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Non-Equivalent Norms on Cb(K)

Ali Reza Khoddami

Abstract. Let A be a non-zero normed vector space and let K =

B
(0)
1 be the closed unit ball of A. Also, let φ be a non-zero element

of A∗ such that ∥φ∥ ≤ 1. We first define a new norm ∥ · ∥φ on
Cb(K), that is a non-complete, non-algebraic norm and also non-
equivalent to the norm ∥ · ∥∞. We next show that for 0 ̸= ψ ∈
A∗ with ∥ψ∥ ≤ 1, the two norms ∥ · ∥φ and ∥ · ∥ψ are equivalent
if and only if φ and ψ are linearly dependent. Also by applying
the norm ∥ · ∥φ and a new product “ · ” on Cb(K), we present
the normed algebra

(
Cbφ(K), ∥ · ∥φ

)
. Finally we investigate some

relations between strongly zero-product preserving maps on Cb(K)
and Cbφ(K).

1. Introduction

Let K = B
(0)
1 be the closed unit ball of a non-zero normed vector

space A and let φ be a non-zero element of A∗ such that ∥φ∥ ≤ 1.
We consider Cb(K) for the space of all complex-valued, bounded and
continuous functions on K. It is well-known that Cb(K) is a unital
algebra with respect to the pointwise algebraic operations. The function
1K is the identity of Cb(K). The uniform norm on K is

∥f∥∞ = sup
{
|f(x)|

∣∣ x ∈ K
}
,

for all f ∈ Cb(K). Clearly
(
Cb(K), ∥ · ∥∞

)
is a commutative, unital,

Banach algebra. For details concerning the Banach algebra Cb(K), we
refer to [1] and [9].

2020 Mathematics Subject Classification. 46J10, 47B37, 46B28.
Key words and phrases. Normed vector space, Equivalent norm, Zero-product pre-

serving map, Strongly zero-product preserving map.
Received: 11 February 2020, Accepted: 30 April 2020.

1

http://scma.maragheh.ac.ir


2 A. R. KHODDAMI

Let A and B be two normed algebras. Then a linear map T : A −→ B
is said to be zero-product preserving, if T (a)T (c) = 0 whenever ac =
0, a, c ∈ A. Also T is said to be strongly zero-product preserving, if
for any two sequences {an}n, {cn}n in A, T (an)T (cn) −→ 0 whenever
ancn −→ 0. Many of the basic properties concerning strongly zero-
product preserving maps are investigated in [3–6].

Let ∥ · ∥1 and ∥ · ∥2 be two norms on A. It is obvious that ∥ · ∥1 and
∥ · ∥2 are equivalent, if and only if, for each sequence {an}n ⊆ A,

∥an∥1 −→ 0 ⇔ ∥an∥2 −→ 0.

On the space Cb(K) we define the product
(f · g)(x) = f(x)φ(x)g(x), x ∈ K,

for all f, g ∈ Cb(K). Obviously
(
Cb(K), ·

)
is an algebra that we denote it

by Cbφ(K). In [7] it is shown that
(
Cbφ(K), ∥ · ∥∞

)
is a non-unital, com-

mutative Banach algebra. Some basic properties such as, idempotent,
nilpotent, zero divisor elements and also bounded approximate identities
of Cbφ(K) are investigated in [7]. Also some relations between character
spaces of Cbφ(K) and Cb(K) are characterized in [7].

Let A be a Banach algebra. In [2] R. A. Kamyabi-Gol and M. Janfada
defined a new product “ · ” on A by a · c = aεc for all a, c ∈ A, where
ε is a fixed element of the closed unit ball B(0)

1 of A. The pair (A, ·)
is a Banach algebra which is denoted by Aε. Some properties such
as, Arens regularity, amenability of Aε and also derivations on Aε are
investigated in [2]. Also biflatness, biprojectivity, φ−amenability and
φ−contractibility of Aε are investigated in [8].

