Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 4 (2020), 1-11 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2020.121559.748

Non-Equivalent Norms on $C^b(K)$

Ali Reza Khoddami

ABSTRACT. Let A be a non-zero normed vector space and let $K = \overline{B_1^{(0)}}$ be the closed unit ball of A. Also, let φ be a non-zero element of A^* such that $\|\varphi\| \leq 1$. We first define a new norm $\|\cdot\|_{\varphi}$ on $C^b(K)$, that is a non-complete, non-algebraic norm and also non-equivalent to the norm $\|\cdot\|_{\infty}$. We next show that for $0 \neq \psi \in A^*$ with $\|\psi\| \leq 1$, the two norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent. Also by applying the norm $\|\cdot\|_{\varphi}$ and a new product " \cdot " on $C^b(K)$, we present the normed algebra $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$. Finally we investigate some relations between strongly zero-product preserving maps on $C^b(K)$ and $C^{b\varphi}(K)$.

1. INTRODUCTION

Let $K = \overline{B_1^{(0)}}$ be the closed unit ball of a non-zero normed vector space A and let φ be a non-zero element of A^* such that $\|\varphi\| \leq 1$. We consider $C^b(K)$ for the space of all complex-valued, bounded and continuous functions on K. It is well-known that $C^b(K)$ is a unital algebra with respect to the pointwise algebraic operations. The function 1_K is the identity of $C^b(K)$. The uniform norm on K is

$$||f||_{\infty} = \sup \left\{ |f(x)| \quad \left| \quad x \in K \right\},\right.$$

for all $f \in C^b(K)$. Clearly $(C^b(K), \|\cdot\|_{\infty})$ is a commutative, unital, Banach algebra. For details concerning the Banach algebra $C^b(K)$, we refer to [1] and [9].

²⁰²⁰ Mathematics Subject Classification. 46J10, 47B37, 46B28.

Key words and phrases. Normed vector space, Equivalent norm, Zero-product preserving map, Strongly zero-product preserving map.

Received: 11 February 2020, Accepted: 30 April 2020.

A. R. KHODDAMI

Let A and B be two normed algebras. Then a linear map $T: A \longrightarrow B$ is said to be zero-product preserving, if T(a)T(c) = 0 whenever ac = 0, $a, c \in A$. Also T is said to be strongly zero-product preserving, if for any two sequences $\{a_n\}_n, \{c_n\}_n$ in $A, T(a_n)T(c_n) \longrightarrow 0$ whenever $a_nc_n \longrightarrow 0$. Many of the basic properties concerning strongly zeroproduct preserving maps are investigated in [3–6].

Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on A. It is obvious that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent, if and only if, for each sequence $\{a_n\}_n \subseteq A$,

$$||a_n||_1 \longrightarrow 0 \quad \Leftrightarrow \quad ||a_n||_2 \longrightarrow 0.$$

On the space $C^{b}(K)$ we define the product

$$(f \cdot g)(x) = f(x)\varphi(x)g(x), \quad x \in K,$$

for all $f, g \in C^b(K)$. Obviously $(C^b(K), \cdot)$ is an algebra that we denote it by $C^{b\varphi}(K)$. In [7] it is shown that $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is a non-unital, commutative Banach algebra. Some basic properties such as, idempotent, nilpotent, zero divisor elements and also bounded approximate identities of $C^{b\varphi}(K)$ are investigated in [7]. Also some relations between character spaces of $C^{b\varphi}(K)$ and $C^b(K)$ are characterized in [7].

Let A be a Banach algebra. In [2] R. A. Kamyabi-Gol and M. Janfada defined a new product " \cdot " on A by $a \cdot c = \underline{a\varepsilon c}$ for all $a, c \in A$, where ε is a fixed element of the closed unit ball $\overline{B_1^{(0)}}$ of A. The pair (A, \cdot) is a Banach algebra which is denoted by A_{ε} . Some properties such as, Arens regularity, amenability of A_{ε} and also derivations on A_{ε} are investigated in [2]. Also biflatness, biprojectivity, φ -amenability and φ -contractibility of A_{ε} are investigated in [8].

