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Dynamical Systems Implemented by Isomorphic Groups of
Unitaries

Maysam Mosadeq

Abstract. Let φ : A → B be an isomorphism of C∗-algebras and
I be an ideal of A. Introducing the concepts of unitary equivalent
and the implemented Finsler modules, we show that the A

I
-module

E
EI

and the implemented B
φ(I)

-module F
Fφ(I)

are unitary equivalent.
We also, establish a one to one correspondence between the groups
U(E) and U(F ) of unitaries on full Finsler modules E and F, re-
spectively. Finally, we explain regularized dynamical systems and
apply the aforementioned one to one correspondence to prove that
each regularized dynamical system in U(E) implements a regular-
ized dynamical system in U(F ).

1. Introduction

Let X be a Banach space. A one parameter family {αt}t∈R of bounded
linear operators on X is called a regularized one parameter group if there
exists an injective bounded linear operator c on X such that α0 = c and
cαt+s = αtαs for every t, s ∈ R. For convenience, we say that such a
regularized one parameter group is a c-one parameter group. A c-one
parameter group {αt}t∈R is called strongly continuous if lim

t→0
αt(x) =

c(x), for each x ∈ X.
The infinitesimal generator δ of a c-one parameter group {αt}t∈R is

a mapping δ : D(δ) ⊆ X → X such that δ(x) = c−1 lim
t→0

αt(x)− c(x)

t

where D(δ) = {x ∈ X : lim
t→0

αt(x)− c(x)

t
exists in the range of c}.
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The notion of regularized semigroups was introduced by Davies and
Pang in 1987 [8]. The reader is referred to [8, 9, 15] for more details.
Trivially, if c is the identity operator on X, then a regularized one pa-
rameter group is nothing than a one parameter group in the usual sense
(see [25, p. 8]).

One parameter groups of bounded linear operators and their exten-
sions are of more considerable magnitude because of their applications
in the theory of dynamical systems. Such groups are applied widely to
describe the dynamical systems appearing in quantum field theory and
statistical mechanics [7, 10, 23, 30].

The classical C∗-dynamical systems are expressed by means of strongly
continuous one parameter groups of ∗-automorphisms on C∗-algebras.
On the other hand, the infinitesimal generator of a C∗-dynamical sys-
tem is a closed densely defined ∗-derivation. Therefore, the theory of
C∗-dynamical systems concerns the theory of derivations in C∗-algebras.

Recently, various generalized notions of derivations have been inves-
tigated in the context of Banach algebras and Banach modules. Auto-
matic continuity, approximately innerness and closability are some of
important subjects which are investigated in the theory of derivations
(see [1, 16, 20, 22] and references therein).

In each case of generalization of derivations, a noted point drawing
the attention of analysts is trying to represent a suitable dynamical
system whose infinitesimal generator is exactly the desired extended
derivation as well as being an extension of a C∗-dynamical system. Each
extension of a C∗-dynamical system is usually provided by adjoining a
suitable property to (an extension of) a uniformly (strongly) continuous
one parameter group of bounded linear operators on (an extension of) a
C∗-algebra. Some approaches to preparing new dynamical systems and
their applications have been explained in [2, 3, 17–19, 21] and references
therein.

As an extension of C∗-algebras it can be pointed to Hilbert C∗-
modules. A (left) Hilbert C∗-module over a C∗-algebra A is an algebraic
left A-module X equipped with an A-valued inner product ⟨., .⟩ which
is A-linear in the first and conjugate linear in the second variable such
that X is Banach space with respect to the norm ∥x∥ = ∥ ⟨x, x⟩ ∥

1
2 . The

Hilbert A-module X is called full if AX := span{⟨x, x⟩ : x, y ∈ X} is
dense in A. Note that AX is an ideal in A, called the range ideal of X.
We denote by ⟨X,X⟩ the closure of AX and call it the support of X.
Therefore, X is a full Hilbert A-module if ⟨X,X⟩ is equal to A.

We recall that a linear map T : X → X is adjointable if there exists
a map T ∗ : X → X that fulfills ⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ for all x, y ∈ X.
Such a map is called the adjoint map of T . This definition implies that
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each adjointable map is a bounded A-linear operator (see [14, p. 8]). An
adjointable operator T : X → X is called unitary if TT ∗ = T ∗T = I.

Hilbert C∗-modules were investigated by Kaplansky [13], Paschke
[24], and Rieffel [29]. They are a generalization of Hilbert spaces, but
there are some differences between these two classes. For example, each
bounded operator on a Hilbert space has an adjoint, but a bounded A-
linear map on a Hilbert A-module is not adjointable in general. For this
and other general facts concerned with Hilbert C∗-modules we refer to
[14, 28].

In 1995, Phillips and Weaver [27] demonstrated an interesting gener-
alization of Hilbert C∗-modules entitled “Finsler modules” . They also,
showed that if a C∗-algebra A has no nonzero commutative ideal, then
any Finsler A-module is a Hilbert A-module.

