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Bounds for the Operator Norm on Weighted Cesaro
Fractional Difference Sequence Spaces

Kuldip Raj', Anu Choudhary? and Mohammad Mursaleen®*

ABSTRACT. In this paper, we determine the upper and lower bounds
for the norm of lower triangular matrix operators on Cesaro weighted
(p, v)—fractional difference sequence spaces of modulus functions.

We consider the matrix operators acting between £, (w) and Cp (v, w,

A F) and identify their bounds and vice-versa. We also in-

vestigate the same characteristics for Nérlund and weighted mean
matrix operators.

1. INTRODUCTION

Let W denote the following sequence space
W={x=(z5):zs€R or C},

where R and C are the sets of real and complex numbers, respectively.
For 1 < p < oo, the sequence space £, is defined as

o
x:(xs)EW:Z\xs\p<oo ,
s=1

and the space £, is a Banach space with respect to the norm

)
lall, = (S lasl?) ) forp>1.
s=1
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For w = (ws) > 0, the weighted sequence space ¢, (w) is defined as
follows:

by (w) = {w: (x5) € W Zws |z [P < oo},

s=1

and

o0 ’
H‘THp,w = <Z Ws |x3|p) .
s=1

Recently, Shahraki and Ledari in [19] worked on ¢, (co) sequence
space. Initially, the fractional difference operators A7, A A= A=)
were introduced in [7] and discussed some topological results for these
spaces. In [3], Baliarsingh et al. studied approximation theorems and
statistical convergence in fractional difference sequence spaces. The bi-
nomial fractional difference sequence spaces by clubbing binomial matrix
and fractional difference operators were studied in [[14]. In [4], the dou-
ble difference fractional order sequence spaces were examined. Recently,
Choudhary et al. [§] investigated some interesting results on the space
of double difference sequences of fractional order (see also [21-23]).

Let N be a set of natural numbers and ¢ be a real number. Then
(1, £)—fractional difference operator A9 : W — W is defined by:

s

A () =3 (—7.7')@4%_“
1!

=0

where 7 is a positive proper fraction and the Pochhammer symbol

[, when s = 0,
(M) = { nn+L)(n+20)(n+3¢)---(n+(s—1)¢), whenseN.

Nakano [15] introduced the concept of the modulus function. For
definitions and results, see [, 2, 18].
In 1970, Shiue [20] introduced the Cesaro sequence space cesp, for p > 1
and is defined by

oo 1 S p
cesp = xEW:Z EZ]Q:KJ] <00,
s=1 p=1

and this sequence space is a Banach space with respect to a norm

1/p
o

p
S
ol = (3 D Il
=1

s=1
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Afterward, many authors studied these sequence spaces (see [6, 9, 12,
13, [16, 17]). Recently, the norms and lower bounds for matrix operators
on weighted difference sequence spaces were determined in [g].

For p > 1, A9 a (n, ) —fractional difference operator, F = (f,,)
a sequence of modulus functions, v = (v,) a sequence of positive real
numbers and Vs = v1+va+- - -+vg, the Cesaro weighted (p, v)—fractional
difference sequence space is defined as follows:

Cp (v,w, A(”’Z),}")
o0 1 S p
= x:(xS)GW:ZwS vap (fp‘A("’Z):ch < ooy,
s=1 s p=1
and
N
1 $ 0
Il (0. Zws 7 2 v (fo |20z )
For ws, = 1, sequence spaces ¢, (w) and C), (v,w,A(nve),]:) reduce to
¢, and C), (U,A(W),}"), respectively. Suppose D = (dm,j) is a lower
triangular matrix such that for all m, j, d,,; > 0, p* = (p 0 the set
6" = max (6,0) and 6~ = min (4,0).
We can denote this by
(i) HDpr Cp (0w, A0 F) > the norm of a matrix D as an operator
from ¢, (w) into C), (U, w, A(”’Z),}") ,
(i) 11D, Cp (0,200 F) » the norm of a matrix D as an operator from
ly to Cp (v, AO F)
(iii) HDHcp(v,w,A(’M),F),p,w7 the norm of a matrix D as an operator
from Cp(v,w, A F) into £,(w),
(iv) [I1Dll¢, (v w,am0 5 the norm of a matrix D as an operator from
Cp(v, ATO F) to 4,
(v) || D]|pw, the norm of a matrix D as an operator from ¢,(w) into

itself and
(vi) ||D||p, the norm of a matrix D as an operator from £, into itself.