For a normed algebra (A, ∥ · ∥), defineA∼ to be the set of all equivalent
classes of Cauchy sequences obtained by the relation {an}n ∼ {bn}n if
and only if limn−→∞ ∥an − bn∥ = 0. For a∼ = [{an}n] and b∼ = [{bn}n],
the operations

a∼ + b∼ = [{an + bn}n] ,
λa∼ = [{λan}n] ,
a∼b∼ = [{anbn}n] ,

∥a∼∥∼ = lim
n−→∞

∥an∥,

make A∼ into a Banach algebra containing a dense subalgebra that is
isometric with A. (A∼, ∥ · ∥∼) is called the completion of A.

In this paper we first define a new norm ∥·∥φ on Cb(K), that is a non-
complete, non-algebraic norm and also non-equivalent to the norm ∥·∥∞.
We next show that for 0 ̸= ψ ∈ A∗ with ∥ψ∥ ≤ 1, the two norms ∥ · ∥φ
and ∥ · ∥ψ are equivalent if and only if φ and ψ are linearly dependent.
Also by applying the norm ∥ · ∥φ and a new product “ · ” on Cb(K),
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we present the normed algebra
(
Cbφ(K), ∥ · ∥φ

)
. We finally investigate

some relations between strongly zero-product preserving maps on Cb(K)
and Cbφ(K).

2. Non-Equivalent Norms on Cb(K)

In this section, let A be a non-zero normed vector space and let φ
be a non-zero linear functional on A with ∥φ∥ ≤ 1. Also let K = B

(0)
1

be the closed unit ball of A. We set ∥f∥φ = ∥fφ∥∞ for all f ∈ Cb(K).
Also let 1K be the constant function on K such that 1K(x) = 1 for all
x ∈ K. The following proposition is used repeatedly in the sequel.

Proposition 2.1. For f ∈ Cb(K), fφ = 0 if and only if f = 0.

Proof. Let fφ = 0. So f
∣∣∣∣
K\kerφ

= 0. Choose e ∈ A such that φ(e) = 1.

Since K is convex so, 1
n+1

e
∥e∥ +

(
1− 1

n+1

)
k0 ∈ K \ kerφ for all k0 ∈

K ∩ kerφ and for all n ∈ N. Clearly 1
n+1

e
∥e∥ +

(
1− 1

n+1

)
k0 −→ k0 and

by continuity of f ,

0 = f

(
1

n+ 1

e

∥e∥
+

(
1− 1

n+ 1

)
k0

)
−→ f(k0).

This shows that f = 0 on K. □
Proposition 2.2.

(
Cb(K), ∥ · ∥φ

)
is a non-complete normed vector space.

Proof. Let ∥f∥φ = ∥fφ∥∞ = 0. Then fφ = 0. So by Proposition 2.1
f = 0. Clearly ∥αf∥φ = |α|∥f∥φ and ∥f + g∥φ ≤ ∥f∥φ + ∥g∥φ for all
f, g ∈ Cb(K). We shall show that ∥ · ∥φ is a non-complete norm. To this
end, define fn : K −→ C by,

fn(x) =
n 3
√
|φ(x)|

n 3
√
|φ(x)|2 + 1

.

So (fnφ)(x) = fn(x)φ(x) =
n 3
√

|φ(x)|φ(x)
n 3
√

|φ(x)|2+1
. Hence we can conclude that

fnφ
∥·∥∞−−−→ g where

g(x) =

{
0, x ∈ K ∩ kerφ,
φ(x)

3
√

|φ(x)|
, x ∈ K \ kerφ.

It follows that
lim

m,n−→∞
∥fn − fm∥φ = lim

m,n−→∞
∥fnφ− fmφ∥∞

= 0.
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So {fn}n is a Cauchy sequence in
(
Cb(K), ∥ · ∥φ

)
. We shall show that

there is no function h ∈ Cb(K) such that, fn
∥·∥φ−−→ h. On the contrary,

if fn
∥·∥φ−−→ h for some h ∈ Cb(K) then

lim
n−→∞

∥fnφ− hφ∥∞ = lim
n−→∞

∥fn − h∥φ
= 0.

