,|a b|=|a||b|$, and $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in \mathbb{K}$. Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Let \mathcal{X} be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$. A function $\|\cdot\|: \mathcal{X} \longrightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|a x\|=|a|\|x\|, \quad(x \in \mathcal{X}, a \in \mathbb{K})$;
(iii) the strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}, \quad(x, y \in \mathcal{X}) .
$$

Then, $(\mathcal{X},\|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\| ; m \leq j \leq n-1\right\}, \quad(n \geq m)
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean normed space \mathcal{X}. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent. If $(\mathcal{X},\|\cdot\|)$ is a non-Archimedean normed space, then it is easily verified that the function $d_{\mathcal{X}}: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}_{+}$, given by $d_{\mathcal{X}}(x, y):=$ $\|x-y\|$, is a non-Archimedean metric on \mathcal{X} that is invariant (i.e., $d_{\mathcal{X}}(x+z, y+z)=d_{\mathcal{X}}(x, y)$ for $\left.x, y, z \in \mathcal{X}\right)$. Hence, non-Archimedean normed spaces are also special cases of metric spaces with invariant metrics.

The most important examples of non-Archimedean normed spaces are the p-adic numbers, which have gained the interest of physicists because of their connections with some problems coming from quantum physics, p-adic strings and superstrings [10]]. Indeed, Hensel [15] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. The most interesting example of non-Archimedean normed spaces is p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all $x, y>0$, there exists an integer n such that $x<n y$.

We recall that for a field \mathbb{K} with multiplicative identity 1 , the characteristic of \mathbb{K} is the smallest positive number n such that $\overbrace{1+\cdots+1}^{n \text {-times }}=0$.

Throughout, for two sets A and B, the set of all mappings from A to B is denoted by B^{A}. In this section, we prove the generalized HyersUlam stability of equation (E 2$)$) in non-Archimedean spaces. The proof is based on a fixed point result that can be derived from [iII, Theorem 1]. To present it, we introduce the following three hypotheses:
(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from $2, j \in \mathbb{N}, g_{1}, \ldots, g_{j}: E \longrightarrow E$ and $L_{1}, \ldots, L_{j}: E \longrightarrow$ \mathbb{R}_{+},
(H2) $\mathcal{T}: Y^{E} \longrightarrow Y^{E}$ is an operator satisfying the inequality

$$
\begin{aligned}
& \|\mathcal{T} \lambda(x)-\mathcal{T} \mu(x)\| \leq \max _{i \in\{1, \ldots, j\}} L_{i}(x)\left\|\lambda\left(g_{i}(x)\right)-\mu\left(g_{i}(x)\right)\right\|, \\
& \quad \text { for all } \lambda, \mu \in Y^{E}, x \in E,
\end{aligned}
$$

$(\mathrm{H} 3) ~ \Lambda: \mathbb{R}_{+}^{E} \longrightarrow \mathbb{R}_{+}^{E}$ is an operator defined through

$$
\Lambda \delta(x):=\max _{i \in\{1, \ldots, j\}} L_{i}(x) \delta\left(g_{i}(x)\right), \quad \delta \in \mathbb{R}_{+}^{E}, x \in E
$$

Here, we highlight the following theorem which is a fundamental result in fixed point theory [II, Theorem 1]. This result plays a key tool to obtain our goal in this paper.

Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function θ : $E \longrightarrow \mathbb{R}_{+}$and the mapping $\varphi: E \longrightarrow Y$ fulfill the following two conditions:

$$
\|\mathcal{T} \varphi(x)-\varphi(x)\| \leq \theta(x), \quad \lim _{l \rightarrow \infty} \Lambda^{l} \theta(x)=0, \quad(x \in E)
$$

Then, for every $x \in E$, the limit $\lim _{l \rightarrow \infty} \mathcal{T}^{l} \varphi(x)=: \psi(x)$ and the mapping $\psi \in Y^{E}$, defined in this way, is a fixed point of \mathcal{T} with

$$
\|\varphi(x)-\psi(x)\| \leq \sup _{l \in \mathbb{N}_{0}} \Lambda^{l} \theta(x), \quad(x \in E)
$$

