
Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 3 (2020), 131-143

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2019.113393.665

Almost Multi-Cubic Mappings and a Fixed Point Application

Nasrin Ebrahimi Hoseinzadeh1, Abasalt Bodaghi2∗ and Mohammad Reza
Mardanbeigi3

Abstract. The aim of this paper is to introduce n-variables map-
pings which are cubic in each variable and to apply a fixed point the-
orem for the Hyers-Ulam stability of such mapping in
non-Archimedean normed spaces. Moreover, a few corollaries corre-
sponding to some known stability and hyperstability outcomes are
presented.

1. Introduction

The study of stability problems for functional equations is related
to a question of Ulam [26] concerning the stability of group homomor-
phisms and affirmatively answered for Banach spaces by Hyers [16] for
the Cauchy difference. Later, the result of Hyers was significantly gen-
eralized by Aoki [1], Th. M. Rassias [24] (stability incorporated with
sum of powers of norms), Găvruta [14] (stability controlled by a gen-
eral control function) and J. M. Rassias [23] (stability including mixed
product-sum of powers of norms).

Let V be a commutative group, W be a linear space, and n ≥ 2
be an integer. Recall from [12] that a mapping f : V n −→ W is called
multi-additive if it is additive (satisfies the Cauchy’s functional equation
A (x+ y) = A(x)+A(y)) in each variable. Some facts on such mappings
can be found in [20] and many other sources. In addition, f is said to
be multi-quadratic if it is quadratic (satisfies the quadratic functional
equation Q (x+ y) +Q (x− y) = 2Q(x) + 2Q(y)) in each variable [13].
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In [30], Zhao et al. proved that the mapping f : V n −→ W is multi-
quadratic if and only if it satisfies the equality∑

t∈{−1,1}n
f (x1 + tx2) = 2n

∑
j1,j2,...,jn∈{1,2}

f (x1j1 , x2j2 , . . . , xnjn)(1.1)

where xj = (x1j , x2j , . . . , xnj) ∈ V n with j ∈ {1, 2}. In [12] and [13],
Ciepliński studied the generalized Hyers-Ulam stability of multi-additive
and multi-quadratic mappings in Banach spaces, respectively (see also
[30]). The Jensen type of multi-quadratic mappings and their charac-
terization can be found in [25].

The cubic functional equation has been introduced by J. M. Rassias
in [22] as follows:

(1.2) f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y) = 6f(y).

He obtained the general solutions of (1.2) and studied the Hyers-Ulam
stability problem for these cubic functional equation. The following
alternative cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)(1.3)

has been presented by Jun and Kim in [17]. They found out the gen-
eral solutions and established the Hyers-Ulam stability for the functional
equation (1.3). Furthermore, they considered the cubic functional equa-
tion

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y)(1.4)

which somewhat different from (1.3) and proved the Hyers-Ulam stabil-
ity problem for it in Banach spaces setting [18]. Next, the second author
in [5] showed that the functional equation

f(rx+ sy) + f(rx− sy)(1.5)

= rs2 [f(x+ y) + f(x− y)] + 2r
(
r2 − s2

)
f(x)

can be a generalization of the equations (1.3) and (1.4) where r, s are
integer numbers with r ± s ̸= 0; for other forms of the cubic functional
equations and their stabilities on the various Banach spaces refer to
[3], [4], [6], [7] and [29]. Recently, in [9], the second author and Sho-
jaee introduced the multi-cubic mappings (unified as a equation) and
studied the Hyers-Ulam stability for multi-cubic mappings on normed
spaces by a fixed point theorem and moreover proved that a multi-cubic
functional equation can be hyperstable; see also [21] for more forms of
multi-cubic mappings and their stabilities on normed spaces. Besides,
for the characterization and stability of multi-quartic mappings refer to
[8].
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In this paper, by using the functional equation (1.5), we define new
multi-cubic mappings and present a characterization of such mappings.
In other words, we reduce the system of n equations defining the multi-
cubic mappings to obtain a single functional equation. We also prove
the generalized Hyers-Ulam stability for multi-cubic functional equations
by applying the fixed point method in non-Archimedean normed spaces
which is introduced in [10]; for more applications of this approach for the
stability of multi-Cauchy-Jensen and multi-additive-quadratic mappings
see [2]. In addition, for the stability of multi-Jensen and multi-additive
mappings in non-Archimedean spaces refer to [27] and [28], respectively.

