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Continuous k-Frames and their Dual in Hilbert Spaces

Gholamreza Rahimlou1, Reza Ahmadi2∗, Mohammad Ali Jafarizadeh3 and Susan
Nami4

Abstract. The notion of k-frames was recently introduced by
Găvruţa in Hilbert spaces to study atomic systems with respect
to a bounded linear operator. A continuous frame is a family of
vectors in a Hilbert space which allows reproductions of arbitrary
elements by continuous super positions. In this manuscript, we
construct a continuous k-frame, so called ck-frame along with an
atomic system for this version of frames. Also we introduce a new
method for obtaining the dual of a ck-frame and prove some new
results about it.

1. Introduction

Frames were first introduced in the context of non-harmonic Fourier
series [13]. Outside of signal processing, frames did not seem to gen-
erate much interest until the ground breaking work of [11]. Since then
the theory of frames began to be more widely studied. During the last
20 years the theory of frames has been growing rapidly and several new
applications have been developed. For example, besides traditional ap-
plications as signal processing, image processing, data compression, and
sampling theory, frames are now used to mitigate the effect of losses in
pocket-based communication systems and hence to improve the robust-
ness of data transmission [9], and to design high-rate constellation with
full diversity in multiple-antenna code design [18]. In [4–6] some more
applications have been developed.

In quantum mechanics, specifically in the theory of coherent states
[1, 2, 20], this notion was generalized to a family of vectors indexed
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by a locally compact space endowed with a positive Radon measure.
They have been introduced originally by Ali, Gazeau and Antoine [1,
2] and also, independently, by Kaiser [19]. Since then, several papers
dealt with various aspects of the concept, see for instance [15, 16] or
[21]. The continuous wavelet transformation and short time Fourier
transformation are two well known examples of continuous frames.

Traditionally, frames were studied for the whole space or for the closed
subspaces. Găvruţa in [17] gave another generalization of frames namely
K-frames, which allows to reconstruct elements from the range of a
linear and bounded operator in a Hilbert space. In general, range is not
a closed subspace. K-frames allow us in a stable way, to reconstruct
elements from the range of a linear and bounded operator in a Hilbert
space.

In this paper, by combining the notion of continuous frame and K-
frame, we introduce the notion of continuous k-frames and we investigate
some of their properties.

The structure of this article is as follows: in Section 1, we review
some basic properties of frame theory in Hilbert spaces. In Section 2,
cK-frames and some fundamental properties about them are discussed.
Finally, in Section 3 we introduce a new method for obtaining the dual
of a cK-frame and we prove some new results about it.

Throughout the paper, H and H0, are Hilbert spaces, (H0)1 is the
closed unit ball in H0, (X,µ) is a σ-finite measure space, L(H0, H) is
the set of all linear mappings of H0 to H and B(H0,H) is the Banach
algebra of all bounded linear mappings. Instead of B(H,H), we simply
write B(H). First, we introduce a result which present a replacement
requirement of an inner product and an integral in a measure space.

Definition 1.1. A functions f : X → H is called Bochner measur-
able if there exists a sequence of simple function {fn}∞n=1 such that
lim
n→∞

∥fn − f∥ = 0, µ-almost everywhere. If all of fn are integrable and

lim
n→∞

∫
X
∥fn(x)− f(x)∥ dµ(x) = 0,

then, we call f is Bochner integrable.

Lemma 1.2 ([23]). Let f : X → H be a Bochner integrable function.
Then for each h ∈ H we have∫

X
⟨f(x), h⟩dµ(x) =

⟨∫
X
f(x) dµ(x), h

⟩
.

Next, we need the following result in operator theory in next section.

Lemma 1.3 ([12]). Suppose, H,H1,H2 are Hilbert spaces, L1 ∈ B(H1,H)
and L2 ∈ B(H2,H),then the following assertions are equivalent:



CONTINUOUS k-FRAMES AND THEIR DUAL IN HILBERT SPACES 147

(i) R(L1) ⊂ R(L2),
(ii) There exists λ ≥ 0, such that L1L

∗
1 ≤ λL2L

∗
2,

(iii) There exists X ∈ B(H1, H2) such that L1 = L2X.