Let us define Np and np as follows:

S s — @‘i‘ 1 S S +
Np=supd S TZ0E (Y dy - Y g
szl p=1 s q=p q=p—1

S

nD—suplnf{ qu,g—l— —S+1) Z (s—p+1)

>S
5219 p=S+1
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S S -
quv@ - E , dq,@—l )
q=p q=p—1

Let Y and Z be two normed vector spaces. A linear map D : Y — Z is
continuous if and only if there exists a real number R such that

Dyl < Rljyll, VvyeY.

The continuous linear operators are also known as bounded operators.

Let (di) be a non-negative sequence with d; > 0 and Ds = Z di. The
k=1
Nérlund matrix Ny = (ds,) is defined by

d — ds—p-i—l/Ds, 1 S @ S Sa
5 0, otherwise,

and the weighted mean matrix Wy = (ds ;) is defined by
do/Ds, 1< p <s,
dsp = 0

, otherwise.

2. MAIN RESULTS

Lemma 2.1. Let v = (vy,) be a sequence of positive real numbers, AMD)
be a (n,¢) —fractional difference operator, and d, x be two non-negative
sequences. Then

s

zs: ‘devp (fp ‘A(M)%D < 1213%{5 5_;)_'_1 Z Vg (fk ‘A(n,f)xk‘)

o= k=p
57 +1
Z @ d —dp_1)+,

for all s > 0.

Proof. By applying summation by parts, we have

S

Zédfo“KJ(fp‘A(M D Z ka(fk‘AkaD —dp-1)

1 S
< (n.0) D
- 1?2%55—@—#1%% (fk‘A T

" (s—p+1
Z (V) (dy — dp—1)+ :
p=1 ?
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Lemma 2.2. Let v = (vy,) be a sequence of positive real numbers, Vs =
vi+ve+--+vsand S > 1. Ifxg > xg11 > -+ >0 and xs = 0, for
s < S. Then

St (1]s0) = (1 (1 a0

k=1

S

Yo (s—p+1)(de—do1) ¢,

e=5S+1

V.2 T V(s — S +1)

for all s > 0.

Proof. We know that the result holds for s < S. Now, let s > S. Then
for (S < p < s) we have

—;—H;k (a0 ) = —é—klkz;k )
2 —;H; (f]a2]).

since xg > xg4+1 > --- > 0 and z; = 0 for s < S. Now, by using summa-
tion by parts, we have

g 3 o (52005,
p=1

_ 4 (; > o (5] A(m%k‘)>

¥ k=3
. % Z (dy—dy 1) i”’f (fk ’A(n,e)ka
$ e S+l k=p
- (1 (o)
sds n S y (s—p+1)(dp —dp-1)" -
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Lemma 2.3 ([11]). Let p > 1,5 > 1 and w = (ws) > 0 be a decreasing
o0

w
sequence and E = be divergent and Cg = (CEP) be a matriz with
S 2
s=1

Then the norm ||Cs||pw = p*.

Lemma 2.4 ([11]). Let v = (v, )(p > 1) be a sequence of positive real
numbers, y = (Yo) = Uy (fp ‘A mt mp‘) > 0 and w > 0 be decreasing
sequence. Then

0o 1 k p 00
\P p
;“’“ 129k (k:—q+1 ;yp) =7 ;wp )

Theorem 2.5. Let F = (f,) be a sequence of modulus functions, w =
(ws) be a non-decreasing sequence, v = (vs) be a sequence of positive
real numbers and Vs = vi +va + -+ +vs. If D = (ds,,) > 0 be a lower
triangular matriz, then

(i) [|D]

is a bounded matriz opemtorfromf (w) into Cp (v, w, A1) ,F).

p0.Cp (0,0, A0 F) < p*Np. In addition if Np < oo, then D

(ii) ||Dpr Cp (00,00 F) > p*np, zfz — is divergent and (w +1)
s=1
s decreasing.