Hence g = hφ. So h(x) = g(x)
φ(x) =

φ(x)
3
√

|φ(x)|
φ(x) = 1

3
√

|φ(x)|
for all x ∈ K \ kerφ.

This shows that, h is not a bounded and continuous function on K, that
is a contradiction. So

(
Cb(K), ∥ · ∥φ

)
is not complete. □

Corollary 2.3. ∥ · ∥φ and ∥ · ∥∞ are not equivalent norms.

Proof. Since by Proposition 2.2
(
Cb(K), ∥ · ∥φ

)
is not complete, so ∥ · ∥φ

and ∥ · ∥∞ are not equivalent norms. □
In the following example we present a sequence {fn}n in Cb(K) such

that, ∥fn∥φ → 0, whereas ∥fn∥∞ ↛ 0.

Example 2.4. Define fn : K −→ C by fn(x) = 1−|φ(x)|
1+n|φ(x)| .

Clearly fn(0) = 1 ↛ 0. So ∥fn∥∞ ↛ 0. But
|fn(x)φ(x)| = fn(x)|φ(x)|

=
|φ(x)| − |φ(x)|2

1 + n|φ(x)|

≤ 1

n
,

for all x ∈ K. So ∥fn∥φ = ∥fnφ∥∞ → 0.
In the following proposition, we shall show that for two non-zero linear

functionals φ,ψ ∈ A∗ such that ∥φ∥ ≤ 1, ∥ψ∥ ≤ 1, ∥ · ∥φ and ∥ · ∥ψ are
non-equivalent norms whenever φ and ψ are linearly independent.
Proposition 2.5. The norms ∥ · ∥φ and ∥ · ∥ψ are equivalent if and only
if φ and ψ are linearly dependent.
Proof. Let ψ = λφ for some 0 ̸= λ ∈ C. So,

∥f∥ψ = ∥fψ∥∞
= ∥λfφ∥∞
= |λ|∥fφ∥∞
= |λ|∥f∥φ.

This shows that ∥ · ∥φ and ∥ · ∥ψ are equivalent. For the converse, let
∥ ·∥φ and ∥ ·∥ψ be equivalent norms, and on the contrary, let φ and ψ be
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linearly independent. So kerφ ⊈ kerψ. Hence there exists an element
x0 ∈ kerφ such that ψ(x0) ̸= 0. Define fn : K −→ C by fn(x) =
1−|φ(x)|
1+n|φ(x)| for all x ∈ K. By Example 2.4 we have, ∥fn∥φ = ∥fnφ∥∞ → 0,
whereas

∥fn∥ψ = ∥fnψ∥∞

≥
∣∣∣∣(fnψ)( x0

∥x0∥

)∣∣∣∣
=

|ψ(x0)|
∥x0∥

.

Thus ∥fn∥ψ ↛ 0. This shows that ∥ · ∥φ and ∥ · ∥ψ are non-equivalent
norms, that is a contradiction. □

Remark 2.6. Since K is connected and |φ| : K −→ C is continuous, so
|φ|(K) :=

{
|φ(x)|

∣∣ x ∈ K
}

is connected in R. Thus, |φ|(K) = [0, a)
or |φ|(K) = [0, a] for some a > 0. It follows that,

∥φ∥ = ∥φ∥∞
= sup {|φ(x)| | x ∈ K}
= a.

So, |φ|(K) = [0, ∥φ∥∞) or |φ|(K) = [0, ∥φ∥∞].

Theorem 2.7. The norm ∥ · ∥φ is not an algebraic norm on Cb(K).

