Non-Equivalent Norms on $C^{b}(K)$

Ali Reza Khoddami

Abstract

Let A be a non-zero normed vector space and let $K=$ $\overline{B_{1}^{(0)}}$ be the closed unit ball of A. Also, let φ be a non-zero element of A^{*} such that $\|\varphi\| \leq 1$. We first define a new norm $\|\cdot\|_{\varphi}$ on $C^{b}(K)$, that is a non-complete, non-algebraic norm and also nonequivalent to the norm $\|\cdot\|_{\infty}$. We next show that for $0 \neq \psi \in$ A^{*} with $\|\psi\| \leq 1$, the two norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent. Also by applying the norm $\|\cdot\|_{\varphi}$ and a new product "." on $C^{b}(K)$, we present the normed algebra $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$. Finally we investigate some relations between strongly zero-product preserving maps on $C^{b}(K)$ and $C^{b \varphi}(K)$.

1. Introduction

Let $K=\overline{B_{1}^{(0)}}$ be the closed unit ball of a non-zero normed vector space A and let φ be a non-zero element of A^{*} such that $\|\varphi\| \leq 1$. We consider $C^{b}(K)$ for the space of all complex-valued, bounded and continuous functions on K. It is well-known that $C^{b}(K)$ is a unital algebra with respect to the pointwise algebraic operations. The function 1_{K} is the identity of $C^{b}(K)$. The uniform norm on K is

$$
\|f\|_{\infty}=\sup \{|f(x)| \quad \mid \quad x \in K\},
$$

for all $f \in C^{b}(K)$. Clearly $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ is a commutative, unital, Banach algebra. For details concerning the Banach algebra $C^{b}(K)$, we refer to [1] and [9].

[^0]Let A and B be two normed algebras. Then a linear map $T: A \longrightarrow B$ is said to be zero-product preserving, if $T(a) T(c)=0$ whenever $a c=$ $0, \quad a, c \in A$. Also T is said to be strongly zero-product preserving, if for any two sequences $\left\{a_{n}\right\}_{n},\left\{c_{n}\right\}_{n}$ in $A, T\left(a_{n}\right) T\left(c_{n}\right) \longrightarrow 0$ whenever $a_{n} c_{n} \longrightarrow 0$. Many of the basic properties concerning strongly zeroproduct preserving maps are investigated in [3-6].

Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on A. It is obvious that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent, if and only if, for each sequence $\left\{a_{n}\right\}_{n} \subseteq A$,

$$
\left\|a_{n}\right\|_{1} \longrightarrow 0 \quad \Leftrightarrow \quad\left\|a_{n}\right\|_{2} \longrightarrow 0
$$

On the space $C^{b}(K)$ we define the product

$$
(f \cdot g)(x)=f(x) \varphi(x) g(x), \quad x \in K
$$

for all $f, g \in C^{b}(K)$. Obviously $\left(C^{b}(K), \cdot\right)$ is an algebra that we denote it by $C^{b \varphi}(K)$. In $[7]$ it is shown that $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is a non-unital, commutative Banach algebra. Some basic properties such as, idempotent, nilpotent, zero divisor elements and also bounded approximate identities of $C^{b \varphi}(K)$ are investigated in [7]. Also some relations between character spaces of $C^{b \varphi}(K)$ and $C^{b}(K)$ are characterized in [7].

Let A be a Banach algebra. In [2] R. A. Kamyabi-Gol and M. Janfada defined a new product ". " on A by $a \cdot c=a \varepsilon c$ for all $a, c \in A$, where ε is a fixed element of the closed unit ball $\overline{B_{1}^{(0)}}$ of A. The pair (A, \cdot) is a Banach algebra which is denoted by A_{ε}. Some properties such as, Arens regularity, amenability of A_{ε} and also derivations on A_{ε} are investigated in [2]. Also biflatness, biprojectivity, φ-amenability and φ-contractibility of A_{ε} are investigated in [8].