For a normed algebra $(A, \|\cdot\|)$, define A^{\sim} to be the set of all equivalent classes of Cauchy sequences obtained by the relation $\{a_n\}_n \sim \{b_n\}_n$ if and only if $\lim_{n \to \infty} \|a_n - b_n\| = 0$. For $a^{\sim} = [\{a_n\}_n]$ and $b^{\sim} = [\{b_n\}_n]$, the operations

$$a^{\sim} + b^{\sim} = \left[\{a_n + b_n\}_n \right],$$

$$\lambda a^{\sim} = \left[\{\lambda a_n\}_n \right],$$

$$a^{\sim} b^{\sim} = \left[\{a_n b_n\}_n \right],$$

$$\|a^{\sim}\|_{\sim} = \lim_{n \to \infty} \|a_n\|,$$

make A^{\sim} into a Banach algebra containing a dense subalgebra that is isometric with A. $(A^{\sim}, \|\cdot\|_{\sim})$ is called the completion of A.

In this paper we first define a new norm $\|\cdot\|_{\varphi}$ on $C^{b}(K)$, that is a noncomplete, non-algebraic norm and also non-equivalent to the norm $\|\cdot\|_{\infty}$. We next show that for $0 \neq \psi \in A^*$ with $\|\psi\| \leq 1$, the two norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent. Also by applying the norm $\|\cdot\|_{\varphi}$ and a new product " \cdot " on $C^{b}(K)$,

 $\mathbf{2}$

we present the normed algebra $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$. We finally investigate some relations between strongly zero-product preserving maps on $C^{b}(K)$ and $C^{b\varphi}(K)$.

2. Non-Equivalent Norms on $C^b(K)$

In this section, let A be a non-zero normed vector space and let φ be a non-zero linear functional on A with $\|\varphi\| \leq 1$. Also let $K = \overline{B_1^{(0)}}$ be the closed unit ball of A. We set $\|f\|_{\varphi} = \|f\varphi\|_{\infty}$ for all $f \in C^b(K)$. Also let 1_K be the constant function on K such that $1_K(x) = 1$ for all $x \in K$. The following proposition is used repeatedly in the sequel.

Proposition 2.1. For $f \in C^b(K)$, $f\varphi = 0$ if and only if f = 0.

Proof. Let $f\varphi = 0$. So $f\Big|_{K \setminus \ker \varphi} = 0$. Choose $e \in A$ such that $\varphi(e) = 1$. Since K is convex so, $\frac{1}{n+1} \frac{e}{\|e\|} + \left(1 - \frac{1}{n+1}\right) k_0 \in K \setminus \ker \varphi$ for all $k_0 \in K \cap \ker \varphi$ and for all $n \in \mathbb{N}$. Clearly $\frac{1}{n+1} \frac{e}{\|e\|} + \left(1 - \frac{1}{n+1}\right) k_0 \longrightarrow k_0$ and by continuity of f,

$$0 = f\left(\frac{1}{n+1}\frac{e}{\|e\|} + \left(1 - \frac{1}{n+1}\right)k_0\right) \longrightarrow f(k_0).$$
that $f = 0$ on K

This shows that f = 0 on K.

end, define $f_n: K \longrightarrow \mathbb{C}$ by,

Proposition 2.2. $(C^b(K), \|\cdot\|_{\varphi})$ is a non-complete normed vector space. *Proof.* Let $\|f\|_{\varphi} = \|f\varphi\|_{\infty} = 0$. Then $f\varphi = 0$. So by Proposition 2.1 f = 0. Clearly $\|\alpha f\|_{\varphi} = |\alpha| \|f\|_{\varphi}$ and $\|f + g\|_{\varphi} \leq \|f\|_{\varphi} + \|g\|_{\varphi}$ for all $f, g \in C^b(K)$. We shall show that $\|\cdot\|_{\varphi}$ is a non-complete norm. To this

$$f_n(x) = \frac{n\sqrt[3]{|\varphi(x)|}}{n\sqrt[3]{|\varphi(x)|^2} + 1}.$$

So $(f_n\varphi)(x) = f_n(x)\varphi(x) = \frac{n\sqrt[3]{|\varphi(x)|}\varphi(x)}{n\sqrt[3]{|\varphi(x)|^2}+1}$. Hence we can conclude that