In 2002, Bakić and B. Guljaš [6] introduced a canonical Hilbert C∗-
module structure by applying ideal submodules. The inner product that
turn the quotient of a Hilbert C∗-module over an ideal submodule into
a Hilbert C∗-module motivated them to represent an interpretation of
morphisms on Hilbert C∗-modules, as a class of module maps. Apply-
ing the aforementioned morphisms, they extended the notion of unitaries
on Hilbert C∗-modules. One year later, Amyari and Niknam [5], imple-
mented these new interpretations of morphisms and unitary operators
under the frame of Finsler modules. In the present paper, we demon-
strate necessary and sufficient conditions for a linear map between two
full Finsler modules to be a unitary operator. We also, introduce the
concepts of unitary equivalent and the implemented Finsler modules.
Let φ : A → B be an isomorphism of C∗-algebras and I be an ideal of
A. Considering the canonical Finsler module structure on the quotient
of a Finsler module over its associated ideal submodule, we show that the
canonical Finsler A

I -module E
EI

and the implemented canonical Finsler
B

φ(I) -module F
Fφ(I)

are unitary equivalent. Finally, as a main result of
this section, we introduce an algebraic isomorphism Φ (in Proposition
3.13), which establishes a one to one correspondence between the groups
U(E) and U(F ) of unitary operators on full Finsler modules E and F,
respectively.

In the final section, we closely examine the concepts of regularized
C∗-dynamical systems and generalized derivations of Finsler modules.
We also, explain regularized dynamical systems on full Finsler modules
and show that generalized derivations of Finsler modules are appeared
as the infinitesimal generator of regularized dynamical systems. In fact,
we prove that if δ is the infinitesimal generator of a regularized dynam-
ical system on a full Finsler A-module E, then there exists a unique
derivation d of A for which d turns δ into a d-derivation. Applying
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this result, we show that if E and F are full unitary equivalent Finsler
modules, then each regularized dynamical system on E implements a
regularized dynamical system on F by the algebraic isomorphism Φ.
More precisely, let E and F be full Finsler modules over C∗-algebras A
and B, respectively. Suppose that φ : A → B is an injective homomor-
phism and T : E → F is a surjective φ-homomorphism. We prove that
for a regularized dynamical system {αt}t∈R on E with the generator δ1,
one can correspond a regularized dynamical system {βt}t∈R on F and
a unique regularized C∗-dynamical system {β′

t}t∈R on B such that if δ2
and d2 are the generators of {βt}t∈R and {β′

t}t∈R respectively, then δ2
is a d2-derivation.

2. Preliminaries

We start this section with the following basic definition.

Definition 2.1. Let A be a C∗-algebra and A+ be the set of all positive
elements of A. Suppose that E is complex linear space which is a left A-
module (and λ(a.x) = (λa).x = a.(λx) where λ ∈ C, a ∈ A and x ∈ E)
and there exists a map ρA : E → A+ such that

(i) The map ∥.∥E : x → ∥ρA(x)∥ is a norm on E which makes E
into a Banach space; and

(ii) ρA(a.x)
2 = a.ρA(x)

2.a∗ for all a ∈ A and x ∈ E.

Then, E is called a Finsler A-module under the map ρA. A Finsler A-
module E is said to be full if the linear span {ρA(x)2 : x ∈ E}, denoted
by ⟨ρA(E)⟩ , is dense in A.

It is easy to check that if E is a (full) Hilbert A-module, then E is
a (full) Finsler A-module via ρA(x) := ⟨x, x⟩

1
2 . The following theorem,

which can be found in [11], provides a sufficient condition for a Finsler
module to be a Hilbert module.

Theorem 2.2. Let E be a full Finsler A-module under the map ρA
such that ρA satisfies the parallelogram law on E. Then, E via ⟨x, x′⟩ :=

1
4

3∑
k=0

ikρA(x+ ikx′)2 is a Hilbert A-module.

Let E be a Finsler A-module and I be an ideal in A (throughout
this paper, by an ideal we always mean a closed two-sided ideal). The
associated ideal submodule EI is defined by the closed linear span of the
action of I on E. In the other words, EI := span {a.x : a ∈ I, x ∈ E}.

Clearly, EI is a closed submodule of E and by the Hewitt-Cohen
factorization theorem ([26, Theorem 4.1] and [28, Proposition 2.31]), it
is easy to show that EI = {a.x : a ∈ I, x ∈ E}. Also, it is known [5]
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that EI = {x ∈ E : ρA(x) ∈ I}. It is notable that EI can be regarded
as a Finsler module over I via ρI(a.x) := ρA(a.x) since ρA(a.x)

2 =
a.ρA(x)

2.a∗ ∈ I whenever a ∈ I and x ∈ E. Denote by π : A → A
I and

q : E → E
EI

the quotient maps. A left action of A
I on E

EI
is defined by

π(a).q(x) := q(a.x).
The following Theorem states that the quotient of a Finsler module

over an ideal submodule admits a natural Finsler module structure.