For a normed algebra $(A,\|\cdot\|)$, define A^{\sim} to be the set of all equivalent classes of Cauchy sequences obtained by the relation $\left\{a_{n}\right\}_{n} \sim\left\{b_{n}\right\}_{n}$ if and only if $\lim _{n \rightarrow \infty}\left\|a_{n}-b_{n}\right\|=0$. For $a^{\sim}=\left[\left\{a_{n}\right\}_{n}\right]$ and $b^{\sim}=\left[\left\{b_{n}\right\}_{n}\right]$, the operations

$$
\begin{aligned}
a^{\sim}+b^{\sim} & =\left[\left\{a_{n}+b_{n}\right\}_{n}\right], \\
\lambda a^{\sim} & =\left[\left\{\lambda a_{n}\right\}_{n}\right], \\
a^{\sim} b^{\sim} & =\left[\left\{a_{n} b_{n}\right\}_{n}\right], \\
\left\|a^{\sim}\right\|_{\sim} & =\lim _{n \longrightarrow \infty}\left\|a_{n}\right\|,
\end{aligned}
$$

make A^{\sim} into a Banach algebra containing a dense subalgebra that is isometric with $A .\left(A^{\sim},\|\cdot\|_{\sim}\right)$ is called the completion of A.

In this paper we first define a new norm $\|\cdot\|_{\varphi}$ on $C^{b}(K)$, that is a noncomplete, non-algebraic norm and also non-equivalent to the norm $\|\cdot\|_{\infty}$. We next show that for $0 \neq \psi \in A^{*}$ with $\|\psi\| \leq 1$, the two norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent. Also by applying the norm $\|\cdot\|_{\varphi}$ and a new product " . " on $C^{b}(K)$,
we present the normed algebra $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$. We finally investigate some relations between strongly zero-product preserving maps on $C^{b}(K)$ and $C^{b \varphi}(K)$.

2. Non-Equivalent Norms on $C^{b}(K)$

In this section, let A be a non-zero normed vector space and let φ be a non-zero linear functional on A with $\|\varphi\| \leq 1$. Also let $K=\overline{B_{1}^{(0)}}$ be the closed unit ball of A. We set $\|f\|_{\varphi}=\|f \varphi\|_{\infty}$ for all $f \in C^{b}(K)$. Also let 1_{K} be the constant function on K such that $1_{K}(x)=1$ for all $x \in K$. The following proposition is used repeatedly in the sequel.
Proposition 2.1. For $f \in C^{b}(K), f \varphi=0$ if and only if $f=0$.
Proof. Let $f \varphi=0$. So $\left.f\right|_{K \backslash \operatorname{ker} \varphi}=0$. Choose $e \in A$ such that $\varphi(e)=1$.
Since K is convex so, $\frac{1}{n+1} \frac{e}{\|e\|}+\left(1-\frac{1}{n+1}\right) k_{0} \in K \backslash \operatorname{ker} \varphi$ for all $k_{0} \in$
$K \cap \operatorname{ker} \varphi$ and for all $n \in \mathbb{N}$. Clearly $\frac{1}{n+1} \frac{e}{\|e\|}+\left(1-\frac{1}{n+1}\right) k_{0} \longrightarrow k_{0}$ and by continuity of f,

$$
0=f\left(\frac{1}{n+1} \frac{e}{\|e\|}+\left(1-\frac{1}{n+1}\right) k_{0}\right) \longrightarrow f\left(k_{0}\right) .
$$

This shows that $f=0$ on K.
Proposition 2.2. $\left(C^{b}(K),\|\cdot\|_{\varphi}\right)$ is a non-complete normed vector space.
Proof. Let $\|f\|_{\varphi}=\|f \varphi\|_{\infty}=0$. Then $f \varphi=0$. So by Proposition 2.1 $f=0$. Clearly $\|\alpha f\|_{\varphi}=|\alpha|\|f\|_{\varphi}$ and $\|f+g\|_{\varphi} \leq\|f\|_{\varphi}+\|g\|_{\varphi}$ for all $f, g \in C^{b}(K)$. We shall show that $\|\cdot\|_{\varphi}$ is a non-complete norm. To this end, define $f_{n}: K \longrightarrow \mathbb{C}$ by,