In the sequel, given the mapping $f: V^{n} \longrightarrow W$, we delineate the difference operator $\mathfrak{D}_{c} f: V^{n} \times V^{n} \longrightarrow W$ by

$$
\begin{aligned}
\mathfrak{D}_{c} f\left(x_{1}, x_{2}\right)= & \sum_{q \in\{-1,1\}^{n}} f\left(r x_{1}+q s x_{2}\right) \\
& -\sum_{k=0}^{n}\left(r s^{2}\right)^{n-k}\left[2 r\left(r^{2}-s^{2}\right)\right]^{k} f\left(\mathcal{M}_{k}^{n}\right)
\end{aligned}
$$

where $f\left(\mathcal{M}_{k}^{n}\right)$ is defied in ([.,]).
Here and subsequently, without loss of generality we assume that r is a fixed positive integer such that $r \geq 2$. We now are ready to indicate the upcoming result which is the main result in this paper.

Theorem 3.2. Let $\beta \in\{-1,1\}$ be fixed, V be a linear space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from r. Suppose that $\varphi: V^{n} \times V^{n} \longrightarrow \mathbb{R}_{+}$ is a function satisfying the equality

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left(\frac{1}{|r|^{3 n \beta}}\right)^{l} \varphi\left(r^{l \beta} x_{1}, r^{l \beta} x_{2}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$. Assume also $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|\mathfrak{D}_{c} f\left(x_{1}, x_{2}\right)\right\| \leq \varphi\left(x_{1}, x_{2}\right) \tag{3.2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$. Then, there exists a unique multi-cubic mapping $\mathcal{C}: V^{n} \longrightarrow W$ such that

$$
\begin{equation*}
\|f(x)-\mathcal{C}(x)\| \leq \sup _{l \in \mathbb{N}_{0}} \frac{1}{|2|^{n} \times|r|^{3 n \frac{\beta+1}{2}}}\left(\frac{1}{|r|^{3 n \beta}}\right)^{l} \varphi\left(r^{l \beta+\frac{\beta-1}{2}}, 0\right) \tag{3.3}
\end{equation*}
$$

for all $x \in V^{n}$.
Proof. Putting $x=x_{1}$ and $x_{2}=0$ in (B.2), we have

$$
\begin{gather*}
\left\|2^{n} f(r x)-\left(\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k}\right) f(x)\right\| \tag{3.4}\\
\leq \varphi(x, 0)
\end{gather*}
$$

for all $x \in V^{n}$. By an easy computation, we have

$$
\begin{align*}
\sum_{k=0}^{n}\binom{n}{k} & 2^{n-k}\left(r s^{2}\right)^{n-k}\left(2 r\left(r^{2}-s^{2}\right)\right)^{k} \tag{3.5}\\
& =\left(2 r s^{2}+2 r^{3}-2 r s^{2}\right)^{n} \\
& =\left(2 r^{3}\right)^{n}
\end{align*}
$$

It follows from (3.4) and (3.5) that

$$
\begin{equation*}
\left\|f(r x)-r^{3 n} f(x)\right\| \leq \frac{1}{|2|^{n}} \varphi(x, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in V^{n}$. The inequality (3.4) implies that

$$
\begin{equation*}
\|f(x)-\mathcal{T} f(x)\| \leq \theta(x) \tag{3.7}
\end{equation*}
$$

for all $x \in V^{n}$, where

$$
\theta(x):=\frac{1}{|2|^{n} \times|r|^{3 n \frac{\beta+1}{2}}} \varphi\left(r^{\frac{\beta-1}{2}} x, 0\right), \quad \mathcal{T} \xi(x):=\frac{1}{r^{3 n \beta}} \xi\left(r^{\beta} x\right)
$$