In next parts, we aim to review notations of k-frames, k-atoms and
continuous frames with the operators of c-frames.

Definition 1.4. Let k ∈ B(H0,H), and {fi}i∈I ⊆ H where I ⊆ Z. We
say that the sequence {fi}i∈I is a k-frame for H with respect to H0, if
there exists constants A,B > 0 such that

(1.1) A ∥k∗h∥2 ≤
∑
i∈I

| ⟨h, fi⟩ |2 ≤ B ∥h∥2 , h ∈ H.

If k = idH , then we get the discrete frame for H and when only
the right hand of the inequality (1.1) holds, we call {fi}i∈I is a Bessel
sequence with the bound B.

Definition 1.5. Let H0 ⊆ H and k ∈ B(H0,H). A Bessel sequence
{fi}i∈I ⊆ H is called a family of local k-atoms for H0 if there exists
a sequence {ci}i∈I of linear functionals on H0 such that the following
conditions are satisfied:

(i) There exists α > 0 such that for each f ∈ H0∑
i∈I

|ci(f)|2 ≤ α ∥f∥2 ,

(ii) for each f ∈ H0,

kf =
∑
i∈I

ci(f)fi.

In this case, we say that the pair {fi, ci} provides a k-atomic decompo-
sition for H0. If k is the identity mapping, then we say that {fi}i∈I ⊆ H
is a family of local atoms for H0.

Definition 1.6. Let f : X → H be a weakly measurable (i.e. for
all h ∈ H, the mapping x → ⟨f(x), h⟩ is measurable). We define the
mapping

∫
X ·fdµ : L2(X) → H as follows:⟨∫

X
gf dµ, h

⟩
:=

∫
X
g(x) ⟨f(x), h⟩ dµ, h ∈ H.

It is clear that, the vector valued integral
∫
X gfdµ exists in H if for each

h ∈ H,
∫
X g(x) ⟨f(x), h⟩ dµ exists.

Lemma 1.7 ([25]). Let f : X → H be a weakly measurable. For each
g ∈ L2(X), the value of

∫
X gfdµ exists in H if and only if for each

h ∈ H, ⟨f, h⟩ ∈ L2(X).
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Definition 1.8. Let f : X → H be weakly measurable. Then f is called
a c-frame for H if there exists 0 < A ≤ B < ∞ such that for all h ∈ H,

A∥h∥2 ≤
∫
X
| ⟨f(x), h⟩ |2dµ ≤ B∥h∥2.

The constants A and B are called c-frame bounds. If A,B can be
chosen so that A = B, we call this c-frame a c-tight frame, and if
A = B = 1 it is called a c-Parseval frame. If we only have the upper
bound, we call f a c-Bessel mapping for H. The representation space
employed in this setting is

L2(X,H) = {φ : X → H|φ is measurable and ∥φ∥2 < ∞} ,

where ∥φ∥2 =
(∫

X ∥φ(x)∥2 dµ
) 1

2
.

For each f, g ∈ L2(X,H), the mapping x → ⟨f(x), g(x)⟩ of X to C is
measurable, and it can be proved that L2(X,H) is a Hilbert space with
the inner product defined by

⟨f, g⟩L2 =

∫
X
⟨f(x), g(x)⟩ dµ.

We shall write L2(X) when H = C. Suppose that f is a c-Bessel map-
ping, then the synthesis and analysis operators are defined by

Tf : L2(X) −→ H,

⟨Tf (g), h⟩ =
∫
X
g(x) ⟨f(x), h⟩ dµ(x),

and

T ∗
f : H −→ L2(X),

T ∗
f h = ⟨h, f⟩ .

For the synthesis operator, by the notation of vector valued integrals,
we can write

Tf (g) =

∫
X
gf dµ, g ∈ L2(X).

Therefore, the frame operator Sf := TfT
∗
f is given by,

Sfh =

∫
X
⟨h, f⟩ f dµ, for any h ∈ H,

Now, when f is a c-frame for H with the frame bounds A and B, we get

AIdH ≤ Sf ≤ BIdH .

Hence, Sf is a positive, self-adjoint and invertible operator. The next
result will be used in the next section.
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Lemma 1.9 ([14]). Let f : X → H be a c-Bessel mapping for H, and
u ∈ B(H,H0). Then uf : X → H0 is a c-Bessel mapping for H0 with

uTf = Tuf .