 $f_n \varphi \xrightarrow{\|\cdot\|_{\infty}} g$ where

$$g(x) = \begin{cases} 0, & x \in K \cap \ker \varphi, \\ \frac{\varphi(x)}{\sqrt[3]{|\varphi(x)|}}, & x \in K \setminus \ker \varphi. \end{cases}$$

It follows that

$$\lim_{m,n\to\infty} \|f_n - f_m\|_{\varphi} = \lim_{m,n\to\infty} \|f_n\varphi - f_m\varphi\|_{\infty}$$
$$= 0.$$

So $\{f_n\}_n$ is a Cauchy sequence in $(C^b(K), \|\cdot\|_{\varphi})$. We shall show that there is no function $h \in C^b(K)$ such that, $f_n \xrightarrow{\|\cdot\|_{\varphi}} h$. On the contrary, if $f_n \xrightarrow{\|\cdot\|_{\varphi}} h$ for some $h \in C^b(K)$ then

$$\lim_{n \to \infty} \|f_n \varphi - h\varphi\|_{\infty} = \lim_{n \to \infty} \|f_n - h\|_{\varphi}$$
$$= 0.$$

Hence $g = h\varphi$. So $h(x) = \frac{g(x)}{\varphi(x)} = \frac{\frac{\varphi(x)}{\sqrt[3]{|\varphi(x)|}}}{\varphi(x)} = \frac{1}{\sqrt[3]{|\varphi(x)|}}$ for all $x \in K \setminus \ker \varphi$. This shows that, h is not a bounded and continuous function on K, that is a contradiction. So $(C^b(K), \|\cdot\|_{\varphi})$ is not complete. \Box

Corollary 2.3. $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are not equivalent norms.

Proof. Since by Proposition 2.2 $(C^b(K), \|\cdot\|_{\varphi})$ is not complete, so $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are not equivalent norms.

In the following example we present a sequence $\{f_n\}_n$ in $C^b(K)$ such that, $||f_n||_{\varphi} \to 0$, whereas $||f_n||_{\infty} \not\to 0$.

Example 2.4. Define $f_n : K \longrightarrow \mathbb{C}$ by $f_n(x) = \frac{1 - |\varphi(x)|}{1 + n |\varphi(x)|}$. Clearly $f_n(0) = 1 \not\rightarrow 0$. So $||f_n||_{\infty} \not\rightarrow 0$. But

$$\begin{aligned} |f_n(x)\varphi(x)| &= f_n(x)|\varphi(x)| \\ &= \frac{|\varphi(x)| - |\varphi(x)|^2}{1 + n|\varphi(x)|} \\ &\leq \frac{1}{n}, \end{aligned}$$

for all $x \in K$. So $||f_n||_{\varphi} = ||f_n \varphi||_{\infty} \to 0$.

In the following proposition, we shall show that for two non-zero linear functionals $\varphi, \psi \in A^*$ such that $\|\varphi\| \leq 1, \|\psi\| \leq 1, \|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are non-equivalent norms whenever φ and ψ are linearly independent.

Proposition 2.5. The norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent if and only if φ and ψ are linearly dependent.