Theorem 2.3 ([27, Lemma 12] and [11, Lemma 3.9]). Let E be a
Finsler A-module, let I be an ideal in A, and let EI be the asso-
ciated ideal submodule. Then, E

EI
equipped with the aforementioned

left action π(a).q(x) := q(a.x) is a Finsler module over A
I module via

ρA
I
(q(x)) := π(ρA(x)). Moreover, if E is full, then so is E

EI
.

Let φ : A → B be a linear ∗-homomorphism of C∗-algebras. Suppose
that E and F are Finsler modules over A and B, respectively.

A linear map T : E → F is called a φ-module map if

T (a.x) = φ(a).T (x), ∀a ∈ A, x ∈ E.

A φ-module map T : E → F is called a φ-homomorphism if

ρB(T (x)) = φ(ρA(x)), ∀a ∈ A, x ∈ E.

Following [5], a linear map T : E → F is said to be a unitary operator if
there exists an injective homomorphism φ : A → B of C∗-algebras such
that T is a surjective φ-homomorphism.

Remark 2.4. Let φ : A → B be an injective homomorphism of C∗-
algebras and let T : E → F be a φ-homomorphism. It is known from [5]
that T is an isometry. Thus, each unitary operator of Finsler modules
is an isometry. Moreover, if F is a full Finsler B-module, then φ is sur-
jective and so it is an isomorphism of C∗-algebras. We denote by U(E)
the group of all unitary operators from full Finsler module E onto E.

We end this section with introducing an important kind of derivations
in the setting of Hilbert C∗-modules.

Definition 2.5. Let E be a Hilbert A-module. A densely defined linear
map δ : D(δ) ⊆ E → E is said to be a ternary derivation if δ(⟨x, y⟩ .z) =
⟨x, y⟩ .δ(z) + (⟨δ(x), y⟩+ ⟨x, δ(y)⟩).z for each x, y, z ∈ D(δ) where, D(δ)
is a ternary subalgebra of E in the sense that ⟨x, y⟩ .z ∈ D(δ) for every
x, y, z ∈ D(δ).

Example 2.6. Let E be a Hilbert A-module, and let δ : E → E be an
adjointable operator with the adjoint −δ. Then, δ is a ternary derivation.
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3. Some Results on Unitary Operators

In the following Theorem, we apply an isomorphism between C∗-
algebras A and B, and a bijection between two different Finsler A-
modules to construct a Finsler B-module.
Theorem 3.1. Suppose that E and F are Finsler A-modules, φ : A → B
is a linear isomorphism of C∗-algebras and T : E → F is a bijective
linear operator. Define the module action b.y := T (φ−1(b).T−1(y)) on F.
Then, F equipped with ρB : F → B+ defined by ρB(y) := φ(ρA(T

−1(y)))
(y ∈ F ) can also be regarded as a Finsler B-module. Moreover, if I
is an ideal in A and E is a full A-module, then F

Fφ(I)
is a full Finsler

B
φ(I) -module.

Proof. Trivially, the map ∥.∥F : y → ∥ρB(y)∥ is a norm on F which
makes F into a Banach space and

ρB(b.y)
2 = φ

(
φ−1(b)

)
.φ
(
ρA
(
T−1(y)

))2
.φ
(
φ−1(b∗)

)
= b.ρB(y)

2.b∗.

Hence, F is a Finsler B-module. Let b ∈ B and take the unique element
a ∈ A for which φ(a) = b. It follows from fullness of E that there is a
sequence {un} in ⟨ρA(E)⟩ such that un → a. Thus, {φ(un)} is a sequence
in ⟨ρB(F )⟩ satisfying φ(un) → b which means that F is full. The proof
is completed by a direct application of Theorem 2.3. □

We call the above alternative Finsler B-module F the Finsler B-
module implemented by (φ, T ) or briefly the implemented Finsler B-
module and denote it by F (φ,T ). Trivially, the map T in the implemented
Finsler B-module F (φ,T ) is a φ-homomorphism. In fact, T is a unitary
operator.

The following theorem demonstrates some conditions under which the
range of a unitary operator of Finsler modules is a Hilbert module.
Theorem 3.2. Let E be a full Finsler A-module under the map ρA, let
F be a Finsler B-module under the map ρB, and let T : E → F be a
unitary operator. If ρA fulfills the parallelogram law on E, then, F is a

Hilbert B-module via ⟨y, y′⟩ := 1
4

3∑
k=0

ikρB

(
y + iky′

)2
.