Proof. Define fn : K −→ C and gn : K −→ C by fn(x) = 1−|φ(x)|
1+n|φ(x)| and

gn(x) =
n

1+n|φ(x)| for all x ∈ K. So,

|(fnφ)(x)| =
1− |φ(x)|
1 + n|φ(x)|

|φ(x)|

=
|φ(x)| − |φ(x)|2

1 + n|φ(x)|
,

|(gnφ)(x)| =
n

1 + n|φ(x)|
|φ(x)|

=
n|φ(x)|

1 + n|φ(x)|
,

and

|(fngnφ)(x)| =
1− |φ(x)|
1 + n|φ(x)|

n

1 + n|φ(x)|
|φ(x)|

=
n|φ(x)| − n|φ(x)|2

(1 + n|φ(x)|)2
,
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for all x ∈ K. By Example 2.4 we have ∥fnφ∥∞ −→ 0.
Set z = |φ(x)| for x ∈ K. So, by Remark 2.6 we have,

∥gnφ∥∞ = sup

{
nz

1 + nz

∣∣∣∣ z ∈ |φ|(K)

}
,

and

∥fngnφ∥∞ = sup

{
nz − nz2

(1 + nz)2

∣∣∣∣ z ∈ |φ|(K)

}
.

It follows that,

∥gnφ∥∞ =
n∥φ∥∞

1 + n∥φ∥∞
, n ∈ N,

∥fngnφ∥∞ =
n2 + n

4n2 + 8n+ 4
, n >

1

∥φ∥∞
− 2.

Indeed, let Gn(z) = nz
1+nz and Hn(z) =

nz−nz2
(1+nz)2

, z ∈ |φ|(K).
Clearly Gn

′(z) = n
(1+nz)2

. So Gn is increasing on |φ|(K) and conse-
quently,

∥gnφ∥∞ = ∥Gn∥∞
= lim

z−→∥φ∥∞
Gn(z)

=
n∥φ∥∞

1 + n∥φ∥∞
.

Obviously the only root of the equation Hn
′(z) = (−n2−2n)z+n

(1+nz)3
= 0 is

z = 1
n+2 . Thus if n > 1

∥φ∥∞ − 2, or equivalently, 1
n+2 < ∥φ∥∞, then Hn

is increasing on
[
0, 1

n+2

]
and decreasing on

[
1

n+2 , ∥φ∥∞
)

. Therefore,

∥fngnφ∥∞ = ∥Hn∥∞

= Hn

(
1

n+ 2

)
=

n2 + n

4n2 + 8n+ 4
.

We claim that there is no α ∈ R+ such that ∥fg∥φ ≤ α∥f∥φ∥g∥φ for
all f, g ∈ Cb(K). To obtain a contradiction, let there exists α ∈ R+

such that ∥fg∥φ ≤ α∥f∥φ∥g∥φ for all f, g ∈ Cb(K). So ∥fngn∥φ ≤
α∥fn∥φ∥gn∥φ for all n ∈ N. It follows that ∥fngnφ∥∞ ≤ α∥fnφ∥∞∥gnφ∥∞
for all n ∈ N. Hence if n > 1

∥φ∥∞ − 2 we have,

(2.1) n2 + n

4n2 + 8n+ 4
≤ α∥fnφ∥∞

n∥φ∥∞
1 + n∥φ∥∞

.
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Letting n −→ ∞ in (2.1) we obtain, 1
4 ≤ α × 0 × 1 = 0, that is a

contradiction. □
Remark 2.8. Clearly ∥ · ∥φ is an algebraic norm on Cbφ(K). Indeed,

∥f · g∥φ = ∥fφg∥φ
= ∥fφgφ∥∞
≤ ∥fφ∥∞∥gφ∥∞
= ∥f∥φ∥g∥φ.

Since
(
Cb(K), ∥ · ∥φ

)
is a non-complete normed vector space, so(

Cbφ(K), ∥ · ∥φ
)

is a non-complete normed algebra.

Let Cbφ(K)∼ be the completion of Cbφ(K). Then
(
Cbφ(K)∼, ∥ · ∥φ∼

)
is a Banach algebra and Cbφ(K)

∥·∥φ∼ = Cbφ(K)∼.
In the following proposition we characterize the norm ∥ · ∥φ∼.