2. Continuous k-frames and ck-atoms

In this section, we introduce ck-atoms and continuous k-frames and
show that these are equivalent. This work is a generalization of the
discrete case, which was presented in [17]. For this, we need the following
result.

Proposition 2.1. Let f : X → H be weakly measurable. Then f is
a c-Bessel mapping for H if and only if

∫
X gfdµ exists in H for each

g ∈ L2(X).

Proof. Suppose that
∫
X gfdµ exists for each g ∈ L2(X). By Lemma 1.7,

⟨f, h⟩ ∈ L2(X) for each h ∈ H. We have∣∣∣∣∫
X
gfdµ

∣∣∣∣ = sup
∥t∥=1

∣∣∣∣⟨∫
X
gfdµ, t

⟩∣∣∣∣
= sup

∥t∥=1

∣∣∣∣∫
X
g(x) ⟨f(x), t⟩ dµ

∣∣∣∣
≤ ∥g∥2 sup

∥t∥=1
∥⟨f, t⟩∥2 .

Since, for every x ∈ X,

sup
∥t∥=1

| ⟨f(x), t⟩ | ≤ ∥f(x)∥

< ∞,

by Banach-Steinhaus theorem (see [10], page 407), sup∥t∥=1 ∥⟨f, t⟩∥ <
∞. Hence ∥∥∥∥∫

X
·fdµ

∥∥∥∥ ≤ sup
∥t∥=1

∥⟨f, t⟩∥2

< ∞.

The above inequality implies that
∫
X ·fdµ is bounded and sup

∥t∥=1
∥⟨f, t⟩∥2

is an upper bounded for
∫
X ·fdµ.Now the adjoint of

∫
X .fdµ is calculated

as follow:
For each h ∈ H and g ∈ L2(X), we have⟨

g,

(∫
X
·fdµ

)∗
(h)

⟩
=

⟨∫
X
gfdµ, h

⟩
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=

∫
X
g(x) ⟨f(x), h⟩ dµ

= ⟨g, ⟨h, f⟩⟩ .

Thus, for each h ∈ H,

(2.1)

(∫
X
·fdµ

)∗
(h) = ⟨h, f⟩ .

Therefore, ∫
X
| ⟨h, f(x)⟩ |2dµ =

∥∥∥∥(∫
X
·fdµ

)∗
(h)

∥∥∥∥2
≤
∥∥∥∥(∫

X
·fdµ

)∗∥∥∥∥2 ∥h∥2
=

∥∥∥∥∫
X
·fdµ

∥∥∥∥2 ∥h∥2
≤

(
sup
∥t∥=1

∥⟨f, t⟩∥22

)
∥h∥2 .

Hence, f is a c-Bessel mapping for H. Now, if f is a c-Bessel mapping
for H, then for each h ∈ H, we have ⟨h, f⟩ ∈ L2(X). Consequently, by
Lemma 1.7,

∫
X .gfdµ exists for each g ∈ L2(X). □

Definition 2.2. Let H0 ⊆ H and f : X → H be weakly measurable and
k ∈ B(H0,H). Then f is called a local ck-atoms for H0 if the following
conditions are satisfied:

(i) For each g ∈ L2(X), the vector valued integral
∫
X gfdµ exists

in H.
(ii) There exist a > 0 and ℓ : X → L(H0,C) such that ℓ(·)(h) ∈

L2(X) for each h ∈ H0 and also

∥ℓ(·)(h)∥2 ≤ a ∥h∥ ,

kh =

∫
X
ℓ(·)(h)fdµ.

Now, in this case, when k is the identity function on H0, we call f as
a local c-atoms for H0.

Definition 2.3. Let k ∈ B(H0,H) and f : X → H be weakly mea-
surable. Then f is called a ck-frame with respect to H0, if there exist
constants 0 < A ≤ B < ∞ such that for each h ∈ H,

A ∥k∗h∥2 ≤
∫
X
| ⟨h, f(x)⟩ |2dµ ≤ B ∥h∥2 .
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Theorem 2.4. Let H0 ⊆ H and k ∈ B(H0,H). If f : X → H is weakly
measurable, then the following assertions are equivalent:

(i) f is a local ck-atoms for H0.