$$
f_{n}(x)=\frac{n \sqrt[3]{|\varphi(x)|}}{n \sqrt[3]{|\varphi(x)|^{2}}+1}
$$

So $\left(f_{n} \varphi\right)(x)=f_{n}(x) \varphi(x)=\frac{n \sqrt[3]{|\varphi(x)| \varphi(x)}}{n \sqrt[3]{|\varphi(x)|^{2}}+1}$. Hence we can conclude that $f_{n} \varphi \xrightarrow{\|\cdot\|_{\infty}} g$ where

$$
g(x)= \begin{cases}0, & x \in K \cap \operatorname{ker} \varphi \\ \frac{\varphi(x)}{\sqrt[3]{|\varphi(x)|}}, & x \in K \backslash \operatorname{ker} \varphi\end{cases}
$$

It follows that

$$
\begin{aligned}
\lim _{m, n \longrightarrow \infty}\left\|f_{n}-f_{m}\right\|_{\varphi} & =\lim _{m, n \longrightarrow \infty}\left\|f_{n} \varphi-f_{m} \varphi\right\|_{\infty} \\
& =0 .
\end{aligned}
$$

So $\left\{f_{n}\right\}_{n}$ is a Cauchy sequence in $\left(C^{b}(K),\|\cdot\|_{\varphi}\right)$. We shall show that there is no function $h \in C^{b}(K)$ such that, $f_{n} \xrightarrow{\|\cdot\|_{\varphi}} h$. On the contrary, if $f_{n} \xrightarrow{\|\cdot\|_{\varphi}} h$ for some $h \in C^{b}(K)$ then

$$
\begin{aligned}
\lim _{n \longrightarrow \infty}\left\|f_{n} \varphi-h \varphi\right\|_{\infty} & =\lim _{n \longrightarrow \infty}\left\|f_{n}-h\right\|_{\varphi} \\
& =0 .
\end{aligned}
$$

Hence $g=h \varphi$. So $h(x)=\frac{g(x)}{\varphi(x)}=\frac{\frac{\varphi(x)}{\sqrt[3]{|\varphi(x)|}}}{\varphi(x)}=\frac{1}{\sqrt[3]{|\varphi(x)|}}$ for all $x \in K \backslash \operatorname{ker} \varphi$. This shows that, h is not a bounded and continuous function on K, that is a contradiction. So $\left(C^{b}(K),\|\cdot\|_{\varphi}\right)$ is not complete.
Corollary 2.3. $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are not equivalent norms.
Proof. Since by Proposition $2.2\left(C^{b}(K),\|\cdot\|_{\varphi}\right)$ is not complete, so $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are not equivalent norms.

In the following example we present a sequence $\left\{f_{n}\right\}_{n}$ in $C^{b}(K)$ such that, $\left\|f_{n}\right\|_{\varphi} \rightarrow 0$, whereas $\left\|f_{n}\right\|_{\infty} \nrightarrow 0$.
Example 2.4. Define $f_{n}: K \longrightarrow \mathbb{C}$ by $f_{n}(x)=\frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$.
Clearly $f_{n}(0)=1 \nrightarrow 0$. So $\left\|f_{n}\right\|_{\infty} \nrightarrow 0$. But

$$
\begin{aligned}
\left|f_{n}(x) \varphi(x)\right| & =f_{n}(x)|\varphi(x)| \\
& =\frac{|\varphi(x)|-|\varphi(x)|^{2}}{1+n|\varphi(x)|} \\
& \leq \frac{1}{n},
\end{aligned}
$$

for all $x \in K$. So $\left\|f_{n}\right\|_{\varphi}=\left\|f_{n} \varphi\right\|_{\infty} \rightarrow 0$.
In the following proposition, we shall show that for two non-zero linear functionals $\varphi, \psi \in A^{*}$ such that $\|\varphi\| \leq 1,\|\psi\| \leq 1,\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are non-equivalent norms whenever φ and ψ are linearly independent.

