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Fixed Point Results for Extensions of Orthogonal Contraction
on Orthogonal Cone Metric Space

Nurcan Bilgili Gungor1∗ and Duran Turkoglu2

Abstract. In this paper, some fixed point results of self mapping
which is defined on orthogonal cone metric spaces are given by using
extensions of orthogonal contractions. And by taking advantage of
these results, the necessary conditions for self mappings on orthog-
onal cone metric space to have P property are investigated. Also
an example is given to illustrate the main results.

1. Introduction and Preliminaries

The cone metric is obtained by selecting an ordered Banach space in-
stead of real numbers for the range   of the metric mapping. The primary
studies on this subject are given by Huang and Zhang. (see [8]) The
authors introduced cone metric spaces and proved some fixed point the-
orems of contractive mappings on cone metric spaces in their research
article. Then, different fixed point theorems are obtained on cone metric
spaces by many researchers. (see [1, 2, 9, 10, 13–16]).

On the other hand, the notion of orthogonal set and orthogonal metric
spaces are introduced by Gordji.(see [7]) Then, some researchers present
the generalizations of the theorems on this type sets. (see [3, 6, 11, 12])

Very recently, a new concept of orthogonal cone metric spaces, or-
thogonal completeness and orthogonal continuity are defined in [4] and
illustrative examples are given for this new definitions. Also, an ex-
ample is given for orthogonal complete cone metric space which is not
complete cone metric space. Furthermore, fixed point theorems and
their corollaries are proved on orthogonal cone metric spaces and also
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some fixed point theorems for contractive mappings are presented on
ordered orthogonal cone metric spaces in [5].

In this paper, some fixed point results of self mapping which is de-
fined on orthogonal cone metric spaces are given by using extensions
of orthogonal contractions. And by taking advantage of these results,
the necessary conditions for self mappings on orthogonal cone metric
space to have P property are investigated. Also an example is given to
illustrate the main results.

In the sequel, respectively, Q,Qc,Z,R denote rational numbers, irra-
tional numbers, integers and real numbers.

Definition 1.1 ([7]). Let X ̸= ∅ and ⊥⊆ X ×X be a binary relation.
If ⊥ satisfies the following condition
(1.1) ∃x0 ∈ X; (∀y ∈ X, y ⊥ x0) ∨ (∀y ∈ X,x0 ⊥ y),

it is called an orthogonal set (shortly O-set), (X,⊥) is called an O-set
and the element x0 is called an orthogonal element.

Example 1.2 ([6]). Let X = Z. Define m ⊥ n if there exists k ∈ Z
such that m = kn. It is easy to see that 0 ⊥ n for all n ∈ Z. Hence
(X,⊥) is an O-set.

By the following example, we can see that x0 is not necessarily unique.

Example 1.3 ([6]). Let X = [0,∞), we define x ⊥ y if xy ∈ {x, y},
then by setting x0 = 0 or x0 = 1, (X,⊥) is an O-set.

Definition 1.4 ([7]). Let (X,⊥) be an orthogonal set (O-set). Any two
elements x, y ∈ X are said to be orthogonally related if x ⊥ y.

Definition 1.5 ([7]). A sequence {xn} is called an orthogonal sequence
(shortly O-sequence) if
(1.2) (∀n ∈ N;xn ⊥ xn+1) ∨ (∀n ∈ N;xn+1 ⊥ xn).

Similarly, a Cauchy sequence {xn} is said to be an orthogonally Cauchy
sequence (shortly O-Cauchy sequence) if
(1.3) (∀n ∈ N;xn ⊥ xn+1) ∨ (∀n ∈ N;xn+1 ⊥ xn).

Definition 1.6 ([7]). Let (X,⊥) be an orthogonal set and d be an
usual metric on X. Then (X,⊥, d) is called an orthogonal metric space
(shortly O-metric space).

Definition 1.7 ([8]). Let E be a real Banach space and P a subset of
E. P is called a cone if and only if

(i) P is closed, nonempty, P ̸= {θE};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;
(iii) x ∈ P and −x ∈ P ⇒ x = θE .
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Given a cone P ⊆ E, we define a partial ordering ⪯ with respect to
P by x ⪯ y if and only if y − x ∈ P . We shall write x ≺ y to indicate
that x ⪯ y but x ̸= y, while x ≺≺ y will stand for y − x ∈ intP , where
intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that for
all x, y ∈ E, 0 ⪯ x ⪯ y implies ∥x∥E ≤ K ∥y∥E .