Proposition 2.9. Let [{fn}n] ∈ Cbφ(K)∼. Then ∥[{fn}n]∥φ∼ = ∥g∥∞
for some g ∈ Cb(K).

Proof. Let [{fn}n] ∈ Cbφ(K)∼. Since {fn}n is Cauchy in
(
Cbφ(K), ∥ · ∥φ

)
,

so
0 = lim

m,n−→∞
∥fm − fn∥φ

= lim
m,n−→∞

∥fmφ− fnφ∥∞.

It follows that {fnφ}n is a Cauchy sequence in
(
Cb(K), ∥ · ∥∞

)
. So there

exists g ∈ Cb(K) such that fnφ
∥·∥∞−−−→ g. Hence ∥fnφ∥∞ −→ ∥g∥∞. Thus

by definition,
∥[{fn}n]∥φ∼ = lim

n−→∞
∥fn∥φ

= lim
n−→∞

∥fnφ∥∞
= ∥g∥∞.

□

3. Strongly Zero-Product Preserving Maps on Cb(K) and
Cbφ(K)

In this section we investigate some relations between strongly zero-
product preserving maps on Cb(K) and Cbφ(K).

Proposition 3.1. Let T : Cb(K) −→ Cb(K) be a linear map. Then
T :

(
Cb(K), ∥ · ∥∞

)
−→

(
Cb(K), ∥ · ∥∞

)
is zero-product preserving if

and only if T :
(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
is so.
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Proof. Let T :
(
Cb(K), ∥ · ∥∞

)
−→

(
Cb(K), ∥ · ∥∞

)
be a zero-product

preserving map and let f · g = 0, f, g ∈ Cbφ(K). So fφg = 0 and
consequently by Proposition 2.1, fg = 0. Therefore T (f)T (g) = 0 and
so T (f) · T (g) = T (f)φT (g) = 0. Thus T is zero-product preserving on
Cbφ(K). Conversely, let T :

(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
be

zero-product preserving and let fg = 0, f, g ∈ Cb(K). So f · g = 0.
It follows that T (f)φT (g) = T (f) · T (g) = 0. So by Proposition 2.1,
T (f)T (g) = 0. Therefore T is zero-product preserving on Cb(K). □

The following result shows that Proposition 3.1 is not the case when
we replace strongly zero-product preserving map instead of zero-product
preserving map.

Example 3.2. Define T :
(
Cb(K), ∥ · ∥∞

)
−→

(
Cb(K), ∥ · ∥∞

)
by T (f) =

f(0)φ for all f ∈ Cb(K). Clearly T is a linear map. Let fngn
∥·∥∞−−−→ 0.

So fn(0)gn(0) −→ 0. It follows that

∥T (fn)T (gn)∥∞ = ∥fn(0)gn(0)φ2∥∞
= |fn(0)gn(0)|∥φ∥2∞
−→ 0.

So T is a strongly zero-product preserving map. We shall show that
T :

(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
is not strongly zero-product

preserving. To this end, let fn(x) = 1−|φ(x)|
1+n|φ(x)| for all n ∈ N and for all

x ∈ K. By previous example we have, fn · 1K = fnφ
∥·∥∞−−−→ 0. But

T (fn) · T (1K) = fn(0)φ
3

= φ3

∥·∥∞−−−→ φ3

̸= 0.

Example 3.3. Define T : Cbφ(K) −→ Cbφ(K) by T (f)(x) = f
(

e
∥e∥

)
, x ∈

K, where e ∈ A is an element such that φ(e) = 1. Then,

T :
(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
,

and

T :
(
Cbφ(K), ∥ · ∥φ

)
−→

(
Cbφ(K), ∥ · ∥φ

)
,
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are both strongly zero-product preserving maps. Indeed, let fn ·gn
∥·∥φ−−→

0. So ∥fnφgnφ∥∞ = ∥fn · gn∥φ −→ 0. It follows that,
1

∥e∥2
fn

(
e

∥e∥

)
gn

(
e

∥e∥

)
= (fnφgnφ)

(
e

∥e∥

)
−→ 0.(3.1)

Hence by (3.1) we can conclude that,

∥T (fn) · T (gn)∥φ =

∥∥∥∥fn( e

∥e∥

)
φgn

(
e

∥e∥

)∥∥∥∥
φ

=

∥∥∥∥fn( e

∥e∥

)
φgn

(
e

∥e∥

)
φ

∥∥∥∥
∞

=

∣∣∣∣fn( e

∥e∥

)
gn

(
e

∥e∥

)∣∣∣∣ ∥φ∥2∞
−→ 0.