Proof. Consider the injective homomorphism φ : A → B which makes T
into a surjective φ-homomorphism. Similar to the proof of the previous
theorem, it follows from fullness of E that F is a full Finsler B-module.
Since, ρA fulfills the parallelogram law on E, E is a Hilbert A-module
by Theorem 2.2. For every y, y′ ∈ F, there exist x, x′ ∈ E such that
T (x) = y and T (x′) = y′. Therefore,
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ρB(y + y′)2 + ρB(y − y′)2 = φ(ρA(x+ x′))2 + φ(ρA(x− x′))2

= φ(ρA(x+ x′)2) + φ(ρA(x− x′)2)

= φ(ρA(x+ x′)2 + ρA(x− x′)2)

= φ(2ρA(x)
2 + 2ρA(x

′)2)

= 2φ(ρA(x))
2 + 2φ(ρA(x

′))2

= 2ρB(T (x))
2 + 2ρB(T (x

′))2

= 2ρB(y)
2 + 2ρB(y

′)2.

Thus, ρB satisfies the parallelogram law on F. Using Theorem 2.2 once
more, we conclude that F equipped with the inner product ⟨y, y′⟩ :=

1
4

3∑
k=0

ikρB

(
y + iky′

)2
is a Hilbert B-module. □

Substituting the implemented Finsler B-module F (φ,T ) in Theorem
3.2, we obtain the following corollary.

Corollary 3.3. Let E be a full Finsler A-module under the map ρA
such that ρA fulfills the parallelogram law on E. Then, the implemented
Finsler B-module F (φ,T ) is a Hilbert B-module via〈

y, y′
〉
:=

1

4

3∑
k=0

ikρB

(
y + iky′

)2
.

We are ready to establish the converse of Theorem 3.1.

Theorem 3.4. Let E be a full Finsler A-module, let F be a Finsler B-
module, and let T : E → F be a bijective linear operator. If there exists
a map φ : A → B such that a.x = T−1(φ(a).T (x)) and φ(ρA(x)) =
ρB(T (x)) (a ∈ A, x ∈ E), then φ is a ∗-isomorphism of C∗-algebras if
and only if F is full.

Proof. The proof is similar to that of [4, Main Theorem]. □
The next result is an immediate consequence of the preceding theorem

and the final assertion of Theorem 2.3.

Corollary 3.5. Let E be a full Finsler A-module and let F be a Finsler
B-module. If φ : A → B is a ∗-isomorphism and and T : E → F be a
surjective φ-homomorphism, then F

Fφ(I)
is a full Finsler B

φ(I) -module.

Applying Theorem 3.4, we now present a necessary and sufficient
condition for a linear map between two full Finsler modules to be a
unitary operator.
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Theorem 3.6. Let E be a full Finsler A-module, let F be a full Finsler
B-module, and let T : E → F be a linear operator. Then, T is a unitary
operator if and only if T is bijective and there exists a map φ : A → B
such that T (a.x) = φ(a).T (x) and φ(ρA(x)) = ρB(T (x)) for all a ∈ A
and x ∈ E.

Proof. Suppose that F is a full Finsler B-module. If T is bijective and
there exists a map φ : A → B such that T (a.x) = φ(a).T (x) and
φ(ρA(x)) = ρB(T (x)) for all a ∈ A and x ∈ E, then by Theorem 3.4,
φ is a ∗-isomorphism and therefore, T is a surjective φ-homomorphism.
The converse is evident. □

Before we state another characterization theorem for unitary opera-
tors of Finsler modules, we need the following useful lemma which can
be found in [14].

Lemma 3.7. Suppose that b and c are positive elements of C∗-algebra
A such that ∥ac∥ = ∥ab∥ for all a ∈ A. Then c = b.

Theorem 3.8. Let E be a full Finsler A-module, let F be a full Finsler
B-module, and let φ : A → B be a linear ∗-isomorphism of C∗-algebras.
Then, a surjective φ-module map T : E → F is a unitary operator if
and only if T is an isometry.

Proof. By assumption, φ : A → B is an isomorphism of C∗-algebras.
Suppose that T, as a surjective φ-module map, is an isometry. We have
to show that T is a φ-homomorphism. Take b ∈ B. Then, there exists
a ∈ A such that φ(a) = b. So, for each x ∈ E we have

∥b.ρB(T (x))∥2 = ∥(b.ρB(T (x))).(b.ρB(T (x)))∗∥
= ∥b.ρB(T (x))2.b∗∥
= ∥φ(a).ρB(T (x))2.φ(a)∗∥
= ∥ρB(φ(a).T (x))2∥
= ∥ρB(T (a.x))2∥
= ∥ρB(T (a.x))∥2

= ∥T (a.x)∥2

= ∥a.x∥2

= ∥ρA(a.x)∥2

= ∥ρA(a.x)2∥
= ∥φ(a.ρA(x)2.a∗)∥
= ∥b.φ(ρA(x))2.b∗∥
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= ∥(b.φ(ρA(x))).(b.φ(ρA(x)))∗∥|
= ∥b.φ(ρA(x))∥2.

By the previous lemma, we conclude that ρB(T (x)) = φ(ρA(x)) for every
x ∈ E. The converse is obvious. □

Definition 3.9. Two Finsler modules E and F are said to be unitary
equivalent if there is a unitary operator from E to F.