The least positive number satisfying above inequality is called the
normal constant of P .

The cone P is called regular if every increasing sequence which is
bounded from above is convergent. That is, if {xn} is sequence such
that
(1.4) x1 ⪯ x2 ⪯ x3 ⪯ · · · ⪯ xn ⪯ · · · ⪯ y,

for some y ∈ E, then there exists x ∈ E such that ∥xn − x∥E → 0(n →
∞).

Equivalently the cone P is regular if and only if every decreasing
sequence which is bounded from below is convergent.

It is well known that a regular cone is a normal cone.
In the following we always suppose E is a Banach space, P is a cone

in E with intP ̸= ∅ and ⪯ is a partial ordering with respect to P .

Definition 1.8 ([8]). Let X be a nonempty set. Suppose the mapping
d : X ×X → E satisfies

(d1) θE ⪯ d(x, y) for all x, y ∈ X and d(x, y) = θE if and only if
x = y.

(d2) d(x, y) = d(y, x) for all x, y ∈ X,
(d3) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric
space.

Lemma 1.9 ([15]). Let (X, d) be a cone metric space. Then for each
θ ≺≺ c, c ∈ E, there exists δ > 0 such that c − x ∈ intP whenever
|| x ||< δ, x ∈ E.

Definition 1.10 ([4]). Let (X,⊥) be an orthogonal set and d be a cone
metric on X. Then (X,⊥, d) is called an orthogonal cone metric space
(briefly O-cone metric space).

Example 1.11 ([4]). Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊆ R2

and X = Z and d : X × X → E, d(x, y) = (| x − y |, α | x − y |)
where α ≥ 0, α ∈ R. Assume that binary relation ⊥ on X = Z as in the
Example 1.2, then (X, d,⊥) is an orthogonal cone metric space.

Example 1.12 ([4]). Let q, b ∈ R where q ≥ 1, b > 1, E = {{xn} | xn ∈
R and

∑∞
n=1(| xn |)q < ∞} and P = {{xn} ∈ E | xn ≥ 0,∀n ∈ N}.



98 N. BILGILI GUNGOR AND D. TURKOGLU

Assume that (X,⊥, ρ) is an orthogonal metric space, then the mapping

(1.5) d : X ×X → E, d(x, y) =
( ρ

bn

) 1
q
,

can be defined on X and this mapping is an orthogonal cone metric. So
(X,⊥, d) is an orthogonal cone metric space.

Example 1.13 ([4]). Let E = (CR[0,∞), || . ||∞) and P = {f ∈ E |
f(t) ≥ 0}. Assume that (X,⊥, ρ) is an orthogonal metric space, then
the mapping

(1.6) d : X ×X → E, d(x, y) = fx,y where fx,y(t) = ρ(x, y)t,

can be defined on X and this mapping is an orthogonal cone metric. So
(X,⊥, d) is an orthogonal cone metric space.

Definition 1.14 ([4]). Let (X,⊥, d) be an O-cone metric space. Let
{xn} be an O-sequence in X and x ∈ X. If for any c ∈ E with θ ≺≺ c
there is N ∈ N such that for all n ≥ N(n ∈ N), d(xn, x) ≺≺ c, then xn
is said to be convergent and the sequence {xn} converges to x( or x is
the limit of {xn}). We denote this by

(1.7) lim
n→∞

xn = x or xn → x(n → ∞).

Definition 1.15 ([4]). Let (X,⊥, d) be an O-cone metric space. Let
{xn} be an O-sequence in X. If for any c ∈ E with θ ≺≺ c there is
N ∈ N such that for all n,m ≥ N(n,m ∈ N), d(xn, xm) ≺≺ c, then
O-sequence xn is called an O-Cauchy sequence in X.

Definition 1.16 ([4]). Let (X,⊥, d) be an O-cone metric space. If
every O-Cauchy sequence in X is convergent, then (X,⊥, d) is called an
O-complete cone metric space.

Lemma 1.17 ([4]). Let (X,⊥, d) be an O-cone metric space, {xn} be
an O-sequence in X. If the sequence {xn} converges to x ∈ X, then
{xn} is O-Cauchy sequence.

Definition 1.18 ([4]). Let (X,⊥, d) be an O-cone metric space. If for
any O-sequence {xn} in X, there is an O-subsequence {xni} of {xn}
such that {xni} is convergent in X, then (X,⊥, d) is called a sequently
compact O-cone metric space.