Proposition 2.5. The norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent.
Proof. Let $\psi=\lambda \varphi$ for some $0 \neq \lambda \in \mathbb{C}$. So,

$$
\begin{aligned}
\|f\|_{\psi} & =\|f \psi\|_{\infty} \\
& =\|\lambda f \varphi\|_{\infty} \\
& =|\lambda|\|f \varphi\|_{\infty} \\
& =|\lambda|\|f\|_{\varphi} .
\end{aligned}
$$

This shows that $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent. For the converse, let $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ be equivalent norms, and on the contrary, let φ and ψ be
linearly independent. So $\operatorname{ker} \varphi \nsubseteq \operatorname{ker} \psi$. Hence there exists an element $x_{0} \in \operatorname{ker} \varphi$ such that $\psi\left(x_{0}\right) \neq 0$. Define $f_{n}: K \longrightarrow \mathbb{C}$ by $f_{n}(x)=$ $\frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ for all $x \in K$. By Example 2.4 we have, $\left\|f_{n}\right\|_{\varphi}=\left\|f_{n} \varphi\right\|_{\infty} \rightarrow 0$, whereas

$$
\begin{aligned}
\left\|f_{n}\right\|_{\psi} & =\left\|f_{n} \psi\right\|_{\infty} \\
& \geq\left|\left(f_{n} \psi\right)\left(\frac{x_{0}}{\left\|x_{0}\right\|}\right)\right| \\
& =\frac{\left|\psi\left(x_{0}\right)\right|}{\left\|x_{0}\right\|} .
\end{aligned}
$$

Thus $\left\|f_{n}\right\|_{\psi} \nrightarrow 0$. This shows that $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are non-equivalent norms, that is a contradiction.

Remark 2.6. Since K is connected and $|\varphi|: K \longrightarrow \mathbb{C}$ is continuous, so $|\varphi|(K):=\{|\varphi(x)| \quad \mid \quad x \in K\}$ is connected in \mathbb{R}. Thus, $|\varphi|(K)=[0, a)$ or $|\varphi|(K)=[0, a]$ for some $a>0$. It follows that,

$$
\begin{aligned}
\|\varphi\| & =\|\varphi\|_{\infty} \\
& =\sup \{|\varphi(x)| \quad \mid \quad x \in K\} \\
& =a
\end{aligned}
$$

So, $|\varphi|(K)=\left[0,\|\varphi\|_{\infty}\right)$ or $|\varphi|(K)=\left[0,\|\varphi\|_{\infty}\right]$.
Theorem 2.7. The norm $\|\cdot\|_{\varphi}$ is not an algebraic norm on $C^{b}(K)$.
Proof. Define $f_{n}: K \longrightarrow \mathbb{C}$ and $g_{n}: K \longrightarrow \mathbb{C}$ by $f_{n}(x)=\frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ and $g_{n}(x)=\frac{n}{1+n|\varphi(x)|}$ for all $x \in K$. So,

$$
\begin{aligned}
\left|\left(f_{n} \varphi\right)(x)\right| & =\frac{1-|\varphi(x)|}{1+n|\varphi(x)|}|\varphi(x)| \\
& =\frac{|\varphi(x)|-|\varphi(x)|^{2}}{1+n|\varphi(x)|}, \\
\left|\left(g_{n} \varphi\right)(x)\right| & =\frac{n}{1+n|\varphi(x)|}|\varphi(x)| \\
& =\frac{n|\varphi(x)|}{1+n|\varphi(x)|},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(f_{n} g_{n} \varphi\right)(x)\right| & =\frac{1-|\varphi(x)|}{1+n|\varphi(x)|} \frac{n}{1+n|\varphi(x)|}|\varphi(x)| \\
& =\frac{n|\varphi(x)|-n|\varphi(x)|^{2}}{(1+n|\varphi(x)|)^{2}}
\end{aligned}
$$

for all $x \in K$. By Example 2.4 we have $\left\|f_{n \varphi}\right\|_{\infty} \longrightarrow 0$.
Set $z=|\varphi(x)|$ for $x \in K$. So, by Remark 2.6 we have,

$$
\left\|g_{n} \varphi\right\|_{\infty}=\sup \left\{\left.\frac{n z}{1+n z}|z \in| \varphi \right\rvert\,(K)\right\},
$$

and

$$
\left\|f_{n} g_{n} \varphi\right\|_{\infty}=\sup \left\{\left.\frac{n z-n z^{2}}{(1+n z)^{2}}|z \in| \varphi \right\rvert\,(K)\right\} .
$$