Applying Theorem 3.1 and Remark 2.4, we have the following result.

Corollary 3.10. The Finsler A-module E and the implemented Finsler
B-module F (φ,T ) are unitary equivalent. Conversely, if E and F are full
unitary equivalent Finsler modules over C∗-algebras A and B, respec-
tively, then A and B are isomorphic C∗-algebras.

Theorem 3.11. Let I be in ideal in A, let E be a Finsler A-module, and
let F (φ,T ) be the implemented Finsler B-module. Then, the canonical
Finsler A

I -module E
EI

and the implemented canonical Finsler B
φ(I) -module

F
Fφ(I)

are unitary equivalent.

Proof. Denote by π′ : B → B
φ(I) and q′ : F → F

Fφ(I)
the quotient maps.

Define φ̂ : A
I → B

φ(I) and T̂ : E
EI

→ F
Fφ(I)

by φ̂(π(a)) := π′(φ(a))

and T̂ (q(x)) := q′(T (x)), respectively. It is easy to observe that φ̂

is an injective homomorphism of C∗-algebras and T̂ is a surjective φ̂-
homomorphism. □

Proposition 3.12. Unitary equivalence in the set of full Finsler modules
is an equivalence relation.

Proof. Let E be a full Finsler A-module. Then, iA (the identity operator
on A) is an injective homomorphism and iE (the identity operator on E)
is a surjective iA-homomorphism. Therefore, the relation is reflexive. To
show that the relation is symmetric, let T : E → F be a unitary operator.
Hence, there exists an injective homomorphism φ : A → B such that T
is a surjective φ-homomorphism. From Remark 2.4, it follows that T is
an isometry and φ is an isomorphism of C∗-algebras. It is not difficult
to observe that T−1 is a unitary operator from F onto E.

Finally, assume that G to be a Finsler module over a C∗-algebra C.
If T : E → F and S : F → G are unitary operators, then trivially, ST
is a unitary operator from E onto G and consequently, the relation is
transitive . □

The following proposition establishes a one to one correspondence be-
tween unitary operators groups of possibly different full Finsler modules.
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Proposition 3.13. Let E and F be full Finsler modules over C∗-
algebras A and B, respectively. Suppose that φ : A → B is an in-
jective homomorphism and T : E → F is a surjective φ-homomorphism.
Then, the map Φ : U(E) → U(F ) defined by Φ(S) = TST−1 is a group
isomorphism. Furthermore, if ρA fulfills the parallelogram law on E,
then, there is an isomorphism ϕ : A → A such that TST−1 is an ad-
jointable operator (mod φϕφ−1) in the sense that

〈
TST−1(y1), y2

〉
=

φϕφ−1
(〈
y1, TS

−1T−1(y2)
〉)

for each y1, y2 ∈ F.

Proof. First, note that φ is an isomorphism and T is a bijective φ-
homomorphism by Remark 2.4. It is easy to check that Φ is a group
isomorphism. If ρA fulfills the parallelogram law, then Theorem 2.2
admits an inner product on E which turns E into a Hilbert A-module.
Also, it follows from Theorem 3.2 that F is a Hilbert B-module. Let
x′ ∈ E, and y ∈ F. Putting T (x′) = y′ and T−1(y) = x, we have

4
〈
y, T (x′)

〉
= 4

〈
y, y′

〉
=

3∑
k=0

ikρB

(
y + iky′

)2
=

3∑
k=0

ikφ
(
ρA

(
x+ ikx′

))2
=

3∑
k=0

ikφ

(
ρA

(
x+ ikx′

)2)

= φ

(
3∑

k=0

ikρA

(
x+ ikx′

)2)
= φ

(
4
〈
x, x′

〉)
= 4φ

(〈
x, x′

〉)
= 4φ

(〈
T−1(y), x′

〉)
.

This relation implies that,
〈
T−1(y′), x

〉
= φ−1 (⟨y′, T (x)⟩) for each x′ ∈

E, and y ∈ F. We apply this fact to prove the adjointability of TST−1

(mod φϕφ−1). Let S ∈ U(E). Remark 2.4 ensures that there exists an
isomorphism ϕ : A → A such that S is a bijective ϕ-homomorphism.
Additionally, a direct calculation, similar as stated for T , shows that
⟨S(x1), x2⟩ = ϕ(

〈
x1, S

−1(x2)
〉
) for all x1, x2 ∈ E. Assume that y1 and

y2 to be arbitrary elements of F. Taking x1 = T−1(y1), x
′ = S(x1) and

x2 = T−1(y2), we have〈
TST−1(y1), y2

〉
= ⟨TS(x1), y2⟩
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=
〈
T (x′), y2

〉
=
〈
y2, T (x

′)
〉∗

= φ
(〈
T−1(y2), x

′〉)∗
= φ

(〈
T−1(y2), x

′〉∗)
= φ

(〈
x′, T−1(y2)