for all $\xi \in W^{V^{n}}$ and $x \in V^{n}$. Define $\Lambda \eta(x):=\frac{1}{|r|^{3 n \beta}} \eta\left(r^{\beta} x\right)$ for all $\eta \in \mathbb{R}_{+}^{V^{n}}, x \in V^{n}$. It is easy to see that Λ has the form described in (H3) with $E=V^{n}, g_{1}(x):=r^{\beta} x$ for all $x \in V^{n}$ and $L_{1}(x)=\frac{1}{|r|^{3 n \beta}}$. Moreover, for each $\lambda, \mu \in W^{V^{n}}$ and $x \in V^{n}$, we get

$$
\begin{aligned}
\|\mathcal{T} \lambda(x)-\mathcal{T} \mu(x)\| & =\left\|\frac{1}{r^{3 n \beta}} \lambda\left(r^{\beta} x\right)-\frac{1}{r^{3 n \beta}} \mu\left(r^{\beta} x\right)\right\| \\
& \leq L_{1}(x)\left\|\lambda\left(g_{1}(x)\right)-\mu\left(g_{1}(x)\right)\right\|
\end{aligned}
$$

The above relation shows that the hypothesis (H2) is valid. By induction on l, one can check that for any $l \in \mathbb{N}$ and $x \in V^{n}$ that

$$
\begin{align*}
\Lambda^{l} \theta(x) & :=\left(\frac{1}{|r|^{3 n \beta}}\right)^{l} \theta\left(r^{l \beta} x\right) \tag{3.8}\\
& =\frac{1}{|2|^{n} \times|r|^{3 n \frac{\beta+1}{2}}}\left(\frac{1}{|r|^{3 n \beta}}\right)^{l} \varphi\left(r^{l \beta+\frac{\beta-1}{2}}, 0\right)
\end{align*}
$$

for all $x \in V^{n}$. The relations (3.7) and (3.8) necessitate that all assumptions of Theorem $\sqrt{3}$] are satisfied. Hence, there exists a unique mapping
$\mathcal{C}: V^{n} \longrightarrow W$ such that $\mathcal{C}(x)=\lim _{l \rightarrow \infty}\left(\mathcal{T}^{l} f\right)(x)$ for all $x \in V^{n}$, and also (5.3) holds. We also can verified by induction on l that

$$
\begin{equation*}
\left\|\mathfrak{D}_{c}\left(\mathcal{T}^{l} f\right)\left(x_{1}, x_{2}\right)\right\| \leq\left(\frac{1}{|r|^{3 n \beta}}\right)^{l} \varphi\left(r^{l \beta} x_{1}, r^{l \beta} x_{2}\right) \tag{3.9}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$. Letting $l \rightarrow \infty$ in (B.प) and applying (B. त), we arrive at $\mathfrak{D}_{c} \mathcal{C}\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in V^{n}$. This means that the mapping satisfies equation (2.2) and the proof is now completed.

Remark 3.3. We note that in Theorem 5.2, it is assumed that the non-Archimedean field has the characteristic different from r and so the conditions of Theorem B.D are valid because $|r|<|2|<1$.

The following corollaries are some direct applications of Theorem 3.2 concerning the stability of ($\overline{2}, 2)$).

Corollary 3.4. Let $\delta>0$. Let V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from r and $|2|<1$. If $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\left\|\mathfrak{D}_{c} f\left(x_{1}, x_{2}\right)\right\| \leq \delta
$$

for all $x_{1}, x_{2} \in V^{n}$, then there exists a unique multi-cubic mapping \mathcal{C} : $V^{n} \longrightarrow W$ such that