Accordingly, if w = (ws) be a decreasing sequence with non-negative

o
. . . Ws
entries, (JJL) is decreasing and E — = oo, then
S
s

p*nD S ||D”p’u_;’Cp(v’w’A(nvz)’]-—) S p*ND

In particular, if ws = 1, for all s and if Np < oo, then D : {, —
Cp (v, A(”’Z),}") 18 a bounded matriz operator.

Proof. By employing Lemma @, we have

5 (3 Bt (507
p=1 =p
< max ;)—l- . gvk (fk ‘A(W)mD
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1
m E A (1:6)
SNDlgpa%(ss—p—l—lk Uk(fk) ka
:p

Thus, by using Lemma @, we have

p

i“’s >, (; i:d%@) Vo (fp ‘A("’Z)%D
s=1 5 q=p

S
p=1

< P S s [ L Yo (£ [A00m )
s=1

1<p<s | s —p+1 k=p
< (p*Np)? iw@ (”Ko <f@ ‘A(M)%‘))p‘
=1

(ii) Let z = (z5) be a decreasing sequence with non-negative entries,

2]l =1 forall s > 1, 2y =29 =+ =251 =0 and
( w >(1/p)
Ts4S—-1 — Zsg-
o Ws+S5-1 °
Hence, ||z, , = |2/, = 1. Now, by using Lemma @, we have
ol

pw,Cp (v,w, A0 F)

oo s
1
= (WS)p;werS—l <s+S—1 ;UHS—l (fk+S—1

> (v5)" [|ICsl;

p,w?

(1/p)
A0 (wk ) 2k
WE4+S—-1

)
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where
Ys =
Snzlg qu’s—'_ S—S+1) Z (s=p+1) (qu’ Z dq’pl>
=S+1 ol
Now, by Lemma @, we have
1Dllp.c o (v.w, A0 F) > p*ys.
Hence, ||Dpr Cp(vw A0 }—) > p*np, where np = sup~s. 0

S>1

Corollary 2.6. Letu > 1,D = (ds ) be a non-negative lower triangular
matriz such that

Z dqp 1<ZdCI@a

g=p—1
for1 < o <s. Then

HD”ILUJ,C (v w,Am:£) ]-')p ig%) 7 d

s S
Proof. We know that the finite sequence (Z dq,p> is increasing for
9= gg:l
each s. Hence, we have

S S
Z dg,p — Z dg,o—1 =0,
q=p

q=p—1

and

np = sup inf Zd
b S>Iis>5 0.5

= su d
s>11) V

Also, for (1 < p <),

n
Zd(bg’_ Z d‘la@—l :qu,p_ Z dq,ga—l-
9=

g=p—1 q=p qg=p—1
Thus,

S S
Np = sup Z{S_‘}L—H >, qupl
s o1

p=1 q=p q=
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—supv Zqup

p=1q=p

As a consequence of Theorem @, we have

”DHp,w,Cp(v,w,A(w),]:) =p* 21>111) v d . ]

Example 2.7. Define D = (d,,) by

1/83, P <s,
(B3s—1)/s, p=s,
0, o> s.

and a sequence (vg) = 2k.

s S
Here, the sequence ( E dq@) is increasing sequence for each s and
q=r p=1

sup idw = 3. Thus, by Corollary @, we have
s>1 Vs

HDHp,w,Cp(v,w,A(n,a’;)3p*.
Corollary 2.8. Let u > 1 and D = (ds ) > 0 be a lower triangular
S

S
matriz with Z dgp-1 > Z dg,p, for 1 < o < s. Then

g=p—1 q=p

(2.1)

" {inly; LSS | S Il i) < 3;11;2
5 p=1q=p

Also, if the right hand side of @) be finite, then
Dy (@) = Gy (0.0, A0, F)

is a bounded matriz operator.
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S
Proof. Since, (Z dq,p> is decreasing for each s, then for (1 < p < s),