(ii) f is a ck-frame for H with respect to H0.

(iii) f is a c-Bessel mapping for H, and there exists g ∈ B(H0, L
2(X))

such that

kh =

∫
X
g(h)fdµ, h ∈ H0.

Proof. (i)⇒(ii). By the hypothesis and Proposition 2.1, f is a c-Bessel
mapping for H. For each h ∈ H we have

∥k∗h∥ = sup
∥t∥=1

| ⟨k∗(h), t⟩ |

= sup
∥t∥=1

| ⟨h, k(t)⟩ |.

Now by (i) there exist c > 0 and ℓ : X → L(H0,C) such that for every
h ∈ H0, ℓ(·)(h) ∈ L2(X), and also

∥ℓ(·)(h)∥2 ≤ c ∥h∥ ,

kh =

∫
X
ℓ(·)(h)fdµ.

So for each h ∈ H,

∥k∗(h)∥2 = sup
∥t∥=1

∣∣∣∣⟨h, ∫
X
ℓ(·)(t)fdµ

⟩∣∣∣∣2
= sup

∥t∥=1

∣∣∣∣∫
X
ℓ(x)(t) ⟨h, f(x)⟩ dµ

∣∣∣∣2
≤ sup

∥t∥=1
∥ℓ(·)(t)∥22

(∫
X
| ⟨h, f(x)⟩ |2dµ

)
≤ sup

∥t∥=1
c2 ∥t∥2

∫
X
| ⟨h, f(x)⟩ |2dµ

= c2
∫
X
| ⟨h, f(x)⟩ |2dµ.

(ii)⇒(iii). Since f is a c-Bessel mapping for H, Tf : L2(X) → H is a
bounded linear operator. By (ii), for each h ∈ H

A ∥k∗(h)∥2 ≤
∥∥T ∗

f (h)
∥∥2 .
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Now for each h ∈ H, we have

A ⟨kk∗(h), h⟩ = A ∥k∗(h)∥2

≤
∥∥T ∗

f (h)
∥∥2

=
⟨
TfT

∗
f (h), h

⟩
.

thus

kk∗ ≤ 1

A
TfT

∗
f .

Finally, by Lemma 1.3, there exists a bounded linear operator M :
H0 −→ L2(X) such that k = TfM . So for each h ∈ H0

kh = Tf (M(h))

=

∫
X
M(h)fdµ.

(iii)⇒ (i). Since f is a c-Bessel mapping for H,
∫
X gfdµ for each g ∈

L2(X), by Lemma 2.1 exists. By (iii), there exists g ∈ B(H0, L
2(X))

such that

kh =

∫
X
g(h)fdµ, h ∈ H0.

Now we define

ℓ : X → L(H0,C), ℓ(·)(h) := g(h)(·), h ∈ H0,

so we have

k(h) =

∫
X
ℓ(·)(h)fdµ, h ∈ H0,

also

∥ℓ(·)(h)∥2 = ∥g(h)(·)∥2
≤ ∥g∥ ∥h∥ .

This completes the proof. □
Theorem 2.5. Let k ∈ B(H0,H). Suppose that f : X → H is weakly
measurable. Then f is a ck-frame for H with respect to H0 if and only
if the mapping

Lf : L2(X) −→ H, Lf (g) =

∫
X
gfdµ,

is a well-defined bounded linear operator with R(k) ⊂ R(Lf ).

Proof. First we assume that f is a ck-frame for H with respect to H0.
Then, by the definition, f is a c-Bessel mapping for and we have

A ∥k∗(h)∥2 ≤
∫
X
| ⟨h, f(x)⟩ |2dµ

=
∥∥T ∗

f (h)
∥∥2 ,
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thus
Akk∗ ≤ TfT

∗
f ,

and Theorem 1.3 implies that

R(k) ⊂ R(Tf ).