Proof. Let $\psi = \lambda \varphi$ for some $0 \neq \lambda \in \mathbb{C}$. So, $\|f\|_{\psi} = \|f\psi\|_{\infty}$

$$= \|\lambda f\varphi\|_{\infty}$$
$$= |\lambda| \|f\varphi\|_{\infty}$$
$$= |\lambda| \|f\varphi\|_{\infty}$$
$$= |\lambda| \|f\|_{\varphi}.$$

This shows that $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are equivalent. For the converse, let $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ be equivalent norms, and on the contrary, let φ and ψ be

linearly independent. So ker $\varphi \not\subseteq$ ker ψ . Hence there exists an element $x_0 \in$ ker φ such that $\psi(x_0) \neq 0$. Define $f_n : K \longrightarrow \mathbb{C}$ by $f_n(x) = \frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ for all $x \in K$. By Example 2.4 we have, $||f_n||_{\varphi} = ||f_n \varphi||_{\infty} \to 0$, whereas

$$\begin{split} \|f_n\|_{\psi} &= \|f_n\psi\|_{\infty} \\ &\geq \left| (f_n\psi) \left(\frac{x_0}{\|x_0\|}\right) \\ &= \frac{|\psi(x_0)|}{\|x_0\|}. \end{split}$$

Thus $||f_n||_{\psi} \neq 0$. This shows that $|| \cdot ||_{\varphi}$ and $|| \cdot ||_{\psi}$ are non-equivalent norms, that is a contradiction.

Remark 2.6. Since K is connected and $|\varphi| : K \longrightarrow \mathbb{C}$ is continuous, so $|\varphi|(K) := \{|\varphi(x)| \mid x \in K\}$ is connected in \mathbb{R} . Thus, $|\varphi|(K) = [0, a)$ or $|\varphi|(K) = [0, a]$ for some a > 0. It follows that,

$$\|\varphi\| = \|\varphi\|_{\infty}$$

= sup { $|\varphi(x)| | x \in K$ }
= a.

So, $|\varphi|(K) = [0, \|\varphi\|_{\infty})$ or $|\varphi|(K) = [0, \|\varphi\|_{\infty}]$.

Theorem 2.7. The norm $\|\cdot\|_{\varphi}$ is not an algebraic norm on $C^{b}(K)$.

Proof. Define $f_n : K \longrightarrow \mathbb{C}$ and $g_n : K \longrightarrow \mathbb{C}$ by $f_n(x) = \frac{1 - |\varphi(x)|}{1 + n |\varphi(x)|}$ and $g_n(x) = \frac{n}{1 + n |\varphi(x)|}$ for all $x \in K$. So,

$$|(f_n\varphi)(x)| = \frac{1 - |\varphi(x)|}{1 + n|\varphi(x)|}|\varphi(x)|$$
$$= \frac{|\varphi(x)| - |\varphi(x)|^2}{1 + n|\varphi(x)|},$$
$$|(g_n\varphi)(x)| = \frac{n}{1 + n|\varphi(x)|}|\varphi(x)|$$
$$= \frac{n|\varphi(x)|}{1 + n|\varphi(x)|},$$

and

$$\begin{aligned} |(f_n g_n \varphi)(x)| &= \frac{1 - |\varphi(x)|}{1 + n|\varphi(x)|} \frac{n}{1 + n|\varphi(x)|} |\varphi(x)| \\ &= \frac{n|\varphi(x)| - n|\varphi(x)|^2}{(1 + n|\varphi(x)|)^2}, \end{aligned}$$

for all $x \in K$. By Example 2.4 we have $||f_n \varphi||_{\infty} \longrightarrow 0$. Set $z = |\varphi(x)|$ for $x \in K$. So, by Remark 2.6 we have,

$$||g_n\varphi||_{\infty} = \sup\left\{\frac{nz}{1+nz} \mid z \in |\varphi|(K)\right\},\$$

and

$$||f_n g_n \varphi||_{\infty} = \sup \left\{ \frac{nz - nz^2}{(1+nz)^2} \quad \Big| \quad z \in |\varphi|(K) \right\}.$$