2. Characterization of Multi-Cubic Mappings

Throughout this paper, N stands for the set of all positive inte-
gers, N0 := N ∪ {0},R+ := [0,∞), n ∈ N. For any l ∈ N0, n ∈ N,
q = (q1, . . . , qn) ∈ {−1, 1}n and x = (x1, . . . , xn) ∈ V n we write lx :=
(lx1, . . . , lxn) and qx := (q1x1, . . . , qnxn), where lx stands, as usual, for
the scaler product of an element l on x in the vector space V .

From now on, let V and W be vector spaces over the rationals, n ∈ N
and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xni
by xi if there is no risk of ambiguity. Let x1, x2 ∈ V n and T ∈ N0 with
0 ≤ T ≤ n. Put M = {Nn = (N1, N2, . . . , Nn) | Nj ∈ {x1j ± x2j , x1j}},
where j ∈ {1, . . . , n}. Consider

Mn
T := {Nn = (N1, N2, . . . , Nn) ∈ M| Card{Nj : Nj = x1j} = T} .

We say the mapping f : V n −→ W is n-multi-cubic or multi-cubic
if f is cubic in each variable (see equation (1.5)). For the multi-cubic
mappings, we use the following notations:

f (Mn
T ) :=

∑
Nn∈Mn

T

f (Nn) ,(2.1)

f (Mn
T , z) :=

∑
Nn∈Mn

T

f (Nn, z) , (z ∈ V ) .

Let r be the fixed integer in (1.5) such that r ̸= ±1, 0. We say
the mapping f : V n −→ W satisfies the m-power condition in the jth
variable if

f (z1, . . . , zj−1, rzj , zj+1, . . . , zn) = rmf (z1, . . . , zj−1, zj , zj+1, . . . , zn)

for all z1, . . . , zn ∈ V n.

Remark 2.1 ([21]). It is easily verified that if f is a multi-cubic map-
ping, then it satisfies 3-power condition in each of variable. Note that
the converse is not true. Here, by means of an example we show that
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3-power condition in all variables for a mapping f does not imply be-
ing multi-cubic. Let (A, ∥ · ∥) be a Banach algebra. Fix the vector
a0 in A (not necessarily unit). Define the mapping h : An −→ A by
h (a1, . . . , an) =

∏n
j=1 ∥aj∥3a0 for (a1, . . . , an) ∈ An. It is easy to check

that the mapping h satisfies 3-power condition in all variables but not
multi-cubic even for n = 1, which means that is h does not satisfy in
equation (1.5).

In what follows,
(
n
k

)
is the binomial coefficient defined for all n, k ∈ N0

with n ≥ k by n!/(k!(n− k)!).

Theorem 2.2. Suppose that the mapping f : V n −→W is multi-cubic.
Then, f satisfies the equation∑

q∈{−1,1}n
f (rx1 + qsx2) =

n∑
k=0

(
rs2
)n−k [

2r
(
r2 − s2

)]k
f (Mn

k)(2.2)

where r, s are integer numbers with r ± s ̸= 0. The converse is true
provided that f has 3-power condition in all variables.

Proof. (Necessity) We prove that f satisfies the equation (2.2) by induc-
tion on n. For n = 1, it is trivial that f satisfies the equation (1.5). If
(2.2) is valid for some positive integer n > 1, then∑

q∈{−1,1}n+1

f
(
rxn+1

1 + qsxn+1
2

)
= rs2

∑
q∈{−1,1}n

f (rxn1 + qsxn2 , x1n+1 + x2n+1)

+ rs2
∑

q∈{−1,1}n
f (rxn1 + qsxn2 , x1n+1 − x2n+1)

+ 2r
(
r2 − s2

) ∑
q∈{−1,1}n

f (rxn1 + qsxn2 , x1n+1)

= rs2
n∑

k=0

∑
q∈{−1,1}

(
rs2
)n−k [

2r
(
r2 − s2

)]k
f (Mn

k , x1n+1 + qx2n+1)

+ 2r
(
r2 − s2

) n∑
k=0

(
rs2
)n−k [

2r(r2 − s2)
]k
f (Mn

k , x1n+1)

=

n+1∑
k=0

(
rs2
)n+1−k [

2r
(
r2 − s2

)]k
f
(
Mn+1

k

)
.