〉)
= φ (⟨S(x1), x2⟩)
= φϕ

(〈
x1, S

−1(x2)
〉)

= φϕ
(〈
T−1(y1), S

−1T−1(y2)
〉)

= φϕφ−1
(〈
y1, T

(
S−1

(
T−1(y2)

))〉)
. □

A discussion similar to what was stated in the proof of the preceding
theorem, will lead to the following result for the group of unitary op-
erators on the quotient of a Finsler modules over their associated ideal
submodules.
Corollary 3.14. Let I be in ideal in A, let E be a Finsler A-module,
and let F (φ,T ) be the implemented Finsler B-module. Then, the group of
unitary operators on the canonical Finsler A

I -module E
EI

and the group
of the implemented canonical Finsler B

φ(I) -module F
Fφ(I)

are isomorphic.

4. Dynamical Systems Implemented by Isomorphic Groups of
Unitaries

Our scope in this section, is obtaining a suitable dynamical system
under the frame of Finsler modules, which covers the available exten-
sions. To achieve this goal, first we base our discussion on the concept
of regularized one parameter groups as the desired extension of ordi-
nary one parameter groups. We represent the definition of a regularized
C∗-dynamical system as follows.
Definition 4.1. Let c′ be an automorphism on a C∗-algebra A. A reg-
ularized C∗-dynamical system is one parameter family {α′

t}t∈R of linear
∗-automorphisms on A such that α′

0 = c′ and c′α′
t+s = α′

tα
′
s for every

t, s ∈ R, and lim
t→0

α′
t(a) = c′(a) for each a ∈ A.

We define the infinitesimal generator d of a regularized C∗-dynamical
system {α′

t}t∈R as a mapping d : D(d) ⊆ A → A such that d(a) =

c′−1 lim
t→0

α′
t(a)− c′(a)

t
where D(d) =

{
a ∈ A : lim

t→0

α′
t(a)− c′(a)

t
exists

}
.

In the case when c′ is the identity operator on A, then a regularized
C∗-dynamical system {α′

t}t∈R is nothing but a classical C∗-dynamical
system.
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Remark 4.2. If {α′
t}t∈R is a regularized C∗-dynamical system with the

infinitesimal generator d, then it is easily seen that
(i) α′

sα
′
t = α′

tα
′
s for every t, s ∈ R.

(ii) c′α′
t = α′

tc
′ and hence, c′−1α′

t = α′
tc

′−1 for every t, s ∈ R.
(iii) c′ (d(a)) = d (c′(a)) and c′−1 (d(a)) = d

(
c′−1(a)

)
for each a ∈

D(d).
(iv) To each regularized C∗-dynamical system {α′

t}t∈R with the
infinitesimal generator d one can associate a C∗-dynamical sys-
tem {α′

tc
′−1}t∈R on A. One easily verifies that the infinitesimal

generators of {α′
t}t∈R and {α′

tc
′−1}t∈R have the same domain.

Moreover, d is the infinitesimal generator of {α′
tc

′−1}t∈R.

Definition 4.3. A linear mapping δ from a dense subspace D(δ) of a
full Finsler A-module E into E is called a generalized derivation if there
exists a mapping d from a dense subalgebra D(d) of A into A for which
D(δ) is an algebraic left D(d)-module, and δ(a.x) = a.δ(x) + d(a).x for
each a ∈ D(d), and x ∈ D(δ).

The method has been used in [2] shows that d is a derivation. For
convenience, we say that such a generalized derivation δ is a d-derivation.

Example 4.4. Let E be a full Hilbert A-module and δ : D(δ) ⊆ E → E

be a ternary derivation. Then, E together with ρA(x) = ⟨x, x⟩
1
2 is a full

Finsler A-module. Additionally, it has been proved in [3, Theorem 3.5]
that there exists a unique derivation d of A such that d turns δ into a
d-derivation. Hence, δ is a generalized derivation.

Attaching unitary operators to regularized one parameter groups, we
obtain regularized dynamical systems in the setting of Finsler modules
as follows.

Definition 4.5. Let c be a unitary operator on a full Finsler A-module
E. A regularized dynamical system is a mapping t → αt from the
additive group R into the group U(E) of unitary operators on E for
which α0 = c and cαt+s = αtαs for every t, s ∈ R, and lim

t→0
αt(x) = c(x)

for each x ∈ E.
We define the infinitesimal generator δ of a regularized dynamical

system {αt}t∈R as a mapping δ : D(δ) ⊆ E → E such that δ(x) =

c−1 lim
t→0

αt(x)− c(x)

t
where D(δ) =

{
x ∈ E : lim

t→0

αt(x)− c(x)

t
exists

}
.

Before we state the next theorem, we need the following useful lemma
which can be found in [4].