It follows that,

$$\|g_n\varphi\|_{\infty} = \frac{n\|\varphi\|_{\infty}}{1+n\|\varphi\|_{\infty}}, \quad n \in \mathbb{N},$$
$$\|f_ng_n\varphi\|_{\infty} = \frac{n^2+n}{4n^2+8n+4}, \quad n > \frac{1}{\|\varphi\|_{\infty}} - 2$$

Indeed, let $G_n(z) = \frac{nz}{1+nz}$ and $H_n(z) = \frac{nz-nz^2}{(1+nz)^2}, z \in |\varphi|(K)$. Clearly $G_n'(z) = \frac{n}{(1+nz)^2}$. So G_n is increasing on $|\varphi|(K)$ and conse-

quently,

$$\|g_n\varphi\|_{\infty} = \|G_n\|_{\infty}$$
$$= \lim_{z \to \|\varphi\|_{\infty}} G_n(z)$$
$$= \frac{n\|\varphi\|_{\infty}}{1+n\|\varphi\|_{\infty}}.$$

Obviously the only root of the equation $H_n'(z) = \frac{(-n^2-2n)z+n}{(1+nz)^3} = 0$ is $z = \frac{1}{n+2}$. Thus if $n > \frac{1}{\|\varphi\|_{\infty}} - 2$, or equivalently, $\frac{1}{n+2} < \|\varphi\|_{\infty}$, then H_n is increasing on $\left[0, \frac{1}{n+2}\right]$ and decreasing on $\left[\frac{1}{n+2}, \|\varphi\|_{\infty}\right)$. Therefore, $\|f_n g_n \varphi\|_{\infty} = \|H_n\|_{\infty}$

$$ng_n\varphi\|_{\infty} = \|H_n\|_{\infty}$$
$$= H_n\left(\frac{1}{n+2}\right)$$
$$= \frac{n^2 + n}{4n^2 + 8n + 4}.$$

We claim that there is no $\alpha \in \mathbb{R}^+$ such that $\|fg\|_{\varphi} \leq \alpha \|f\|_{\varphi} \|g\|_{\varphi}$ for all $f, g \in C^b(K)$. To obtain a contradiction, let there exists $\alpha \in \mathbb{R}^+$ such that $\|fg\|_{\varphi} \leq \alpha \|f\|_{\varphi} \|g\|_{\varphi}$ for all $f,g \in C^b(K)$. So $\|f_ng_n\|_{\varphi} \leq \alpha \|f_n\|_{\varphi} \|g_n\|_{\varphi}$ for all $n \in \mathbb{N}$. It follows that $\|f_ng_n\varphi\|_{\infty} \leq \alpha \|f_n\varphi\|_{\infty} \|g_n\varphi\|_{\infty}$ for all $n \in \mathbb{N}$. Hence if $n > \frac{1}{\|\varphi\|_{\infty}} - 2$ we have,

(2.1)
$$\frac{n^2 + n}{4n^2 + 8n + 4} \le \alpha \|f_n\varphi\|_{\infty} \frac{n\|\varphi\|_{\infty}}{1 + n\|\varphi\|_{\infty}}.$$

Letting $n \longrightarrow \infty$ in (2.1) we obtain, $\frac{1}{4} \leq \alpha \times 0 \times 1 = 0$, that is a contradiction.

Remark 2.8. Clearly $\|\cdot\|_{\varphi}$ is an algebraic norm on $C^{b\varphi}(K)$. Indeed,

$$\begin{split} \|f \cdot g\|_{\varphi} &= \|f \varphi g\|_{\varphi} \\ &= \|f \varphi g \varphi\|_{\infty} \\ &\leq \|f \varphi\|_{\infty} \|g \varphi\|_{\infty} \\ &= \|f\|_{\varphi} \|g\|_{\varphi}. \end{split}$$

Since $(C^b(K), \|\cdot\|_{\varphi})$ is a non-complete normed vector space, so $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ is a non-complete normed algebra.