It follows that,

$$
\begin{aligned}
\left\|g_{n} \varphi\right\|_{\infty} & =\frac{n\|\varphi\|_{\infty}}{1+n\|\varphi\|_{\infty}}, \quad n \in \mathbb{N} \\
\left\|f_{n} g_{n} \varphi\right\|_{\infty} & =\frac{n^{2}+n}{4 n^{2}+8 n+4}, \quad n>\frac{1}{\|\varphi\|_{\infty}}-2 .
\end{aligned}
$$

Indeed, let $G_{n}(z)=\frac{n z}{1+n z}$ and $H_{n}(z)=\frac{n z-n z^{2}}{(1+n z)^{2}}, z \in|\varphi|(K)$.
Clearly $G_{n}{ }^{\prime}(z)=\frac{n}{(1+n z)^{2}}$. So G_{n} is increasing on $|\varphi|(K)$ and consequently,

$$
\begin{aligned}
\left\|g_{n} \varphi\right\|_{\infty} & =\left\|G_{n}\right\|_{\infty} \\
& =\lim _{z \longrightarrow \varphi \|_{\infty}} G_{n}(z) \\
& =\frac{n\|\varphi\|_{\infty}}{1+n\|\varphi\|_{\infty}} .
\end{aligned}
$$

Obviously the only root of the equation $H_{n}{ }^{\prime}(z)=\frac{\left(-n^{2}-2 n\right) z+n}{(1+n z)^{3}}=0$ is $z=\frac{1}{n+2}$. Thus if $n>\frac{1}{\|\varphi\|_{\infty}}-2$, or equivalently, $\frac{1}{n+2}<\|\varphi\|_{\infty}$, then H_{n} is increasing on $\left[0, \frac{1}{n+2}\right]$ and decreasing on $\left[\frac{1}{n+2},\|\varphi\|_{\infty}\right)$. Therefore,

$$
\begin{aligned}
\left\|f_{n} g_{n} \varphi\right\|_{\infty} & =\left\|H_{n}\right\|_{\infty} \\
& =H_{n}\left(\frac{1}{n+2}\right) \\
& =\frac{n^{2}+n}{4 n^{2}+8 n+4} .
\end{aligned}
$$

We claim that there is no $\alpha \in \mathbb{R}^{+}$such that $\|f g\|_{\varphi} \leq \alpha\|f\|_{\varphi}\|g\|_{\varphi}$ for all $f, g \in C^{b}(K)$. To obtain a contradiction, let there exists $\alpha \in \mathbb{R}^{+}$ such that $\|f g\|_{\varphi} \leq \alpha\|f\|_{\varphi}\|g\|_{\varphi}$ for all $f, g \in C^{b}(K)$. So $\left\|f_{n} g_{n}\right\|_{\varphi} \leq$ $\alpha\left\|f_{n}\right\|_{\varphi}\left\|g_{n}\right\|_{\varphi}$ for all $n \in \mathbb{N}$. It follows that $\left\|f_{n} g_{n} \varphi\right\|_{\infty} \leq \alpha\left\|f_{n} \varphi\right\|_{\infty}\left\|g_{n} \varphi\right\|_{\infty}$ for all $n \in \mathbb{N}$. Hence if $n>\frac{1}{\|\varphi\|_{\infty}}-2$ we have,

$$
\begin{equation*}
\frac{n^{2}+n}{4 n^{2}+8 n+4} \leq \alpha\left\|f_{n} \varphi\right\|_{\infty} \frac{n\|\varphi\|_{\infty}}{1+n\|\varphi\|_{\infty}} . \tag{2.1}
\end{equation*}
$$

Letting $n \longrightarrow \infty$ in (2.1) we obtain, $\frac{1}{4} \leq \alpha \times 0 \times 1=0$, that is a contradiction.

Remark 2.8. Clearly $\|\cdot\|_{\varphi}$ is an algebraic norm on $C^{b \varphi}(K)$. Indeed,

$$
\begin{aligned}
\|f \cdot g\|_{\varphi} & =\|f \varphi g\|_{\varphi} \\
& =\|f \varphi g \varphi\|_{\infty} \\
& \leq\|f \varphi\|_{\infty}\|g \varphi\|_{\infty} \\
& =\|f\|_{\varphi}\|g\|_{\varphi} .
\end{aligned}
$$

Since $\left(C^{b}(K),\|\cdot\|_{\varphi}\right)$ is a non-complete normed vector space, so $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ is a non-complete normed algebra.