Definition 1.19 ([4]). Let (X,⊥, d) be an O-cone metric space and
λ ∈ R, 0 < λ < 1. A mapping f : X → X is said to be an orthogonal
contraction ( shortly ⊥-contraction ) with Lipschitz constant λ when

(1.8) d(fx, fy) ⪯ λd(x, y) if x ⊥ y.
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Definition 1.20 ([4]). Let (X,⊥, d) be an O-cone metric space. A map-
ping f : X → X is called orthogonal preserving (shortly ⊥-preserving)
when
(1.9) fx ⊥ fy if x ⊥ y.

Definition 1.21 ([4]). Let (X,⊥, d) be an O-cone metric space. A map-
ping f : X → X is called orthogonal continuous (shortly ⊥-continuous)
at x ∈ X if for each O-sequence {xn} in X such that xn → x then
f(xn) → f(x). Also f is ⊥-continuous on X if f is ⊥-continuous in each
x ∈ X.

The following remarks note which are given in [4].

Remark 1.22 ([4]). (i) It is easy to see that every Lipschitz con-
traction is O-Lipschitz contraction. The converse of the state-
ment is not true in general.

(ii) There are ⊥-preserving or not ⊥-preserving mappings on O-
cone metric space.

(iii) It is easy to see that every continuous mapping is ⊥-continuous.
The converse of the statement is not true in general.

(iv) Every complete cone metric space is an O-complete cone metric
space. The converse of the statement is not true in general.

Also the following fixed point results are given in [4].

Theorem 1.23 ([4]). Let (X,⊥, d) be an O-complete cone metric space
(not necessarily complete cone metric space) and λ ∈ R, 0 < λ < 1. Let
f : (X,⊥, d) → (X,⊥, d) be an ⊥-contraction with Lipschitz constant λ
and ⊥-preserving. In this case, there exists a point x∗ ∈ X such that
for any orthogonal element x0 ∈ X, the iteration sequence {fn(x0)}
converges to this point. Also, if f is ⊥-continuous at x∗ ∈ X, then
x∗ ∈ X is a unique fixed point of f .

Corollary 1.24 ([4]). Let (X,⊥, d) be an O-complete cone metric space,
P be a normal cone with normal constant K and λ ∈ R, 0 < λ < 1. For
c ∈ E with 0 ≺≺ c and any x0 ∈ X, define B(x0, c) = {x ∈ X :
d(x0, x) ≤ c}. Let f : (X,⊥, d) → (X,⊥, d) be an ⊥-contraction with
Lipschitz constant λ for all x, y ∈ B(x0, c), ⊥-preserving on B(x0, c) and
d(fx0, x0) ⪯ (1 − k)c. In this case, there exists a point x∗ ∈ B(x0, c)
such that for any orthogonal element x0 ∈ X, the iteration sequence
{fn(x0)} converges to this point. Also, if f is ⊥-continuous on B(x0, c),
then x∗ ∈ B(x0, c) is a unique fixed point of f .
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2. Main Results

It is useful to examine the following note and definition before start-
ing:

Remark 2.1 ([2]). It is an obvious fact that, if f is a map which has a
fixed point p, then p is also a fixed point of fn for every natural number
n. However, the converse is false. For example, consider X = [0, 1] and
f defined by fx = 1 − x. Then, f has a unique fixed point at 1

2 �, but
every even iterate of f is the identity map, which has every point of [0, 1]
as a fixed point. On the other hand, if X = [0, π],fx = cosx, then every
iterate of f has the same fixed point as f .

Definition 2.2 ([2]). If a map f satisfies F (f) = F (fn) for each n ∈ N,
where F (f) denotes the set of all fixed point of f , then it is said to have
property P . We shall say that f and g have property Q if F (f)∩F (g) =
F (fn) ∩ F (gn).

Now, we are ready to give and prove our main results.

Theorem 2.3. Let (X,⊥, d) be an O-cone metric space, f : (X,⊥, d) →
(X,⊥, d) be an ⊥-preserving mapping. Assume that, one of the following
conditions holds:
(i) for all x ∈ X which satisfying x ⊥ fx, there exists λ ∈ R, 0 < λ < 1,

(2.1) d(fx, f2x) ⪯ λd(x, fx),

(ii) for all x ∈ X which satisfying x ⊥ fx and x ̸= fx,

(2.2) d(fx, f2x) ≺ d(x, fx).