Since Lf = Tf , Lf is a bounded linear operator. Now, let

Lf : L2(X) −→ H

Lf (g) =

∫
X
gfdµ,

be a well-defined bounded linear operator of L2(X) into H with R(k) ⊂
R(Lf ). By Proposition 2.1, f is a c-Bessel mapping for H. So it is
sufficient to show that it has a lower ck-frame bound. Since k and Lf

are bounded linear operators and R(k) ⊂ R(Lf ), by Lemma 1.3, there
exists A > 0 such that Akk∗ ≤ LfL

∗
f . Now for each h ∈ H,

⟨Akk∗(h), h⟩ ≤
⟨
LfL

∗
f (h), h

⟩
,

consequently by (2.1) we have

A ∥k∗(h)∥2 ≤
∥∥L∗

f (h)
∥∥2

=

∫
X
| ⟨h, f(x)⟩ |2dµ,

and the proof is complete. □
Generally, in ck-frames, as in k-frames, the frame operator is not

invertible. However, we have the following:

Theorem 2.6. Let k ∈ B(H0,H), and f : X → H be a ck-frame for H
with respect to H0, with bounds A,B. If k has a closed range, then Sf is
invertible on R(k), and for each h ∈ R(k)

B−1 ∥h∥2 ≤
⟨
(Sf |R(k))

−1h, h
⟩
≤ A−1∥k†∥2∥h∥2.

Proof. For each h ∈ H

A∥k∗h∥2 ≤
∫
X
| ⟨h, f⟩ |2 dµ

= ⟨Sf (h), h⟩
≤ B∥h∥2,

hence

Akk∗ ≤ Sf ≤ BI.

Since kk†|R(k) = IR(k), for each h ∈ R(k), then

∥h∥ = ∥I∗R(k)h∥ = ∥(k†|R(k))
∗k∗h∥ ≤ ∥k†∥.∥k∗h∥.
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Therefore, for each h ∈ R(k),

A∥k†∥−2∥h∥2 ≤ ⟨Sf (h), h⟩ ≤ B ∥h∥2 .
hence, Sf is invertibale on R(k), and for each h ∈ R(k),

B−1 ∥h∥2 ≤
⟨(

Sf |R(k)

)−1
(h), h

⟩
≤ A−1∥k†∥2∥h∥2.

□
Corollary 2.7. Let k ∈ B(H0,H), and f : X → H be a ck-frame for
H with respect to H0, with bounds A,B. If k has a closed range with
R(k) ⊂ R(f), then f is a c-frame for R(k) with bounds A∥k†∥−2 and
B, respectively.

3. Continuous k-dual

In this section, we introduce the dual of ck-frames and prove some
theorems about them. Throughout this section, the orthogonal projec-
tion of H onto a closed subspace V ⊆ H.

Theorem 3.1. Let k ∈ B(H0,H), and let f : X → H be a c-Bessel
mapping for H, and g : X → H0 be a c-Bessel mapping for H0. Then
the following assertions are equivalent:

(i) For each h0 ∈ H0, kh0 = Tf (⟨h0, g⟩).
(ii) For each h ∈ H, k∗h = Tg(⟨h, f⟩).
(iii) For each h ∈ H,h0 ∈ H0,

⟨kh0, h⟩ =
∫
X
⟨h0, g(x)⟩ ⟨f(x), h⟩ dµ.

(iv) For each h ∈ H,h0 ∈ H0,

⟨k∗h, h0⟩ =
∫
X
⟨h, f(x)⟩ ⟨g(x), h0⟩ dµ.

(v) For any orthonormal bases {γj}j∈J for H0, and {ei}i∈I for H,

⟨k∗ei, γj⟩ =
∫
X
⟨ei, f(x)⟩ ⟨g(x), γj⟩ dµ, i ∈ I j ∈ J.

Proof. (i)⇒(ii). If h ∈ H and h0 ∈ H0, then

⟨h0, k∗h⟩ = ⟨Tf (⟨h0, g⟩), h⟩

=

∫
X
⟨h0, g(x)⟩ ⟨f(x), h⟩ dµ

=

∫
X
⟨g(x), h0⟩ ⟨h, f(x)⟩ dµ
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= ⟨Tg(⟨h, f⟩), h0⟩
= ⟨h0, Tg(⟨h, f⟩)⟩ .