=1
we have

Zd%p_ Z dq,go—l :qu,p_ Z dq,go—l-
9=

g=p—1 q=p qg=p—1

Hence,

s—p+1 s
np = sup inf qu,S‘i‘ 7S+1) Z (s—p+1) (qu,p_

s>S
S>1 o=S+1

= sup inf o — s ZZ o
goSq@

S S

Z dg,p — Z dg,p—1 =0,
q=p q=p—1

for 1 < k <sand

+
S S s
qu,l —qu,o :qu,l, for k =1.
q:1 q:0 q:l
Therefore,

NDsupZ V. dgn

s>1

Now, by using Theorem @ we can conclude that

7 0 3 e | < 1Dy s <7 Suva o

p=1q=p

Example 2.9. Define D = (d,,) by

3, s>p,
0, otherwise.

and a sequence v = (vi) = 2k.

S
Here, the sequence (Z dq,p> is decreasing sequence for each s and

9= p=1
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[e.9]

2
sup Z v dgn Z:l SV Thus, by Corollary @ we have

s>1

9
2 *
0 < ”DHp,w,Cp(U,w,A("’Z)7-7:) < <Z s (Vs)) p -

s=1

Corollary 2.10. Let p > 1, Ny = (ds,o) be a Norlund matriz and (dy)
be a decreasing sequence. Then

<p supzs:ff

< |%|
p p,w,Cp vw,A("v[),}') s>1 e Vs Dq

Corollary 2.11. Let p > 1, Wy = (ds,p) be a Weighted mean matric
and (ds) be a decreasing sequence. Then

S
< HW H <prdy [sup S 2=
¥ Ulpo,Cy (00,2000 F) =7 szﬁ); Vs Dq

Theorem 2.12. Let p > 1 and D = (ds ) > 0 be a lower triangular
matriz. If D : £, (w) — £, (w) be a bounded matriz operator, then
D :lp(w) = C,p (v,w, A(W),]:) is also a bounded matriz operator and

S
1Dl s00.5) < (1) 27104

Proof. For p > 1, we have

p,w.

p
s

o
HD:BHPWCP(UWAM 0,7) Zws ZZ 0.k Uk (fk )A(W)xk’)
s=1 =1 k=1

< \

p
s

Zi dy oUr (fk ‘Am,ka‘)

Il
ing

-
e
En\r—l

s=1

00 S ’
Y (;) > (CiD), oo (fi|A™0ay))

s=1 57 p=1

0o u| S !
S () S (e

s=1 5 p=1

T

_ <;)p H(ClD)S,k o (fi \A("’@””f‘) HZW
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Now, let y = (yx) = vg (fk |A(’7’Z)xk|) . Hence, we have

S
(e ) = (57 ) 1€l 13l

By using Lemma @ we get

(2)1e= ()

S
R (V) 51Dyl

Thus the theorem is proved. O

|Dx

Thus,

Proposition 2.13 ([10]). Let w = (ws) > 0 be a decreasing sequence,
Ci be a Cesaro matriz and p > 1. Then [|C4|,, <p

Theorem 2.14. Let p > 1 and D = (ds,) be a non-negative lower
triangular matriz. Then
(2.2)

Vs 1 DI],.0
: <||D , <sup | Vs sup ds, | .
s (Hx”p,w,Cp(v,w,AM,f) 1Pl ounsnt.7) 1\ 1pss

Also, if the right hand side of @) s finite, then D is a bounded matriz
operator from C,, (U, w, A("’Z),]:) into £, (w) .