If F (f) ̸= ∅ and u ⊥ fu for all u ∈ F (fn), then f has property P .

Proof. Firstly from the assumption F (f) ̸= ∅ and using Remark 2.1, we
know F (f) ⊆ F (fn), ∀n ∈ N. For this reason F (fn) ̸= ∅. Thus if we
prove F (fn) ⊆ F (f),∀n ∈ N, then the proof is completed. Now, we can
choose u ∈ F (fn). In this case fn(u) = u and from the assumption for
this element u ∈ F (fn), u ⊥ fu.
Suppose that (i) is satisfied. Then, from the inequality (2.1)

d(u, fu) = d(f(fn−1u), f2(fn−1u))(2.3)
⪯ λd(fn−1u, fnu)

...
⪯ λnd(u, fu).

From the definition of ⪯, λnd(u, fu)− d(u, fu) = (λn − 1)d(u, fu) ∈ P
and so d(u, fu) = θ that is u ∈ F (u).
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Suppose that (ii) is satisfied. Assume that u ̸= fu and then by using
inequality (2.2),

d(u, fu) = d(f(fn−1u), f2(fn−1u))(2.4)
≺ d(fn−1u, fnu)

...
≺ d(u, fu).

This is a contradiction. So, u = fu that is u ∈ F (u).
Thus, in both cases f has property P . □

Theorem 2.4. Let (X,⊥, d) be an O-complete cone metric space (it not
necessarily complete cone metric space ) and α, β, γ ∈ R, 0 < α + 2β +
2γ < 1. Let f : (X,⊥, d) → (X,⊥, d) be an ⊥-preserving which satisfies
the following inequality
(2.5)
d(fx, fy) ⪯ αd(x, y)+β[d(x, fx)+d(y, fy)]+γ[d(x, fy)+d(y, fx)] if x ⊥ y.

In this case, there exists a point x∗ ∈ X such that for any orthogonal
element x0 ∈ X, the iteration sequence {fn(x0)} converges to this point.
Also, if f is ⊥-continuous at x∗ ∈ X, then x∗ ∈ X is a unique fixed
point of f .

Proof. Because (X,⊥) is an O-set,
(2.6) ∃x0 ∈ X; (∀y ∈ X, y ⊥ x0) ∨ (∀y ∈ X,x0 ⊥ y).

And since, f is a self mapping on X, for any orthogonal element x0 ∈ X,
x1 ∈ X can be chosen as x1 = f(x0). Thus,
(2.7) x0 ⊥ f(x0) ∨ f(x0) ⊥ x0 ⇒ x0 ⊥ x1 ∨ x1 ⊥ x0.

Then, if we continue in the same way
(2.8) x1 = f(x0), x2 = f(x1) = f2(x0), . . . , xn = f(xn−1) = fn(x0),

so {fn(x0)} is an iteration sequence. Since f is ⊥-preserving, {fn(x0)}
is an O-sequence and by using (2.5),

d(xn+1, xn) = d(f(xn), f(xn−1))(2.9)
⪯ αd(xn, xn−1) + β[d(xn, fxn) + d(xn−1, fxn−1)]

+ γ[d(xn, fxn−1) + d(xn−1, fxn)]

= αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)]

+ γ[d(xn, xn) + d(xn−1, xn+1)]

⪯ αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)]

+ γ[d(xn−1, xn) + d(xn, xn+1)].
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And so, we get

(2.10) d(xn+1, xn) ⪯
α+ β + γ

1− β − γ
d(xn, xn−1).

Since α, β, γ ∈ R, 0 ≤ α, β, γ and α+2β+2γ < 1, if t = α+β+γ
1−β−γ is chosen

then t ∈ (0, 1) and
d(xn+1, xn) ⪯ td(xn, xn−1)(2.11)

⪯ t2d(xn−1, xn−2)

...
⪯ tnd(x1, x0).

If for all n ∈ N, xn = xn+1 then we get xn = f(xn) and so f has
a fixed point. Assume that ∀n, n + 1 ∈ N, xn ̸= xn+1. In this case,
∀n,m ∈ N, n > m,

θ ⪯ d(xn, xm) ⪯ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

(2.12)

⪯ tn−1d(x1, x0) + tn−2d(x1, x0) + · · ·+ tmd(x1, x0)

⪯ tm

1− t
d(x1, x0).