$$
\|f(x)-\mathcal{C}(x)\| \leq \frac{1}{|2|^{n}} \delta
$$

for all $x \in V^{n}$.
Proof. We firstly note that $|r|<1$. Letting $\varphi\left(x_{1}, x_{2}\right)=\delta$ in the case $\beta=-1$ of Theorem [3.2, we have $\lim _{l \rightarrow \infty}\left(\frac{1}{|r|^{-3 n}}\right)^{l} \delta=0$. Therefore, one can obtain the desired result.
Corollary 3.5. Let $p \in \mathbb{R}$ fulfills $p \neq 3 n$. Let V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from r and $|2|<1$. If $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\left\|\mathfrak{D}_{c} f\left(x_{1}, x_{2}\right)\right\| \leq \sum_{k=1}^{2} \sum_{j=1}^{n}\left\|x_{k j}\right\|^{p}
$$

for all $x_{1}, x_{2} \in V^{n}$, then there exists a unique multi-cubic mapping \mathcal{C} : $V^{n} \longrightarrow W$ such that

$$
\|f(x)-\mathcal{C}(x)\| \leq \begin{cases}\frac{1}{|2|^{n} \times|r|^{3 n}} \sum_{j=1}^{n}\left\|x_{1 j}\right\|^{p} & p>3 n \\ \frac{1}{|2|^{n} \times|r|^{p}} \sum_{j=1}^{n}\left\|x_{1 j}\right\|^{p} & p<3 n\end{cases}
$$

for all $x=x_{1} \in V^{n}$.
Proof. Putting $\varphi\left(x_{1}, x_{2}\right)=\sum_{k=1}^{2} \sum_{j=1}^{n}\left\|x_{k j}\right\|^{p}$, we have $\varphi\left(r^{l} x_{1}, r^{l} x_{2}\right)=$ $|r|^{l p} \varphi\left(x_{1}, x_{2}\right)$. It now follows from Theorem $\overline{3.2}$ the first and second inequalities in the cases $\beta=1$ and $\beta=-1$, respectively.

Let A be a nonempty set, (X, d) a metric space, $\psi \in \mathbb{R}_{+}^{A^{n}}$, and $\mathcal{F}_{1}, \mathcal{F}_{2}$ operators mapping a nonempty set $D \subset X^{A}$ into $X^{A^{n}}$. We say that operator equation

$$
\begin{equation*}
\mathcal{F}_{1} \varphi\left(a_{1}, \ldots, a_{n}\right)=\mathcal{F}_{2} \varphi\left(a_{1}, \ldots, a_{n}\right) \tag{3.10}
\end{equation*}
$$

is ψ-hyperstable provided every $\varphi_{0} \in D$ satisfying inequality

$$
d\left(\mathcal{F}_{1} \varphi_{0}\left(a_{1}, \ldots, a_{n}\right), \mathcal{F}_{2} \varphi_{0}\left(a_{1}, \ldots, a_{n}\right)\right) \leq \psi\left(a_{1}, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n} \in A$, fulfils ($\mathbf{B . L D}$); this definition is introduced in [IT]. In other words, a functional equation \mathcal{F} is hyperstable if any mapping f satisfying the equation \mathcal{F} approximately is a true solution of \mathcal{F}. Under some conditions the functional equation (2.2) can be hyperstable as follows.

Corollary 3.6. Suppose that $p_{k j}>0$ for $k \in\{1,2\}$ and $j \in\{1, \ldots, n\}$ fulfill $\sum_{k=1}^{2} \sum_{j=1}^{n} p_{k j} \neq 3 n$. Let V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from r and $|2|<1$. If $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\left\|\mathfrak{D}_{c} f\left(x_{1}, x_{2}\right)\right\| \leq \prod_{k=1}^{2} \prod_{j=1}^{n}\left\|x_{k j}\right\|^{p_{k j}}
$$

for all $x_{1}, x_{2} \in V^{n}$, then f is multi-cubic.

Acknowledgment. The authors wish to thank the anonymous reviewers for their valuable suggestions to improve the quality of the first draft.