Hence (ii) is proved.
The part (ii)⇒(i) follows similarly.
(iv)⇒(v), (ii)⇔(iii), and (iii)⇔(iv) are evident.
(v)⇒(iv). Let h ∈ H,h0 ∈ H0. Then∫
X
⟨h, f(x)⟩ ⟨g(x), h0⟩ dµ = ⟨⟨h, f⟩ , ⟨h0, g⟩⟩L2

=

⟨⟨
h,
∑
i

⟨ei, f⟩ ei

⟩
,

⟨
h0,
∑
j

⟨γj , g⟩ γj

⟩⟩
L2

=
∑
i,j

⟨⟨
h, ⟨ei, f⟩ei

⟩⟨
h0, ⟨γj , g⟩γj

⟩⟩
L2

=
∑
i,j

⟨h, ei⟩ ⟨γj , h0⟩ ⟨⟨ei, f⟩ , ⟨γj , g⟩⟩L2

=
∑
i,j

⟨h, ei⟩ ⟨γj , h0⟩
∫
X
⟨ei, f(x)⟩ ⟨g(x), γj⟩ dµ

=
∑
i,j

⟨h, ei⟩ ⟨γj , h0⟩ ⟨k∗ei, γj⟩

=
∑
i,j

⟨h, ei⟩ ⟨ei, kγj⟩ ⟨γj , h0⟩

=
∑
j

⟨h, kγj⟩ ⟨γj , h0⟩

=
∑
j

⟨k∗h, γj⟩ ⟨γj , h0⟩

= ⟨k∗h, h0⟩ .
This completes the proof. □
Theorem 3.2. Let k ∈ B(H0,H) and f : X → H be a c-Bessel mapping
for Hand g : X → H0 be a c-Bessel mapping for H0.

(i) The following condition is equivalent to the assertions of Theo-
rem 3.1:

∥kh0∥2 =
∫
X
⟨h0, g(x)⟩ ⟨f(x), kh0⟩ dµ, h0 ∈ H0.

(ii) The following condition is equivalent to the assertions of Theo-
rem 3.1:

∥k∗h∥2 =
∫
X
⟨h, f(x)⟩ ⟨g(x), k∗h⟩ dµ, h ∈ H.
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Proof. (i) Define F : H0 → H0 by

F (h0) := Tg ⟨kh0, f⟩ , h0 ∈ H0.

F is clearly linear and bounded, since for each h0 ∈ H0,

∥F (h0)∥ = sup
k0∈(Ho)1

|⟨F (h0), k0⟩|

= sup
k0∈(Ho)1

∣∣∣∣∫
X
⟨g(x), k0⟩ ⟨kh0, f(x)⟩ dµ

∣∣∣∣
≤ sup

k0∈(Ho)1

(∫
X
|⟨k0, g(x)⟩|2 dµ

)1/2

× sup
ℓ0∈(Ho)1

(∫
X
|⟨ℓ0, f(x)⟩|2 dµ

)1/2

∥kh0∥

≤ sup
k0∈(Ho)1

(∫
X
|⟨k0, g(x)⟩|2 dµ

)1/2

× sup
ℓ0∈(Ho)1

(∫
X
|⟨ℓ0, f(x)⟩|2 dµ

)1/2

∥k∥ ∥h0∥ .

For each h0 ∈ H0, we have

⟨h0, k∗kh0⟩ = ∥kh0∥2

=

∫
X
⟨h0, g(x)⟩ ⟨f(x), kh0⟩ dµ

= ⟨Tg ⟨kh0, f⟩ , h0⟩
= ⟨h0, Tg ⟨kh0, f⟩⟩ .

Hence, k∗kh0 = Tg ⟨kh0, f⟩. The part (ii) follows similarly. □

Now, we can define the ck-dual pair for two c-Bessel mappings as
follows.

Definition 3.3. Let k ∈ B(H0,H), and let f : X → H be a c-Bessel
mapping for H, and g : X → H0 be a c-Bessel mapping for H0. We say
that f , g is a ck-dual pair, if one of the assertions of Theorem 3.1 holds.

Theorem 3.4. Let k ∈ B(H0,H), and let f : X → H be c-Bessel
mapping for H, and g : X → H0 be a c-Bessel mapping for H0. Let f ,
g be a ck-dual pair. Then f is a ck-frame for H with respect to H0, and
g is a ck∗-frame for H0 with respect to H.