In the sequel there are two cases:
Case I: If P is a normal cone with normal constant K, from the inequality
2.12,

∥d(xn, xm)∥ ≤ K

∥∥∥∥ tm

1− t
d(x1, x0)

∥∥∥∥(2.13)

≤ tm

1− t
K ∥d(x1, x0)∥ .

Using the above equation, since 0 < t < 1, d(xn, xm) → θ(n,m → ∞)
and so {xn} = {fn(x0)} is an O-Cauchy sequence.

Case II: If P is not a normal cone, let c ∈ E such that θ ≺≺ c. Then
c ∈ intP . Also δ > 0 can be chosen such that c + Nδ(θ) ⊂ P where
Nδ(θ) = {y ∈ E :|| y − θ ||< δ}. Since 0 < t < 1,

(2.14)
∥∥∥∥ tm

1− t
d(x1, x0)

∥∥∥∥ =
tm

1− t
∥d(x1, x0)∥ → θ(m → ∞).

Since the choosing of δ,
∥∥∥ tm

1−td(x1, x0)
∥∥∥ < δ and using the Lemma 1.9

we get

(2.15) c− tm

1− t
d(x1, x0) ∈ intP that is tm

1− t
d(x1, x0) ≺≺ c(m → ∞).
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Thus, for all n,m ∈ N such that n ≥ m, we obtain that d(xn, xm) ≤
tm

1−td(x1, x0) ≺≺ c, so {xn} = {fn(x0)} is an O-Cauchy sequence.
In both cases, since (X,⊥, d) is an O-complete cone metric space,

there exists x∗ ∈ X such that {xn} = {fn(x0)} converges to this point.
Now, assume that f is ⊥-continuous at x∗ ∈ X and let c ∈ E such that
θ ≺≺ c. Because of {xn} = {fn(x0)} converges to x∗ ∈ X and f is
⊥-continuous at x∗ ∈ X, there exists n0 ∈ N and for all n ≥ n0,

(2.16) d(fxn, x
∗) ≺≺ c

2
and d(fxn, fx

∗) ≺≺ c

2
.

So, for all n ≥ n0, d(fx∗, x∗) ⪯ d(fx∗, fxn) + d(fxn, x
∗) ≺≺ c. On the

other hand, for m ∈ N,m ≥ 1 we obtain 0 < 1
m ≤ 1. Using c ∈ intP and

λintP ⊆ intP (λ ∈ R, λ > 0) we get c
m ∈ intP . Thus, for all n ≥ n0 and

for m ∈ N,m ≥ 1 we have d(fx∗, x∗) ≺≺ c
m , then c

m − d(fx∗, x∗) ∈ P .
Using the cone P is a closed set, where taking limit m → ∞ we get

lim
m→∞

( c

m
− d(fx∗, x∗)

)
= −d (fx∗, x∗) ∈ P.(2.17)

Besides θ ⪯ d(fx∗, x∗) that is d(fx∗, x∗) ∈ P . So, because P is cone
d(fx∗, x∗) = θ that is fx∗ = x∗, so x∗ ∈ X is a fixed point of f .
Now, we show the uniqueness of the fixed point. Suppose that there
exist two distinct fixed points x∗ and y∗.Then,
(i) If x∗ ⊥ y∗ ∨ y∗ ⊥ x∗,

(2.18) d(x∗, y∗) = d(fx∗, fy∗) ⪯ λd(x∗, y∗) ≺ d(x∗, y∗).

This is a contradiction and thus x∗ ∈ X is an unique fixed point of f .
(ii) If not x∗ ⊥ y∗ ∨ y∗ ⊥ x∗, for the chosen orthogonal element x0 ∈ X,

(2.19) [(x0 ⊥ x∗) ∧ (x0 ⊥ y∗)] ∨ [(x∗ ⊥ x0) ∧ (y∗ ⊥ x0)],

and since f is ⊥- preserving,

(2.20) [(f(xn) ⊥ x∗) ∧ (f(xn) ⊥ y∗)] ∨ [(x∗ ⊥ f(xn)) ∧ (y∗ ⊥ f(xn))],

is obtained. So,

d(x∗, y∗) ⪯ d(x∗, fxn+1) + d(fxn+1, y
∗)(2.21)

= d(fx∗, f(fxn)) + d(f(fxn), fy
∗)

⪯ λ[d(x∗, fxn) + d(fxn, y
∗)]