Let $C^{b \varphi}(K)^{\sim}$ be the completion of $C^{b \varphi}(K)$. Then $\left(C^{b \varphi}(K)^{\sim},\|\cdot\|_{\varphi_{\sim}}\right)$ is a Banach algebra and $\overline{C^{b \varphi}(K)}{ }^{\|\cdot\|_{\varphi}}=C^{b \varphi}(K)^{\sim}$.

In the following proposition we characterize the norm $\|\cdot\|_{\varphi_{\sim}}$.
Proposition 2.9. Let $\left[\left\{f_{n}\right\}_{n}\right] \in C^{b \varphi}(K)^{\sim}$. Then $\left\|\left[\left\{f_{n}\right\}_{n}\right]\right\|_{\varphi_{\sim}}=\|g\|_{\infty}$ for some $g \in C^{b}(K)$.
Proof. Let $\left[\left\{f_{n}\right\}_{n}\right] \in C^{b \varphi}(K)^{\sim}$. Since $\left\{f_{n}\right\}_{n}$ is Cauchy in $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$, so

$$
\begin{aligned}
0 & =\lim _{m, n \longrightarrow \infty}\left\|f_{m}-f_{n}\right\|_{\varphi} \\
& =\lim _{m, n \longrightarrow \infty}\left\|f_{m} \varphi-f_{n} \varphi\right\|_{\infty} .
\end{aligned}
$$

It follows that $\left\{f_{n} \varphi\right\}_{n}$ is a Cauchy sequence in $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$. So there exists $g \in C^{b}(K)$ such that $f_{n} \varphi \xrightarrow{\|\cdot\|_{\infty}} g$. Hence $\left\|f_{n} \varphi\right\|_{\infty} \longrightarrow\|g\|_{\infty}$. Thus by definition,

$$
\begin{aligned}
\left\|\left[\left\{f_{n}\right\}_{n}\right]\right\|_{\varphi_{\sim}} & =\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\varphi} \\
& =\lim _{n \rightarrow \infty}\left\|f_{n} \varphi\right\|_{\infty} \\
& =\|g\|_{\infty} .
\end{aligned}
$$

3. Strongly Zero-Product Preserving Maps on $C^{b}(K)$ and

$$
C^{b \varphi}(K)
$$

In this section we investigate some relations between strongly zeroproduct preserving maps on $C^{b}(K)$ and $C^{b \varphi}(K)$.
Proposition 3.1. Let $T: C^{b}(K) \longrightarrow C^{b}(K)$ be a linear map. Then $T:\left(C^{b}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ is zero-product preserving if and only if $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is so.

Proof. Let $T:\left(C^{b}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ be a zero-product preserving map and let $f \cdot g=0, \quad f, g \in C^{b \varphi}(K)$. So $f \varphi g=0$ and consequently by Proposition 2.1, $f g=0$. Therefore $T(f) T(g)=0$ and so $T(f) \cdot T(g)=T(f) \varphi T(g)=0$. Thus T is zero-product preserving on $C^{b \varphi}(K)$. Conversely, let $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ be zero-product preserving and let $f g=0, \quad f, g \in C^{b}(K)$. So $f \cdot g=0$. It follows that $T(f) \varphi T(g)=T(f) \cdot T(g)=0$. So by Proposition 2.1, $T(f) T(g)=0$. Therefore T is zero-product preserving on $C^{b}(K)$.

The following result shows that Proposition 3.1 is not the case when we replace strongly zero-product preserving map instead of zero-product preserving map.