This means that (2.2) holds for n+ 1.
(Sufficiency) Assume that f satisfies equation (2.2). Fix j ∈ {1, . . . , n}.

Putting x2k = 0 for all k ∈ {1, . . . , n} \{j} in the left side of (2.2) and
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using the assumption, we get

2n−1 × r3(n−1)[f (x11, . . . , x1j−1, rx1j + sx2j , x1j+1, . . . , x1n)(2.3)

+ f (x11, . . . , x1j−1, rx1j − sx2j , x1j+1, . . . , x1n)]

= 2n−1[f (rx11, . . . , rx1j−1, rx1j + sx2j , rx1j+1, . . . , rx1n)

+ f (rx11, . . . , rx1j−1, rx1j − sx2j , rx1j+1, . . . , rx1n)].

Set

f∗ (x1j , x2j) : = f (x11, . . . , x1j−1, x1j + x2j , x1j+1, . . . , x1n)

+ f (x11, . . . , x1j−1, x1j − x2j , x1j+1, . . . , x1n) .

By the above replacements in equation (2.2), relation (2.3) implies that

2n−1r3(n−1)[f (x11, . . . , x1j−1, rx1j + sx2j , x1j+1, . . . , x1n)

(2.4)

+ f (x11, . . . , x1j−1, rx1j − sx2j , x1j+1, . . . , x1n)]

= 2n−1
(
rs2
)n
f∗ (x1j , x2j)

+

n−1∑
k=1

[(
n− 1

k − 1

)
2n−k(rs2)n−k(2r(r2 − s2))k

]
f (x11, . . . , x1n)

+

n−1∑
k=1

[(
n− 1

k

)
2n−k−1(rs2)n−k(2r(r2 − s2))k

]
f∗ (x1j , x2j)

+
(
2r
(
r2 − s2

))n
f (x11, . . . , x1n)

= Ar,sf
∗ (x1j , x2j) +Br,sf (x11, . . . , x1n) ,

where

Ar,s = 2n−1
(
rs2
)n

+

n−1∑
k=1

(
n− 1

k − 1

)
2n−k−1

(
rs2
)n−k (

2r
(
r2 − s2

))k
and

Br,s =
(
2r
(
r2 − s2

))n
+

n−1∑
k=1

(
n− 1

k

)
2n−k

(
rs2
)n−k (

2r
(
r2 − s2

))k
.

On the other hand, we have

Ar,s = rs2

[
(2rs2)n−1 +

n−1∑
k=1

(
n− 1

k

)(
2rs2

)n−k−1 (
2r
(
r2 − s2

))k](2.5)

= rs2
n−1∑
k=0

(
n− 1

k

)(
2rs2

)n−k−1 (
2r
(
r2 − s2

))k
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= rs2
(
2rs2 + 2r3 − 2rs2

)n−1

= 2n−1r3(n−1)rs2.

In addition,

Br,s =
(
2r
(
r2 − s2

))n
(2.6)

+
n−2∑
k=0

(
n− 1

k

)(
2rs2

)n−k−1 (
2r
(
r2 − s2

))k+1

= 2r
(
r2 − s2

)
[
(
2r
(
r2 − s2

))n−1

+
n−2∑
k=0

(
n− 1

k

)
(2rs2)n−k−1

(
2r
(
r2 − s2

))k
]

= 2r
(
r2 − s2

) n−1∑
k=0

(
n− 1

k − 1

)(
2rs2

)n−k−1 (
2r
(
r2 − s2

))k
= 2r

(
r2 − s2

) (
2rs2 + 2r3 − 2rs2

)n−1

= 2n−1r3(n−1)2r
(
r2 − s2

)
.