Proof. Let x € C) (U,w, A(”’Z),]:) . Then

|1D|2, Zws Zd s (fo |20 )

p

p

1<p<s

< iws sup dy ivp (fgJ ‘A(M)W,D
s—1 p=1

s>1 1<p<s

P o s p
< sup (VS sup d57p> Zws Vi qup <fp ’A(MM%D
s=1 $

p
- Sup (‘/S Sup d&@) ”J"Hp’w7cp(v7w7A("lv£)7]-—) *

s>1 1<p<s

Therefore,

: <sup (Vs sup ds,
12l .0 (a0 7) ~ 521\ 1<p<s
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and

D < |2 d .
Pllenamosyon < (V0,8

Now, by using Proposition we conclude that

s s
e ( ’Ame) D < —p
||.T||p’wycp(v,w,A(nl)7]—') V. 10 fx Tk b Vsp ||pr7m
where y = (yi) = vg (fk ‘A(M)xk‘) ’
This implies
|Dall,, Vs 1Dl
||z P, Cp (0,0, A1 F) ~ s.p* Hpr,w
Hence,
- R
P Cp(vw A0 F) = g e iyl
Thus,

Vs | Dzl ,, (
: < ||D - <sup (Vs sup d .
s.p* (”x”p,w,cp(v,wA(M),f) | ||pqucp(U7W7A(15)7]:) SV SR e

O

Corollary 2.15 ([L1]). Let Ny = (ds,,) be a Nérlund matriz and (ds)
be a decreasing sequence with ds | 8 and B > 0. Then

%], =

Corollary 2.16 ([11]). Let Wy = (ds,,) be a weighted mean matriz and
(ds) be an increasing sequence with ds 1 and f < oco. Then

ud

*
:p .
p,w

Corollary 2.17. Let A be a (n,0)-fractional difference operator,
F = (fx) be a sequence of modulus functions andp > 1. Then generalized
Cesaro matriz Cg is bounded from C, (v,w, A("’Z),]-') into €, (w) and

Vs 1 V.
5 < |ICs|| (n,6) < —.
; (H:vlrpw,cp@,wﬁw,a,f)) Co(ni0,20,F) s <

Proof. For Cg a generalized Cesaro matrix,

Vs
sup | Vs sup dsp | =sup ——4——
321<51§p§s Sp) s>15+5—1
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Vs

Now, from Theorem , we have

Vs 1Csl,..,
S'p* Hx ‘p,w,Cp(v,w,Aer),f)

m‘cs

) < ICslle, (vw,00:0,7) po <

Also, ”CS||Cp(v,w,A<M),J-‘),p,w = p*, from Lemma @, we have

Vs 1 Vs
— |Csl (n.0) < —. O
5 ( Hl‘”p,w,Cp(v,w,A(M),J:) ) G (vl ’f) P S

Corollary 2.18. Let Ny = (ds,) be a Norlund matriz and (ds) be a
decreasing sequence with ds | 8 and 8 > 0. Then

() <l
S ||$|’p’w’Cp(U’M’A("vZ)7f)

Proof. As a consequence of Corollary and Theorem M we get

Vs 1 <
§ Hx”pvwvcp(vvwvA(n’e)v]:) B

Corollary 2.19. Let Wy = (ds,,) be a weighted mean matriz and (ds)
be an increasing sequence with ds T 8, B < oo and p > 1. Then

e
§ ||pr,w,Cp(v,w,A<"vz),]-')

Proof. As a consequence of Corollary and Theorem we get the
desired result. O

V.
< dj sup —.
Cp(v,w, A0, F) pw s>1 Ds

V.
< djsup = .0
CP(U7W7A<T’7£>7]:)7P’W 821 S

i

Vsds
< sup 5.
Cp(v7w7A("’e>7]:)7P7w s>1 DS

3. CONCLUSION

The determination of bounds is a powerful tool for balancing vectors
in any norm and is extremely helpful in hereditary discrepancy prob-
lems. The theory of difference sequence spaces plays an important role
in enveloping the classical theory of fractional calculus and numerical
analysis. The study of fractional calculus has a direct impact on the the-
ory involving the solution of diverse problems in mathematics, science
and engineering. Also, Cesaro sequence spaces serve many applications
in physical chemistry and crystallography. In this paper, we have de-
termined the bounds for the norm of matrix operators from ¢, (w) into
Cp (v,w,A(W),]—") and from C, (v,w,A(W),}") into £, (w). We have
also obtained the norm of matrix operators on some lower triangular
matrices such as Norlund and weighted mean matrices.
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