Example 3.2. Define $T:\left(C^{b}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ by $T(f)=$ $f(0) \varphi$ for all $f \in C^{b}(K)$. Clearly T is a linear map. Let $f_{n} g_{n} \xrightarrow{\|\cdot\|_{\infty}} 0$. So $f_{n}(0) g_{n}(0) \longrightarrow 0$. It follows that

$$
\begin{aligned}
\left\|T\left(f_{n}\right) T\left(g_{n}\right)\right\|_{\infty} & =\left\|f_{n}(0) g_{n}(0) \varphi^{2}\right\|_{\infty} \\
& =\mid f_{n}(0) g_{n}(0)\|\varphi\|_{\infty}^{2} \\
& \longrightarrow 0 .
\end{aligned}
$$

So T is a strongly zero-product preserving map. We shall show that $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not strongly zero-product preserving. To this end, let $f_{n}(x)=\frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ for all $n \in \mathbb{N}$ and for all $x \in K$. By previous example we have, $f_{n} \cdot 1_{K}=f_{n} \varphi \xrightarrow{\|\cdot\|_{\infty}} 0$. But

$$
\begin{aligned}
T\left(f_{n}\right) \cdot T\left(1_{K}\right) & =f_{n}(0) \varphi^{3} \\
& =\varphi^{3} \\
& \xrightarrow{\|\cdot\|_{\infty}} \varphi^{3} \\
& \neq 0 .
\end{aligned}
$$

Example 3.3. Define $T: C^{b \varphi}(K) \longrightarrow C^{b \varphi}(K)$ by $T(f)(x)=f\left(\frac{e}{\|e\|}\right), x \in$ K, where $e \in A$ is an element such that $\varphi(e)=1$. Then,

$$
T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)
$$

and

$$
T:\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)
$$

are both strongly zero-product preserving maps. Indeed, let $f_{n} \cdot g_{n} \xrightarrow{\|\cdot\|_{\varphi}}$ 0 . So $\left\|f_{n} \varphi g_{n} \varphi\right\|_{\infty}=\left\|f_{n} \cdot g_{n}\right\|_{\varphi} \longrightarrow 0$. It follows that,

$$
\begin{equation*}
\frac{1}{\|e\|^{2}} f_{n}\left(\frac{e}{\|e\|}\right) g_{n}\left(\frac{e}{\|e\|}\right)=\left(f_{n} \varphi g_{n} \varphi\right)\left(\frac{e}{\|e\|}\right) \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

Hence by (3.1) we can conclude that,

$$
\begin{aligned}
\left\|T\left(f_{n}\right) \cdot T\left(g_{n}\right)\right\|_{\varphi} & =\left\|f_{n}\left(\frac{e}{\|e\|}\right) \varphi g_{n}\left(\frac{e}{\|e\|}\right)\right\|_{\varphi} \\
& =\left\|f_{n}\left(\frac{e}{\|e\|}\right) \varphi g_{n}\left(\frac{e}{\|e\|}\right) \varphi\right\|_{\infty} \\
& =\left|f_{n}\left(\frac{e}{\|e\|}\right) g_{n}\left(\frac{e}{\|e\|}\right)\right|\|\varphi\|_{\infty}^{2} \\
& \longrightarrow 0 .
\end{aligned}
$$

This shows that $T:\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ is strongly zero-product preserving. A similar argument can be applied to show that $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is also strongly zeroproduct preserving.
Proposition 3.4. Let $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ be a strongly zero-product preserving map such that $T(f \varphi)=T(f) \varphi$ for all $f \in C^{b \varphi}(K)$. Then $T:\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ is strongly zero-product preserving.
Proof. Let $f_{n} \cdot g_{n} \xrightarrow{\|\cdot\|_{\varphi}} 0$. So $f_{n} \cdot\left(g_{n} \varphi\right) \xrightarrow{\|\cdot\|_{\infty}} 0$. It follows that $T\left(f_{n}\right)$. $T\left(g_{n} \varphi\right) \xrightarrow{\|\cdot\|_{\infty}} 0$. Hence $T\left(f_{n}\right) \varphi T\left(g_{n}\right) \varphi \xrightarrow{\|\cdot\|_{\infty}} 0$. Thus $T\left(f_{n}\right) \cdot T\left(g_{n}\right) \xrightarrow{\|\cdot\|_{\varphi}}$ 0 .