It follows from relations (2.4), (2.6) and (2.5) that

f (x11, . . . , x1j−1, rx1j + sx2j , x1j+1, . . . , x1n)

+ f (x11, . . . , x1j−1, rx1j − sx2j , x1j+1, . . . , x1n)

= rs2f∗ (x1j , x2j) + 2r
(
r2 − s2

)
f (x11, . . . , x1n) .

This means that f is cubic in the jth variable. Since j is arbitrary, we
obtain the desired result. □

3. Stability Results for (2.2)

We firstly express some basic facts concerning non-Archimedean spaces
and some preliminary results. Let us recall that a metric d on a nonempty
set X is said to be non-Archimedean (or an ultrametric) provided

d(x, z) ≤ max {d(x, y), d(y, z)}
for x, y, z ∈ X. By a non-Archimedean field we mean a field K equipped
with a function (valuation) | · | from K into [0,∞) such that |a| = 0 if
and only if a = 0, |ab| = |a||b|, and |a+b| ≤ max{|a|, |b|} for all a, b ∈ K.
Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation |·|. A function ∥·∥ : X −→ R is a non-Archimedean
norm (valuation) if it satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;
(ii) ∥ax∥ = |a|∥x∥, (x ∈ X , a ∈ K);
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(iii) the strong triangle inequality (ultrametric); namely,

∥x+ y∥ ≤ max {∥x∥, ∥y∥} , (x, y ∈ X ) .

Then, (X , ∥ · ∥) is called a non-Archimedean normed space. Due to the
fact that

∥xn − xm∥ ≤ max {∥xj+1 − xj∥;m ≤ j ≤ n− 1} , (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in
a non-Archimedean normed space X . By a complete non-Archimedean
normed space we mean one in which every Cauchy sequence is conver-
gent. If (X , ∥ · ∥) is a non-Archimedean normed space, then it is easily
verified that the function dX : X × X −→ R+, given by dX (x, y) :=
∥x − y∥, is a non-Archimedean metric on X that is invariant (i.e.,
dX (x + z, y + z) = dX (x, y) for x, y, z ∈ X ). Hence, non-Archimedean
normed spaces are also special cases of metric spaces with invariant met-
rics.

The most important examples of non-Archimedean normed spaces
are the p-adic numbers, which have gained the interest of physicists be-
cause of their connections with some problems coming from quantum
physics, p-adic strings and superstrings [19]. Indeed, Hensel [15] discov-
ered the p-adic numbers as a number theoretical analogue of power series
in complex analysis. The most interesting example of non-Archimedean
normed spaces is p-adic numbers. A key property of p-adic numbers is
that they do not satisfy the Archimedean axiom: for all x, y > 0, there
exists an integer n such that x < ny.

We recall that for a field K with multiplicative identity 1, the charac-

teristic of K is the smallest positive number n such that

n−times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

Throughout, for two sets A and B, the set of all mappings from A to
B is denoted by BA. In this section, we prove the generalized Hyers-
Ulam stability of equation (2.2) in non-Archimedean spaces. The proof
is based on a fixed point result that can be derived from [10, Theorem
1]. To present it, we introduce the following three hypotheses:

(H1) E is a nonempty set, Y is a complete non-Archimedean normed
space over a non-Archimedean field of the characteristic differ-
ent from 2, j ∈ N, g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→
R+,

(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤ maxi∈{1,...,j}Li(x) ∥λ(gi(x))− µ(gi(x))∥ ,

for all λ, µ ∈ Y E , x ∈ E,
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(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) := maxi∈{1,...,j}Li(x)δ(gi(x)), δ ∈ RE
+, x ∈ E.

Here, we highlight the following theorem which is a fundamental result
in fixed point theory [10, Theorem 1]. This result plays a key tool to
obtain our goal in this paper.

Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function θ :
E −→ R+ and the mapping φ : E −→ Y fulfill the following two condi-
tions:

∥T φ(x)− φ(x)∥ ≤ θ(x), lim
l→∞

Λlθ(x) = 0, (x ∈ E) .

Then, for every x ∈ E, the limit liml→∞ T lφ(x) =: ψ(x) and the map-
ping ψ ∈ Y E, defined in this way, is a fixed point of T with

∥φ(x)− ψ(x)∥ ≤ supl∈N0
Λlθ(x), (x ∈ E) .

In the sequel, given the mapping f : V n −→ W , we delineate the
difference operator Dcf : V n × V n −→W by

Dcf(x1, x2) =
∑

q∈{−1,1}n
f (rx1 + qsx2)

−
n∑

k=0

(
rs2
)n−k [

2r
(
r2 − s2

)]k
f (Mn

k)

where f(Mn
k) is defied in (2.1).

Here and subsequently, without loss of generality we assume that r is
a fixed positive integer such that r ≥ 2. We now are ready to indicate
the upcoming result which is the main result in this paper.

Theorem 3.2. Let β ∈ {−1, 1} be fixed, V be a linear space and W be a
complete non-Archimedean normed space over a non-Archimedean field
of the characteristic different from r. Suppose that φ : V n × V n −→ R+

is a function satisfying the equality

lim
l→∞

(
1

|r|3nβ

)l

φ(rlβx1, r
lβx2) = 0(3.1)

for all x1, x2 ∈ V n. Assume also f : V n −→ W is a mapping satisfying
the inequality

∥Dcf(x1, x2)∥ ≤ φ (x1, x2)(3.2)

for all x1, x2 ∈ V n. Then, there exists a unique multi-cubic mapping
C : V n −→W such that

∥f(x)− C(x)∥ ≤ supl∈N0

1

|2|n × |r|3n
β+1
2

(
1

|r|3nβ

)l

φ
(
rlβ+

β−1
2 , 0

)
(3.3)
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for all x ∈ V n.

Proof. Putting x = x1 and x2 = 0 in (3.2), we have∥∥∥∥∥2nf(rx)−
(

n∑
k=0

(
n

k

)
2n−k

(
rs2
)n−k (

2r
(
r2 − s2

))k)
f(x)

∥∥∥∥∥(3.4)

≤ φ(x, 0)

for all x ∈ V n. By an easy computation, we have
n∑

k=0

(
n

k

)
2n−k

(
rs2
)n−k (

2r
(
r2 − s2

))k
(3.5)

=
(
2rs2 + 2r3 − 2rs2

)n
=
(
2r3
)n
.

It follows from (3.4) and (3.5) that∥∥f(rx)− r3nf(x)
∥∥ ≤ 1

|2|n
φ(x, 0)(3.6)

for all x ∈ V n. The inequality (3.4) implies that

∥f(x)− T f(x)∥ ≤ θ(x)(3.7)

for all x ∈ V n, where

θ(x) :=
1

|2|n × |r|3n
β+1
2

φ
(
r

β−1
2 x, 0

)
, T ξ(x) := 1

r3nβ
ξ
(
rβx
)

for all ξ ∈ W V n
and x ∈ V n. Define Λη(x) := 1

|r|3nβ η
(
rβx
)
for all

η ∈ RV n

+ , x ∈ V n. It is easy to see that Λ has the form described in (H3)

with E = V n, g1(x) := rβx for all x ∈ V n and L1(x) =
1

|r|3nβ . Moreover,

for each λ, µ ∈W V n
and x ∈ V n, we get

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

r3nβ
λ(rβx)− 1

r3nβ
µ(rβx)

∥∥∥∥
≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥ .

The above relation shows that the hypothesis (H2) is valid. By induction
on l, one can check that for any l ∈ N and x ∈ V n that

Λlθ(x) :=

(
1

|r|3nβ

)l

θ
(
rlβx

)
(3.8)

=
1

|2|n × |r|3n
β+1
2

(
1

|r|3nβ

)l

φ
(
rlβ+

β−1
2 , 0

)
for all x ∈ V n. The relations (3.7) and (3.8) necessitate that all assump-
tions of Theorem 3.1 are satisfied. Hence, there exists a unique mapping
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C : V n −→ W such that C(x) = liml→∞
(
T lf

)
(x) for all x ∈ V n, and

also (3.3) holds. We also can verified by induction on l that∥∥∥Dc

(
T lf

)
(x1, x2)

∥∥∥ ≤
(

1

|r|3nβ

)l

φ
(
rlβx1, r

lβx2

)
(3.9)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.9) and applying (3.1), we arrive
at DcC (x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping
satisfies equation (2.2) and the proof is now completed. □
Remark 3.3. We note that in Theorem 3.2, it is assumed that the
non-Archimedean field has the characteristic different from r and so the
conditions of Theorem 3.1 are valid because |r| < |2| < 1.

The following corollaries are some direct applications of Theorem 3.2
concerning the stability of (2.2).

Corollary 3.4. Let δ > 0. Let V be a normed space and W be a
complete non-Archimedean normed space over a non-Archimedean field
of the characteristic different from r and |2| < 1. If f : V n −→ W is a
mapping satisfying the inequality

∥Dcf (x1, x2)∥ ≤ δ

for all x1, x2 ∈ V n, then there exists a unique multi-cubic mapping C :
V n −→W such that

∥f(x)− C(x)∥ ≤ 1

|2|n
δ

for all x ∈ V n.

Proof. We firstly note that |r| < 1. Letting φ (x1, x2) = δ in the case

β = −1 of Theorem 3.2, we have liml→∞

(
1

|r|−3n

)l
δ = 0. Therefore, one

can obtain the desired result. □
Corollary 3.5. Let p ∈ R fulfills p ̸= 3n. Let V be a normed space and
W be a complete non-Archimedean normed space over a non-Archimedean
field of the characteristic different from r and |2| < 1. If f : V n −→ W
is a mapping satisfying the inequality

∥Dcf (x1, x2)∥ ≤
2∑

k=1

n∑
j=1

∥xkj∥p

for all x1, x2 ∈ V n, then there exists a unique multi-cubic mapping C :
V n −→W such that

∥f(x)− C(x)∥ ≤


1

|2|n×|r|3n
∑n

j=1 ∥x1j∥p p > 3n

1
|2|n×|r|p

∑n
j=1 ∥x1j∥p p < 3n
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for all x = x1 ∈ V n.

Proof. Putting φ (x1, x2) =
∑2

k=1

∑n
j=1 ∥xkj∥p, we have φ

(
rlx1, r

lx2
)
=

|r|lpφ (x1, x2). It now follows from Theorem 3.2 the first and second
inequalities in the cases β = 1 and β = −1, respectively. □

Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1,F2

operators mapping a nonempty set D ⊂ XA into XAn
. We say that

operator equation

F1φ (a1, . . . , an) = F2φ (a1, . . . , an)(3.10)

is ψ-hyperstable provided every φ0 ∈ D satisfying inequality

d (F1φ0 (a1, . . . , an) ,F2φ0 (a1, . . . , an)) ≤ ψ (a1, . . . , an)

for all a1, . . . , an ∈ A, fulfils (3.10); this definition is introduced in [11].
In other words, a functional equation F is hyperstable if any mapping
f satisfying the equation F approximately is a true solution of F . Un-
der some conditions the functional equation (2.2) can be hyperstable as
follows.

Corollary 3.6. Suppose that pkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n}
fulfill

∑2
k=1

∑n
j=1 pkj ̸= 3n. Let V be a normed space and W be a

complete non-Archimedean normed space over a non-Archimedean field
of the characteristic different from r and |2| < 1. If f : V n −→ W is a
mapping satisfying the inequality

∥Dcf (x1, x2)∥ ≤
2∏

k=1

n∏
j=1

∥xkj∥pkj

for all x1, x2 ∈ V n, then f is multi-cubic.
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10. J. Brzdȩk and K. Ciepliński, A fixed point approach to the stability
of functional equations in non-Archimedean metric spaces, Nonlin-
ear Anal., 74 (2011), pp. 6861-6867.
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