Lemma 4.6. Let E be a full Finsler module over C∗-algebra A and
a ∈ A. Then, a.z = 0 for all z ∈ E iff a = 0.
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The following theorem shows that generalized derivations of Finsler
modules are appeared as the infinitesimal generator of regularized dy-
namical systems.

Theorem 4.7. Let E be a full Finsler A-module and {αt}t∈R be a
regularized dynamical system on E with the infinitesimal generator δ.
Then, D(δ) is a dense subspace of E and there exists a derivation d :
D(d) ⊆ A → A such that D(δ) is a left D(d)-module and d turns δ into
a d-derivation.

Proof. Consider the corresponding one parameter group
{
αtc

−1
}
t∈R of

unitary operators on E. Similar as stated in Remark 4.2, the infinitesimal
generators of {αt}t∈R and

{
αtc

−1
}
t∈R have the same domain. So, by

Hille-Yosida theorem [25], D(δ) is a dense subspace of E. Since {αt}t∈R
is a regularized dynamical system, there exists a unitary operator c from
E onto E such that {αt}t∈R is a c-one parameter group. On the other
hand, by Remark 2.4, there exists a ∗-automorphism c′ on A such that
c is a bijective c′-module map. A similar argument for {αt}t∈R shows
that for each t ∈ R there exists a ∗-automorphism α′

t on A such that
αt(a.x) = α′

t(a).αt(x) (a ∈ A, x ∈ E).
We show that {α′

t}t∈R is a regularized C∗-dynamical system. For this
aim, let a ∈ A, z ∈ E. Since c is bijective, there exists x ∈ E such that
c(x) = z. We have c′(a).c(x) = c(a.x) = α0(a.x) = α′

0(a).c(x). Thus, by
the previous lemma α′

0(a) = c′(a) for all a ∈ A. Therefore, α′
0 = c′. To

justify regularized group property note that for all t, s ∈ R we have
c′
(
α′

t+s(a)
)
.c (αt+s(x)) = c

(
α′

t+s(a).αt+s(x)
)

= c (αt+s(a.x))

= αt(αs(a.x))

= αt(α
′
s(a).αs(x))

= α′
t(α

′
s(a)).αt(αs(x))

= α′
t

(
α′

s(a)
)
.c(αt+s(x)),

and so, c′ (α′
t+s(a)) = α′

t (α
′
s(a)). Thus, c′αt+s = α′

tα
′
s.

It follows from strong continuity of {α′
t}t∈R that∥∥α′

t(a).c(x)− c′(a).c(x)
∥∥ ≤

∥∥α′
t(a).c(x)− α′

t(a).αt(x)
∥∥

+
∥∥α′

t(a).αt(x)− c(a.x)
∥∥ .

Therefore, lim
t→0

α′
t(a).c(x) = c′(a).c(x) for all a ∈ A, x ∈ E. Hence,

lim
t→0

α′
t(a) = c′(a) for all a ∈ A. Consequently, {α′

t}t∈R is a regularized
C∗-dynamical system on A.
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Let d be the infinitesimal generator of {α′
t}t∈R. Then, for each a ∈

D(d), and each x ∈ D(δ) we have

c−1

(
lim
t→0

αt(a.x)− c(a.x)

t

)
= c−1

(
lim
t→0

c′(a).αt(x)− c(a.x)

t

)
+ c−1

(
lim
t→0

α′
t(a).αt(x)− c′(a).αt(x)

t

)
= c−1

(
c′(a). lim

t→0

αt(x)− c(x)

t

)
+ c−1

(
lim
t→0

α′
t(a)− c′(a)

t
.αt(x)

)
= c′−1(c′(a)).c−1(lim

t→0

αt(x)− c(x)

t
)

+ c′−1

(
lim
t→0

α′
t(a)− c′(a)

t

)
.c−1

(
lim
t→0

αt(x)
)

= a.δ(x) + d(a).x,

which means that, a.x ∈ D(δ), and D(δ) is a left D(d)-module. Fur-
thermore, δ(a.x) = a.δ(x) + d(a).x for all a ∈ D(d), and x ∈ D(δ). □

Remark 4.8. Let E be a full Finsler A-module and {αt}t∈R be a regu-
larized dynamical system on E. As in the preceding proof, there exists
a regularized C∗-dynamical system {α′

t}t∈R such that α′
t turns αt into a

α′′
t -module map (t ∈ R). Let t ∈ R and z ∈ E. So, there exists a unique

element x ∈ E such that αt(x) = z. Suppose that {α′′
t }t∈R is also a reg-

ularized C∗-dynamical system such that α′′
t turns αt into a α′′

t -module
map (t ∈ R). The equality α′′

t (a).z = αt(a.x) = α′
t(a).z (a ∈ A) together

with Lemma 4.6 imply that α′
t = α′′

t . This means that the regularized
C∗-dynamical system {α′

t}t∈R in the proof of the previous theorem is
unique.

Now, we prove that each regularized dynamical system on E imple-
ments a regularized dynamical system on F by the algebraic isomor-
phism Φ (introduced in Proposition 3.13).