The following proposition is a result concerning algebraic homomorphisms on $C^{b}(K)$ and $C^{b \varphi}(K)$.
Proposition 3.5. Let $T: C^{b}(K) \longrightarrow C^{b}(K)$ be an algebraic homomorphism such that $T(\varphi)=\varphi$. Then $T: C^{b \varphi}(K) \longrightarrow C^{b \varphi}(K)$ is so.

Also if $T: C^{b \varphi}(K) \longrightarrow C^{b \varphi}(K)$ is an algebraic homomorphism such that $T\left(1_{K}\right)=1_{K}$ then $T: C^{b}(K) \longrightarrow C^{b}(K)$ is so.
Proof. Let $T: C^{b}(K) \longrightarrow C^{b}(K)$ be an algebraic homomorphism and $T(\varphi)=\varphi$. So,

$$
\begin{aligned}
T(f \cdot g) & =T(f \varphi g) \\
& =T(f) T(\varphi) T(g) \\
& =T(f) \varphi T(g) \\
& =T(f) \cdot T(g),
\end{aligned}
$$

for all $f, g \in C^{b \varphi}(K)$. Thus T is an algebraic homomorphism on $C^{b \varphi}(K)$. Also let $T: C^{b \varphi}(K) \longrightarrow C^{b \varphi}(K)$ be an algebraic homomorphism such that $T\left(1_{K}\right)=1_{K}$. So,

$$
\begin{aligned}
T(f) \varphi T(g) & =T(f \cdot g) \\
& =T\left((f g) \cdot 1_{K}\right) \\
& =T(f g) \cdot T\left(1_{K}\right) \\
& =T(f g) \cdot 1_{K} \\
& =T(f g) \varphi,
\end{aligned}
$$

for all $f, g \in C^{b}(K)$. It follows that $(T(f) T(g)-T(f g)) \varphi=0$. Hence, by Proposition 2.1 we can conclude that $T(f g)=T(f) T(g)$ for all $f, g \in$ $C^{b}(K)$. Therefore, T is an algebraic homomorphism on $C^{b}(K)$.
Question 3.6. Let $T:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ be a strongly zero-product preserving map.

Is necessarily $T:\left(C^{b}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ a strongly zeroproduct preserving map?

4. Conclusions

If $\operatorname{dim} A>1$ then there are non-equivalent norms on $C^{b}(K)$. The norm $\|\cdot\|_{\varphi}$ is not an algebraic norm on $C^{b}(K)$, whereas it is an algebraic norm on $C^{b \varphi}(K)$. The pair $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is a Banach algebra, whereas $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ is a non-complete normed algebra. So $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are non-equivalent norms on $C^{b \varphi}(K)$. The zero-product preserving maps on $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ are the same, but it is not the case for strongly zero-product preserving maps.

References

1. H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24 The Clarendon Press, Oxford University Press, New York, (2000).
2. R.A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, Taiwan. J. Math., 12 (2008), pp. 1769-1779.
3. A.R. Khoddami, On maps preserving strongly zero-products, Chamchuri J. Math., 7 (2015), pp. 16-23.
4. A.R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), pp. 107-114.
5. A.R. Khoddami, On strongly Jordan zero-product preserving maps, Sahand Commun. Math. Anal., 3 (2016), pp. 53-61.
6. A.R. Khoddami, The second dual of strongly zero-product preserving maps, Bull. Iran. Math. Soc., 43 (2017), pp. 1781-1790.
7. A.R. Khoddami, Bounded and continuous functions on the closed unit ball of a normed vector space equipped with a new product, U.P.B. Sci. Bull., Series A, 81 (2019), pp. 81-86.
8. A.R. Khoddami, Biflatness, biprojectivity, φ-amenability and φ - contractibility of a certain class of Banach algebras, U.P.B. Sci. Bull., Series A, 80 (2018), pp. 169-178.
9. T.W. Palmer, Banach Algebras and The General Theory of *-Algebras, Cambridge University Press, (1994).

Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran.

Email address: khoddami.alireza@shahroodut.ac.ir

[^0]: 2020 Mathematics Subject Classification. 46J10, 47B37, 46B28.
 Key words and phrases. Normed vector space, Equivalent norm, Zero-product preserving map, Strongly zero-product preserving map.

 Received: 11 February 2020, Accepted: 30 April 2020.