Let $C^{b\varphi}(K)^{\sim}$ be the completion of $C^{b\varphi}(K)$. Then $(C^{b\varphi}(K)^{\sim}, \|\cdot\|_{\varphi_{\sim}})$ is a Banach algebra and $\overline{C^{b\varphi}(K)}^{\|\cdot\|_{\varphi_{\sim}}} = C^{b\varphi}(K)^{\sim}$.

In the following proposition we characterize the norm $\|\cdot\|_{\varphi_{\sim}}$.

Proposition 2.9. Let $[\{f_n\}_n] \in C^{b\varphi}(K)^{\sim}$. Then $\|[\{f_n\}_n]\|_{\varphi_{\sim}} = \|g\|_{\infty}$ for some $g \in C^b(K)$.

Proof. Let $[\{f_n\}_n] \in C^{b\varphi}(K)^{\sim}$. Since $\{f_n\}_n$ is Cauchy in $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$, so

$$0 = \lim_{m,n \to \infty} \|f_m - f_n\|_{\varphi}$$
$$= \lim_{m,n \to \infty} \|f_m \varphi - f_n \varphi\|_{\infty}$$

It follows that $\{f_n\varphi\}_n$ is a Cauchy sequence in $(C^b(K), \|\cdot\|_{\infty})$. So there exists $g \in C^b(K)$ such that $f_n\varphi \xrightarrow{\|\cdot\|_{\infty}} g$. Hence $\|f_n\varphi\|_{\infty} \longrightarrow \|g\|_{\infty}$. Thus by definition,

$$\|[\{f_n\}_n]\|_{\varphi_{\sim}} = \lim_{n \to \infty} \|f_n\|_{\varphi}$$
$$= \lim_{n \to \infty} \|f_n\varphi\|_{\infty}$$
$$= \|g\|_{\infty}.$$

3. Strongly Zero-Product Preserving Maps on $C^b(K)$ and $C^{b\varphi}(K)$

In this section we investigate some relations between strongly zeroproduct preserving maps on $C^b(K)$ and $C^{b\varphi}(K)$.

Proposition 3.1. Let $T : C^b(K) \longrightarrow C^b(K)$ be a linear map. Then $T : (C^b(K), \|\cdot\|_{\infty}) \longrightarrow (C^b(K), \|\cdot\|_{\infty})$ is zero-product preserving if and only if $T : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ is so.

A. R. KHODDAMI

Proof. Let $T : (C^b(K), \|\cdot\|_{\infty}) \longrightarrow (C^b(K), \|\cdot\|_{\infty})$ be a zero-product preserving map and let $f \cdot g = 0$, $f, g \in C^{b\varphi}(K)$. So $f\varphi g = 0$ and consequently by Proposition 2.1, fg = 0. Therefore T(f)T(g) = 0 and so $T(f) \cdot T(g) = T(f)\varphi T(g) = 0$. Thus T is zero-product preserving on $C^{b\varphi}(K)$. Conversely, let $T : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ be zero-product preserving and let fg = 0, $f, g \in C^b(K)$. So $f \cdot g = 0$. It follows that $T(f)\varphi T(g) = T(f) \cdot T(g) = 0$. So by Proposition 2.1, T(f)T(g) = 0. Therefore T is zero-product preserving on $C^b(K)$. \Box

The following result shows that Proposition 3.1 is not the case when we replace strongly zero-product preserving map instead of zero-product preserving map.

Example 3.2. Define $T : (C^b(K), \|\cdot\|_{\infty}) \longrightarrow (C^b(K), \|\cdot\|_{\infty})$ by $T(f) = f(0)\varphi$ for all $f \in C^b(K)$. Clearly T is a linear map. Let $f_n g_n \xrightarrow{\|\cdot\|_{\infty}} 0$. So $f_n(0)g_n(0) \longrightarrow 0$. It follows that

$$\|T(f_n)T(g_n)\|_{\infty} = \|f_n(0)g_n(0)\varphi^2\|_{\infty}$$
$$= |f_n(0)g_n(0)|\|\varphi\|_{\infty}^2$$
$$\longrightarrow 0.$$