Theorem 4.9. Let E and F be full Finsler modules over C∗-algebras A
and B, respectively. Suppose that φ : A → B is an injective homomor-
phism and T : E → F is a surjective φ-homomorphism. If {αt}t∈R is a
regularized dynamical system on E with the infinitesimal generator δ1,
then one can correspond a regularized dynamical system {βt}t∈R on F
and a unique regularized C∗-dynamical system {β′

t}t∈R on the C∗-algebra
B such that if δ2 and d2 are the infinitesimal generators of {βt}t∈R and
{β′

t}t∈R respectively, then δ2 is a d2-derivation.
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Proof. First note that, as stated in the preceding proof, there exist an
automorphism c′1 and a c′1-one parameter group {α′

t}t∈R on A such that
{α′

t}t∈R is a regularized C∗-dynamical system and α′
t turns αt into a α′

t-
homomorphism (t ∈ R). Also, there is a bijective c′1-homomorphism c1
from E onto E such that {αt}t∈R is a c1-one parameter group. Consider
an injective homomorphism between C∗-algebras A and B, and a sur-
jective φ-homomorphism T from E onto F. It follows from Remark 2.4
that φ is an isomorphism between C∗-algebras A and B and a unitary
map T establishes a unitary equivalence between E and F. We apply
Proposition 3.13 to define a one parameter family {βt}t∈R on Finsler
module F. For this aim, let b ∈ B and y ∈ F. So, there are unique ele-
ments a ∈ A, and x ∈ E such that φ(a) = b, and T (x) = y. Now, define
c′2(φ(a)) := φ(c′1(a)), β

′
t(φ(a)) := φ(α′

t(a)), c2(T (x)) := T (c1(x)), and
βt(T (x)) := T (αt(x)). In fact, c′2 = φc1φ

−1, β′
t = φα′

tφ
−1, c2 = Tc1T

−1,
and βt = TαtT

−1 (in the other words, βt = Φ(αt)). Trivially, c′2 is an
automorphism on B and c2 is a bijective c′1-homomorphism. Also, β′

t

is an automorphism on B that turns the bijective operator βt into a
β′
t-homomorphism (t ∈ R). We have β0 = c2 and for all t, s ∈ R we have

βtβs = βtTαsT
−1

= TαtT
−1TαsT

−1

= Tc1αt+sT
−1

= c2Tαt+sT
−1

= c2βt+s.

It follows from strong continuity of {αt}t∈R that
∥βt(T (x))− c2(T (x))∥ = ∥T (αt(x))− T (c1(x))∥

≤ ∥T∥.∥αt(x)− c1(x)∥ → 0,

which means that {βt}t∈R is a regularized dynamical system. In fact,
{βt}t∈R is a strongly continuous c2-one parameter group of unitary op-
erators on F. The method has been used in the proof of Theorem 4.7
and the previous remark show that {β′

t}t∈R is the unique regularized
C∗-dynamical system on B associated with {βt}t∈R. Finally, suppose
that δ2 and d2 are the infinitesimal generators of {βt}t∈R and {β′

t}t∈R,
respectively. An easy calculation shows that D(d2) = φ (D(d1)) and
D(δ2) = T (D(δ1)) . Furthermore, d2(φ(a)) = φ(d1(a)) and δ2(T (x)) =
T (δ1(x)) for every a ∈ D(d1), x ∈ D(δ1). Hence,

δ2(φ(a).T (x)) = δ2(T (a.x))

= T (δ1(a.x))

= T (a.δ1(x) + d1(a).x)
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= φ(a).T (δ1(x)) + φ(d1(a)).T (x)

= φ(a).δ2(T (x)) + d2(φ(a)).T (x).

Similarly, one can verify that
d2(φ(a).φ(c)) = d2(φ(a)).φ(c) + φ(a).d2(φ(c)),

and consequently, δ2 is a d2-derivation. □
Corollary 4.10. Let {αt}t∈R be a regularized dynamical system on E
and δ1 be its infinitesimal generator. Then, {αt}t∈R implements the
regularized dynamical system {Φ(αt)}t∈R on the implemented Finsler
module F (φ,T ). Consequently, there exists a unique derivation d2 of C∗-
algebra B such that if δ2 is the infinitesimal generators of {Φ(αt)}t∈R,
then δ2 is a d2-derivation.

We end the paper with the following corollary on quotients.
Corollary 4.11. Let {αt}t∈R be a regularized dynamical system on E

EI

and δ1 be its infinitesimal generator. Then, one can correspond a regu-
larized dynamical system {βt}t∈R on the implemented canonical Finsler
module F

Fφ(I)
and a unique regularized C∗-dynamical system {β′

t}t∈R on
the C∗-algebra B

φ(I) such that if δ2 and d2 are the infinitesimal generators
of {βt}t∈R and {β′

t}t∈R respectively, then δ2 is a d2-derivation.
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