= λ[d(x∗, xn+1) + d(xn+1, y
∗)],

and taking limit n → ∞, we get that −d(x∗, y∗) ∈ P . Besides θ ⪯
d(x∗, y∗) that is d(x∗, y∗) ∈ P . So, because of P is a cone, d(x∗, y∗) = θ
that is x∗ = y∗. Thus, x∗ ∈ X is a unique fixed point of f . □
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Theorem 2.5. Let (X,⊥, d) bes an O-complete cone metric space and
α, β, γ ∈ R, 0 < α + 2β + 2γ < 1. Let f : (X,⊥, d) → (X,⊥, d) be
⊥-preserving which satisfies the following inequality
(2.22)
d(fx, fy) ⪯ αd(x, y)+β[d(x, fx)+d(y, fy)]+γ[d(x, fy)+d(y, fx)] if x ⊥ y.

If u ⊥ fu for all u ∈ F (fn), then f has property P .

Proof. From Theorem 2.4, f has a unique fixed point. By Remark 2.1,
we know F (f) ⊆ F (fn), ∀n ∈ N. For this reason F (fn) ̸= ∅. Thus if we
prove F (fn) ⊆ F (f),∀n ∈ N, then the proof is completed. Now, we can
choose u ∈ F (fn) that is fn(u) = u. By using (2.22),

d(u, fu) = d(f(fn−1u), f(fnu))(2.23)
⪯ αd(fn−1u, fnu) + β[d(fn−1u, fnu) + d(fnu, fn+1u)]

+ γ[d(fn−1u, fn+1u) + d(fnu, fnu)]

⪯ αd(fn−1u, fnu) + β[d(fn−1u, fnu) + d(fnu, fn+1u)]

+ γ[d(fn−1u, fnu) + d(fnu, fn+1u)]

= αd(fn−1u, u) + β[d(fn−1u, u) + d(u, fu)]

+ γ[d(fn−1u, u) + d(u, fu)].

And so, we get

(2.24) d(u, fu) ⪯ α+ β + γ

1− β − γ
d(fn−1u, u).

Since α, β, γ ∈ R, 0 ≤ α, β, γ and α+2β+2γ < 1, if t = α+β+γ
1−β−γ is chosen

then t ∈ (0, 1) and

d(u, fu) = d(fnu, fn+1u)(2.25)
⪯ td(fn−1u, fnu)

...
⪯ tnd(u, fu).

From the definition of ⪯, tnd(u, fu) − d(u, fu) = (tn − 1)d(u, fu) ∈ P
and so d(u, fu) = θ that is u ∈ F (u). Thus, we say f has property
P . □

Example 2.6. Let E = R2 be the Euclidean plane, P = {(x, y) ∈ E :
x, y ≥ 0} be a cone in E and X = {(x, 0) ∈ E : 0 ≤ x < 1}. Define the
binary relation ⊥ on E such that
(2.26)
(x1, y1) ⊥ (x2, y2) ⇐⇒ ⟨(x1, y1), (x2, y2)⟩e ∈ {|| (x1, y1) ||e, || (x2, y2) ||e}.
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(Here ⟨., .⟩e denotes the Euclidean inner product and || . ||e denotes
Euclide norm.) In this case, (X,⊥) is an O-set. The mapping d :
X ×X → E is defined by

(2.27) d((x, 0), (y, 0)) =

(
3

2
|x− y| , |x− y|

)
.

Then,(X,⊥, d) is an O-complete cone metric space. Consider f : (X,⊥
, d) → (X,⊥, d) with

(2.28) f(x, 0) =
(x
3
, 0
)
.

It can be seen easily f is an ⊥-preserving and ⊥-continuous mapping on
X which satisfies inequality 2.22 with α = 1

5 , β = 1
5 and γ = 1

7 . Thus,
all hypothesis of Theorem 2.4 are satisfied and so, f has an unique fixed
point in X. On the other hand, u ⊥ fu for all u ∈ F (fn) and from
Theorem 2.5 f has property P .

3. Conclusion

It is an obvious fact that, if f is a map which has a fixed point p,
then p is also a fixed point of fn for every natural number n. However,
the converse is false. If a map f satisfies F (f) = F (fn) for each n ∈ N,
where F (f) denotes the set of all fixed point of f , then it is said to have
property P . In this paper, some fixed point results of self mapping which
is defined on orthogonal cone metric spaces are given by using extensions
of orthogonal contractions. And by taking advantage of these results,
the necessary conditions for self mappings on orthogonal cone metric
space to have P property are investigated. Also an example is given to
illustrate the main results.
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