So *T* is a strongly zero-product preserving map. We shall show that $T: (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not strongly zero-product preserving. To this end, let $f_n(x) = \frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ for all $n \in \mathbb{N}$ and for all $x \in K$. By previous example we have, $f_n \cdot 1_K = f_n \varphi \xrightarrow{\|\cdot\|_{\infty}} 0$. But

$$T(f_n) \cdot T(1_K) = f_n(0)\varphi^3$$
$$= \varphi^3$$
$$\xrightarrow{\|\cdot\|_{\infty}} \varphi^3$$
$$\neq 0.$$

Example 3.3. Define $T: C^{b\varphi}(K) \longrightarrow C^{b\varphi}(K)$ by $T(f)(x) = f\left(\frac{e}{\|e\|}\right), x \in K$, where $e \in A$ is an element such that $\varphi(e) = 1$. Then,

$$T: \left(C^{b\varphi}(K), \|\cdot\|_{\infty}\right) \longrightarrow \left(C^{b\varphi}(K), \|\cdot\|_{\infty}\right),$$

and

$$T: \left(C^{b\varphi}(K), \|\cdot\|_{\varphi}\right) \longrightarrow \left(C^{b\varphi}(K), \|\cdot\|_{\varphi}\right),$$

are both strongly zero-product preserving maps. Indeed, let $f_n \cdot g_n \xrightarrow{\|\cdot\|_{\varphi}} 0$. So $\|f_n \varphi g_n \varphi\|_{\infty} = \|f_n \cdot g_n\|_{\varphi} \longrightarrow 0$. It follows that,

(3.1)
$$\frac{1}{\|e\|^2} f_n\left(\frac{e}{\|e\|}\right) g_n\left(\frac{e}{\|e\|}\right) = (f_n\varphi g_n\varphi)\left(\frac{e}{\|e\|}\right) \longrightarrow 0.$$

Hence by (3.1) we can conclude that,

$$\begin{split} \|T(f_n) \cdot T(g_n)\|_{\varphi} &= \left\| f_n\left(\frac{e}{\|e\|}\right) \varphi g_n\left(\frac{e}{\|e\|}\right) \right\|_{\varphi} \\ &= \left\| f_n\left(\frac{e}{\|e\|}\right) \varphi g_n\left(\frac{e}{\|e\|}\right) \varphi \right\|_{\infty} \\ &= \left| f_n\left(\frac{e}{\|e\|}\right) g_n\left(\frac{e}{\|e\|}\right) \right\| \|\varphi\|_{\infty}^2 \\ &\longrightarrow 0. \end{split}$$

This shows that $T : (C^{b\varphi}(K), \|\cdot\|_{\varphi}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\varphi})$ is strongly zero-product preserving. A similar argument can be applied to show that $T : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ is also strongly zero-product preserving.

Proposition 3.4. Let $T : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ be a strongly zero-product preserving map such that $T(f\varphi) = T(f)\varphi$ for all $f \in C^{b\varphi}(K)$. Then $T : (C^{b\varphi}(K), \|\cdot\|_{\varphi}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\varphi})$ is strongly zero-product preserving.

Proof. Let $f_n \cdot g_n \xrightarrow{\|\cdot\|_{\varphi}} 0$. So $f_n \cdot (g_n \varphi) \xrightarrow{\|\cdot\|_{\infty}} 0$. It follows that $T(f_n) \cdot T(g_n \varphi) \xrightarrow{\|\cdot\|_{\infty}} 0$. Hence $T(f_n)\varphi T(g_n)\varphi \xrightarrow{\|\cdot\|_{\infty}} 0$. Thus $T(f_n) \cdot T(g_n) \xrightarrow{\|\cdot\|_{\varphi}} 0$.

The following proposition is a result concerning algebraic homomorphisms on $C^{b}(K)$ and $C^{b\varphi}(K)$.