Proof. For each h ∈ H0

∥kh∥4 = | ⟨Tf (⟨h, g⟩), kh⟩ |2
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=

∣∣∣∣∫
X
⟨h, g(x)⟩ . ⟨f(x), kh⟩ dµ

∣∣∣∣2
≤
(∫

X
|⟨h, g(x)⟩|2 dµ

)(∫
X
| ⟨f(x), kh⟩ |2 dµ

)
≤
(∫

X
| ⟨h, g(x)⟩ |2 dµ

)
B∥kh∥2,

where B is an upper bound for the c-Bessel mapping f . This shows that
g is a ck∗-frame for H0 with respect to H, with the lower bound B−1.
Similarly, f is a ck-frame for H. □

Now, we characterize all ck-duals for a ck-frame with the same method
of Proposition 1 in [3].

Theorem 3.5. Let k ∈ B(H0,H) with the closed range and f : X → H
be a Bochner integrable function and ck-frame for H with respect to H0.
Then k∗(Sf |R(k))

−1πSf (R(k))f is a ck-dual of πR(k)f with bounds B−1

and A−1∥k∥2∥k†∥2, respectively, where A and B are ck-frame bounds for
f .

Proof. Since

k∗
(
Sf |R(k)

)−1
πSf (R(k)) ∈ B(H,H0),

then, by Lemma 1.9, k∗(Sf |R(k))
−1πSf (R(k))f is a c-Bessel mapping for

H0 and moreover by Lemma 1.2 we get S∗
f = πR(k)Sf |Sf (R(k)). Hence,

for each h ∈ R(k) and h0 ∈ H0, we have

⟨h0, k∗h⟩ =
⟨((

Sf |R(k)

)−1
Sf

)∗
kh0, h

⟩
=
⟨
S∗
f

((
Sf |R(k)

)−1
)∗

kh0, h
⟩

=
⟨
πR(k)Sf |S(R(k))πSf (R(k))

(
(Sf |R(k))

−1
)∗

kh0, h
⟩

=
⟨
Tf

(⟨
πSf (R(k))

((
Sf |R(k)

)−1
)∗

kh0, f
⟩)

, πR(k)h
⟩

=

∫
X

⟨
πSf (R(k)) =

(
(Sf |R(k))

−1
)∗

kh0, f(x)
⟩ ⟨

f(x), πR(k)h
⟩
dµ

=

∫
X

⟨
h0, k

∗ (Sf |R(k)

)−1
πSf (R(k))f(x)

⟩ ⟨
πR(k)f(x), h

⟩
dµ.

Therefore,

⟨k∗h, h0⟩ =
∫
X

⟨
h, πR(k)f(x)

⟩ ⟨
k∗(Sf |R(k))

−1πSf (R(k))f(x), h0

⟩
dµ.

Now, put g := k∗(Sf |R(k))
−1πSf (R(k))f . By Theorem 3.1, g is a ck-dual

for πR(k)f with the lower bound B−1. Furthermore, by Theorem 2.6,
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for each h ∈ R(k),∥∥∥((Sf |R(k)

)−1
)∗

h
∥∥∥2 = ⟨Sf |−1

R(k)(Sf |−1
R(k))

∗h, h
⟩

≤ A−1∥k†∥2∥
((

Sf |R(k)

)−1
)∗

h∥∥h∥.

Therefore, for each h ∈ H∫
X
|⟨h, g(x)⟩|2 dµ =

∫
X

∣∣∣⟨((Sf |R(k)

)−1
)∗

k(h), f(x)
⟩∣∣∣2 dµ

=
⟨
Sf |R(k)

((
Sf |R(k)

)−1
)∗

k(h),
((

Sf |R(k)

)−1
)∗

k(h)
⟩

=
⟨((

Sf |R(k)

)−1
)∗

k(h), k(h)
⟩

≤ ∥k(h)∥
∥∥∥((Sf |R(k)

)−1
)∗

k(h)
∥∥∥

≤ ∥k(h)∥A−1∥k†∥2∥k(h)∥

≤ A−1∥k∥2∥k†∥2∥h∥2,
and the result follows. □
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