References

1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), pp. 64-66.
2. A. Bahyrycz, K. Ciepliński and J. Olko, On Hyers-Ulam stability of two functional equations in non-Archimedean spaces, J. Fixed Point Theory Appl., 18 (2016), pp. 433-444.
3. A. Bodaghi, Ulam stability of a cubic functional equation in various spaces, Mathematica, 55(2) (2013), pp. 125-141.
4. A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam., 38(4) (2013) , pp. 517-528.
5. A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst., 30 (2016), pp. 2309-2317.
6. A. Bodaghi, I.A. Alias and M.H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl., 53 (2011):53, doi:10.1186/1029-242X-2011-53.
7. A. Bodaghi, S.M. Moosavi and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara, 59 (2013), pp. 235-250.
8. A. Bodaghi, C. Park and O.T. Mewomo, Multiquartic functional equations, Adv. Difference Equ., 2019, 2019:312, https://doi.org/10.1186/s13662-019-2255-5
9. A. Bodaghi and B. Shojaee, On an equation characterizing multicubic mappings and its stability and hyperstability, Fixed Point Theory, to appear, arXiv:1907.09378v2
10. J. Brzdȩk and K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal., 74 (2011), pp. 6861-6867.
11. J. Brzdȩk and K. Ciepliński, Hyperstability and Superstability, Abstr. Appl. Anal., 2013, Art. ID 401756, 13 pp.
12. K. Ciepliński, Generalized stability of multi-additive mappings, Appl. Math. Lett., 23 (2010), pp. 1291-1294.
13. K. Ciepliński, On the generalized Hyers-Ulam stability of multiquadratic mappings, Comput. Math. Appl., 62 (2011), pp. 34183426.
14. P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), pp. 431-436.
15. K. Hensel, Uber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber, Deutsche Mathematiker-Vereinigung, 6 (1897), pp. 83-88.
16. D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., U.S.A., 27 (1941), pp. 222-224.
17. K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Russias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), no. 2, 267-278.
18. K.W. Jun and H.M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequ. Appl., 6(2) (2003), pp. 289-302.
19. A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and its Applications, vol. 427, Kluwer Academic Publishers, Dordrecht,
20.
21. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Birkhauser Verlag, Basel, 2009.
22. C. Park and A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces, J. Inequal. Appl., 2020, 6 (2020).
23. J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki. Serija III., 36(1) (2001), pp. 63-72.
24. J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), pp. 126-130.
25. Th.M. Rassias, On the stability of the linear mapping in Banach Space, Proc. Amer. Math. Soc., 72(2) (1978), pp. 297-300.
26. S. Salimi and A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings, J. Fixed Point Theory Appl., (2020) 22:9, https://doi.org/10.1007/s11784-019-0738-3.
27. S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
28. T.Z. Xu, Stability of multi-Jensen mappings in non-Archimedean normed spaces, J. Math. Phys., 53, 023507 (2012); doi: 10.1063/1.368474.
29. T.Z. Xu, Ch. Wang and Th.M. Rassias, On the stability of multiadditive mappings in non-Archimedean normed spaces, J. Comput. Anal. Appl., 18 (2015), pp. 1102-1110.
30. S.Y. Yang, A. Bodaghi and K.A.M. Atan, Approximate cubic *derivations on Banach *-algebras, Abstr. Appl. Anal., 2012, Art. ID 684179, 12 pp .
31. X. Zhao, X. Yang and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal., 2013, Art. ID $415053,8 \mathrm{pp}$.
[^1]
[^0]: 2010 Mathematics Subject Classification. 39B52, 39B72, 39B82, 47H10.
 Key words and phrases. Multi-cubic mapping, Hyers-Ulam stability, fixed point, non-Archimedean normed space.

 Received: 25 August 2019, Accepted: 07 December 2019.

 * Corresponding author.

[^1]: ${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

 E-mail address: nasrin_ebrahimi_h@yahoo.com
 ${ }^{2}$ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran.

 E-mail address: abasalt.bodaghi@gmail.com
 ${ }^{3}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

 E-mail address: mrmardanbeigi@srbiau.ac.ir