Proposition 3.5. Let $T: C^b(K) \longrightarrow C^b(K)$ be an algebraic homomorphism such that $T(\varphi) = \varphi$. Then $T: C^{b\varphi}(K) \longrightarrow C^{b\varphi}(K)$ is so.

Also if $T: C^{b\varphi}(K) \longrightarrow C^{b\varphi}(K)$ is an algebraic homomorphism such that $T(1_K) = 1_K$ then $T: C^b(K) \longrightarrow C^b(K)$ is so.

Proof. Let $T: C^b(K) \longrightarrow C^b(K)$ be an algebraic homomorphism and $T(\varphi) = \varphi$. So,

$$T(f \cdot g) = T(f\varphi g)$$

= $T(f)T(\varphi)T(g)$
= $T(f)\varphi T(g)$
= $T(f) \cdot T(g)$,

for all $f, g \in C^{b\varphi}(K)$. Thus T is an algebraic homomorphism on $C^{b\varphi}(K)$. Also let $T: C^{b\varphi}(K) \longrightarrow C^{b\varphi}(K)$ be an algebraic homomorphism such that $T(1_K) = 1_K$. So,

$$T(f)\varphi T(g) = T(f \cdot g)$$

= $T((fg) \cdot 1_K)$
= $T(fg) \cdot T(1_K)$
= $T(fg) \cdot 1_K$
= $T(fg)\varphi$,

for all $f, g \in C^b(K)$. It follows that $(T(f)T(g) - T(fg)) \varphi = 0$. Hence, by Proposition 2.1 we can conclude that T(fg) = T(f)T(g) for all $f, g \in C^b(K)$. Therefore, T is an algebraic homomorphism on $C^b(K)$. \Box

Question 3.6. Let $T : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ be a strongly zero-product preserving map.

Is necessarily $T : (C^b(K), \|\cdot\|_{\infty}) \longrightarrow (C^b(K), \|\cdot\|_{\infty})$ a strongly zeroproduct preserving map?

4. Conclusions

If dim A > 1 then there are non-equivalent norms on $C^b(K)$. The norm $\|\cdot\|_{\varphi}$ is not an algebraic norm on $C^b(K)$, whereas it is an algebraic norm on $C^{b\varphi}(K)$. The pair $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is a Banach algebra, whereas $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ is a non-complete normed algebra. So $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\infty}$ are non-equivalent norms on $C^{b\varphi}(K)$. The zero-product preserving maps on $(C^b(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ are the same, but it is not the case for strongly zero-product preserving maps.

References

- H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24 The Clarendon Press, Oxford University Press, New York, (2000).
- R.A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, Taiwan. J. Math., 12 (2008), pp. 1769-1779.
- A.R. Khoddami, On maps preserving strongly zero-products, Chamchuri J. Math., 7 (2015), pp. 16-23.
- A.R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), pp. 107-114.
- A.R. Khoddami, On strongly Jordan zero-product preserving maps, Sahand Commun. Math. Anal., 3 (2016), pp. 53-61.

- 6. A.R. Khoddami, *The second dual of strongly zero-product preserving maps*, Bull. Iran. Math. Soc., 43 (2017), pp. 1781-1790.
- A.R. Khoddami, Bounded and continuous functions on the closed unit ball of a normed vector space equipped with a new product, U.P.B. Sci. Bull., Series A, 81 (2019), pp. 81-86.
- A.R. Khoddami, Biflatness, biprojectivity, φ-amenability and φ-contractibility of a certain class of Banach algebras, U.P.B. Sci. Bull., Series A, 80 (2018), pp. 169-178.
- 9. T.W. Palmer, Banach Algebras and The General Theory of *-Algebras, Cambridge University Press, (1994).

FACULTY OF MATHEMATICAL SCIENCES, SHAHROOD UNIVERSITY OF TECHNOL-OGY, P. O. Box 3619995161-316, SHAHROOD, IRAN.

 $Email \ address: \ \tt khoddami.alireza@shahroodut.ac.ir$