This shows that T :
(
Cbφ(K), ∥ · ∥φ

)
−→

(
Cbφ(K), ∥ · ∥φ

)
is strongly

zero-product preserving. A similar argument can be applied to show
that T :

(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
is also strongly zero-

product preserving.
Proposition 3.4. Let T :

(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
be a

strongly zero-product preserving map such that T (fφ) = T (f)φ for all
f ∈ Cbφ(K). Then T :

(
Cbφ(K), ∥ · ∥φ

)
−→

(
Cbφ(K), ∥ · ∥φ

)
is strongly

zero-product preserving.

Proof. Let fn · gn
∥·∥φ−−→ 0. So fn · (gnφ)

∥·∥∞−−−→ 0. It follows that T (fn) ·
T (gnφ)

∥·∥∞−−−→ 0. Hence T (fn)φT (gn)φ
∥·∥∞−−−→ 0. Thus T (fn) · T (gn)

∥·∥φ−−→
0. □

The following proposition is a result concerning algebraic homomor-
phisms on Cb(K) and Cbφ(K).

Proposition 3.5. Let T : Cb(K) −→ Cb(K) be an algebraic homomor-
phism such that T (φ) = φ. Then T : Cbφ(K) −→ Cbφ(K) is so.

Also if T : Cbφ(K) −→ Cbφ(K) is an algebraic homomorphism such
that T (1K) = 1K then T : Cb(K) −→ Cb(K) is so.

Proof. Let T : Cb(K) −→ Cb(K) be an algebraic homomorphism and
T (φ) = φ. So,

T (f · g) = T (fφg)

= T (f)T (φ)T (g)

= T (f)φT (g)

= T (f) · T (g),
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for all f, g ∈ Cbφ(K). Thus T is an algebraic homomorphism on Cbφ(K).
Also let T : Cbφ(K) −→ Cbφ(K) be an algebraic homomorphism such
that T (1K) = 1K . So,

T (f)φT (g) = T (f · g)
= T ((fg) · 1K)

= T (fg) · T (1K)

= T (fg) · 1K
= T (fg)φ,

for all f, g ∈ Cb(K). It follows that (T (f)T (g)− T (fg))φ = 0. Hence,
by Proposition 2.1 we can conclude that T (fg) = T (f)T (g) for all f, g ∈
Cb(K). Therefore, T is an algebraic homomorphism on Cb(K). □
Question 3.6. Let T :

(
Cbφ(K), ∥ · ∥∞

)
−→

(
Cbφ(K), ∥ · ∥∞

)
be a

strongly zero-product preserving map.
Is necessarily T :

(
Cb(K), ∥ · ∥∞

)
−→

(
Cb(K), ∥ · ∥∞

)
a strongly zero-

product preserving map?

4. Conclusions

If dimA > 1 then there are non-equivalent norms on Cb(K). The
norm ∥ · ∥φ is not an algebraic norm on Cb(K), whereas it is an alge-
braic norm on Cbφ(K). The pair

(
Cbφ(K), ∥ · ∥∞

)
is a Banach algebra,

whereas
(
Cbφ(K), ∥ · ∥φ

)
is a non-complete normed algebra. So ∥ · ∥φ

and ∥ · ∥∞ are non-equivalent norms on Cbφ(K). The zero-product pre-
serving maps on

(
Cb(K), ∥ · ∥∞

)
and

(
Cbφ(K), ∥ · ∥∞

)
are the same, but

it is not the case for strongly zero-product preserving maps.
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